Morris GJ, et al. Differences in breast carcinoma characteristics in newly diagnosed African-American and Caucasian patients: a single-institution compilation compared with the National Cancer Institute’s Surveillance, Epidemiology, and End Results database. Cancer. 2007;110(4):876–884. https://doi.org/10.1002/cncr.22836. [PubMed] [Cross Ref].
Article
Google Scholar
Carey LA, Perou CM, Livasy CA, et al. Race, breast cancer subtypes, and survival in the Carolina breast cancer study. JAMA. 2006;295(21):2492–502. PubMed.
Article
CAS
Google Scholar
Azim HA, Jr, Michiels S, Bedard PL, Singhal SK, Criscitiello C, Ignatiadis M, Haibe-Kains B, Piccart MJ, Sotiriou C, Loi S. Elucidating prognosis and biology of breast cancer arising in young women using gene expression profiling. Clin Cancer Res 2012;18:1341–1351.
Article
CAS
Google Scholar
Liedtke C, Mazouni C, Hess KR, Andre F, Tordai A, Mejia JA, et al. Response to neoadjuvant therapy and long-term survival in patients with triple-negative breast cancer. J Clin Oncol. 2008;1275–1281(PubMed):26.
Google Scholar
Haffty BG, et al. Locoregional relapse and distant metastasis in conservatively managed triple negative early-stage breast cancer. J ClinOncol. 2006;24(36):5652–5657. doi: 10.1200/JCO.2006.06.5664. [PubMed] [Cross Ref].
Article
Google Scholar
Kreike B, van Kouwenhove M, Horlings H, Weigelt B, Peterse H, Bartelink H, et al. Gene expression profiling and histopathological characterization of triple-negative/basal-like breast carcinomas. Breast Cancer Res. 2007;9:R65. [PMC free article] [PubMed].
Burstein MD, Tsimelzon A, Poage GM, Covington KR, Contreras A, Fuqua SA, et al. Comprehensive genomic analysis identifies novel subtypes and targets of triple-negative breast cancer. Clin Cancer Res. 2015;21:1688–1698. [PMC free article] [PubMed].
Article
Google Scholar
Tokunaga E, Oki E, Egashira A, Sadanaga N, Morita M, Kakeji Y, et al. Deregulation of the Akt pathway in human cancer. Curr Cancer Drug Targets. 2008;8(1):27–36. 18288941.
Article
CAS
Google Scholar
Myers MG Jr, Backer JM, Sun XJ, Shoelson S, Hu P, Schlessinger J, Yoakim M, Schaffhausen B, White MF 1992. IRS-1 activates phosphatidylinositol 3′-kinase by associating with src homology 2 domains of p85 proc Natl Acad Sci 89: 10350–10354 [PMC free article] [PubMed].
Hennessy BT, Smith DL, Ram PT, Lu Y, Mills GB. Exploiting the PI3K/AKT pathway for cancer drug discovery. Nat Rev Drug Discov. 2005;4:988–1004.
Article
CAS
Google Scholar
Cantley LC. The phosphoinositide 3-kinase pathway. Science. 2002;296:1655–7.
Article
CAS
Google Scholar
Wellcome Trust Sanger Institute. Catalogue of somatic mutations in cancer (COSMIC). In: Accessed march 9; 2010. http://www.sanger.ac.uk/genetics/CGP/cosmic/.
Google Scholar
Vanhaesebroeck B, Guillermet-Guibert J, Graupera M, Bilanges B. The emerging mechanisms of isoform-specific PI3K signalling. Nat Rev Mol CellBiol. 2010;11:329–41.
Article
CAS
Google Scholar
Samuels Y, Wang Z, Bardelli A, et al. High frequency of mutations of the PIK3CA gene in human cancers. Science. 2004;304:554.
Article
CAS
Google Scholar
Comprehensive molecular portraits of human breast tumours Nature 490: 61–70,2012 Cancer Genome Atlas Network Crossref, Medline.
Samuels Y. High frequency of mutations of the PIK3CA gene in human cancers. Science. 2004;304:554.
Article
CAS
Google Scholar
Zhao JJ, Liu Z, Wang L, Shin E, Loda MF, Roberts TM. The oncogenic properties of mutant p110α and p110β phosphatidylinositol 3-kinases in human mammary epithelial cells. Proc Natl AcadSci U S A. 2005;102(51):18443–18448. [PMC free article] [PubMed].
Article
CAS
Google Scholar
Isakoff SJ, Engelman JA, Irie HY, et al. Breast cancer-associated PIK3CA mutations are oncogenic in mammary epithelial cells. Cancer Res. 2005;65(23):10992–1000 [PubMed].
Article
CAS
Google Scholar
Banerji S, Cibulskis K, Rangel-Escareno C, Brown KK, Carter SL. Frederick AM, et al.Sequence analysis of mutations and translocations across breast cancer subtypes. Nature. 2012;486:405–9.
Article
CAS
Google Scholar
Network CGA. Comprehensive molecular portraits of human breast tumours. Nature. 2012;490:61–70.
Article
Google Scholar
Carpten JD, Faber AL, Horn C, et al. A transforming mutation in the pleckstrin homology domain of AKT1 in cancer. Nature. 2007;448:439–44.
Article
CAS
Google Scholar
Stemke-Hale K, Gonzalez-Angulo AM, Lluch A, et al. An integrative genomic and proteomic analysis of PIK3CA, PTEN, and AKT mutations in breast cancer. Cancer Res. 2008;68(15):6084–91.
Article
CAS
Google Scholar
Jézéquel P, Loussouarn D, Guérin-Charbonnel C, Campion L, Vanier A, Gouraud W, et al. Gene-expression molecular subtyping of triple-negative breast cancer tumours: importance of immune response. Breast Cancer Res. 2015;17:43. [PMC free article] [PubMed].
Yuan TL, Cantley LC. PI3K pathway alterations in cancer: variations on a theme. Oncogene. 2008;27:5497–510.
Article
CAS
Google Scholar
Arsenic R, Lehmann A, Budczies J, Koch I, Prinzler J, Kleine-Tebbe A, et al. Analysis of PIK3CA mutations in breast cancer subtypes. ApplImmunohistochemMolMorphol. 2014;50–56(PubMed):22.
Google Scholar
Millis SZ, Gatalica Z, Winkler J, Vranic S, Kimbrough J, Reddy S, et al. Predictive biomarker profiling of > 6000 breast cancer patients shows heterogeneity in TNBC, with treatment implications. Clin Breast Cancer. 2015. April 28 pii: S1526–8209(15)00098–1. https://doi.org/10.1016/j.clbc.2015.04.008 [PubMed].
Article
Google Scholar
Gonzalez-Angulo AM, Chen H, Karuturi MS, Chavez-MacGregor M, Tsavachidis S, Meric-Bernstam F, et al. Frequency of mesenchymal-epithelial transition factor gene (MET) and the catalytic subunit of phosphoinositide-3-kinase (PIK3CA) copy number elevation and correlation with outcome in patients with early stage breast cancer. Cancer. 2013; 119(1):7–15. https://doi.org/10.1002/cncr.27608 [PMC free article][PubMed].
Article
Google Scholar
Yu-Hsiang Chen, Bradley A. Hancock, Jeffrey P. Solzak, et al.Next-generation sequencing of circulating tumor DNA to predict recurrence in triple-negative breast cancer patients with residual disease after neoadjuvant chemotherapy.NPJ Breast Cancer. 2017;3:24. https://doi.org/10.1038/s41523-017-0028-4. [Free PMC Article][PubMed].
Cossu-Rocca P, Orrù S, Muroni MR, Sanges F, Sotgiu G, Ena S, Pira G, Murgia L, Manca A, Uras MG, Sarobba MG, Urru S, De Miglio MR, et al.Analysis of PIK3CA Mutations and Activation Pathways in Triple Negative Breast Cancer.PLoS One. 2015 Nov 5;10(11):e0141763. https://doi.org/10.1371/journal.pone.0141763. eCollection 2015. [Free PMC Article].
Article
Google Scholar
Kriegsmann M, Endris V, Wolf T, Pfarr N, Stenzinger A, Loibl S, Denkert C, Schneeweiss A, Budczies J, Sinn P, Weichert W, et al. Mutational profiles in triple-negative breast cancer defined by ultradeep multigene sequencing show high rates of PI3K pathway alterations and clinically relevant entity subgroup specific differences.Oncotarget. 2014 Oct 30;5(20):9952–65. [Free PMC Article].
Ademuyiwa FO, Tao Y, Luo J, Weilbaecher K, Ma CX. Differences in the mutational landscape of triple-negative breast cancer in African Americans and Caucasians. Breast Cancer Res Treat. February 2017;161(3):491–9. https://doi.org/10.1007/s10549-016-4062-y.
Article
Google Scholar
Weisman PS, Ng CK, Brogi E, Eisenberg RE, Won HH, Piscuoglio S, De Filippo MR, Ioris R, Akram M, Norton L, Weigelt B, Berger MF, Reis-Filho JS, Wen HY. Genetic alterations of triple negative breast cancer by targeted next-generation sequencing and correlation with tumor morphology. ModPathol. 2016 May;29(5):476–488. https://doi.org/10.1038/modpathol.2016.39. Epub 2016 Mar 4. https://doi.org/10.1038/modpathol.2016.39.
Hashimoto K, Tsuda H, Koizumi F, Shimizu C, Yonemori K, Ando M, Kodaira M, Yunokawa M, Fujiwara Y, Tamura K. Activated PI3K/AKT and MAPK pathways are potential good prognostic markers in node-positive, triple-negative breast cancer. Ann Oncol. 2014 Oct;25(10):1973–9. https://doi.org/10.1093/annonc/mdu247 Epub 2014 Jul 9.
Article
CAS
Google Scholar
Beg S, Siraj AK, Prabhakaran S, Jehan Z, Ajarim D, Al-Dayel F, Tulbah A, Al-Kuraya KS. Loss of PTEN expression is associated with aggressive behavior and poor prognosis in middle eastern triple-negative breast cancer. Breast Cancer ResTreat. 2015 Jun;151(3):541–53. https://doi.org/10.1007/s10549-015-3430-3 Epub 2015 May 16.
Article
CAS
Google Scholar
Bleeker FE, Felicioni L, Buttitta F, Lamba S, Cardone L, Rodolfo M, Scarpa A, Leenstra S, Frattini M, Barbareschi M, Grammastro MD, Sciarrotta MG, Zanon C, Marchetti A, Bardelli A. AKT1(E17K) in human solid tumours. Oncogene. 2008 Sep 18;27(42):5648–50. https://doi.org/10.1038/onc.2008.170 Epub 2008 May 26.
Article
CAS
Google Scholar
Rudolph M, Anzeneder T, Schulz A, Beckmann G, Byrne AT, Jeffers M, Pena C, Politz O, Köchert K, Vonk R, Reischl J. AKT1 (E17K) mutation profiling in breast cancer: prevalence, concurrent oncogenic alterations, and blood-based detection. BMC Cancer. 2016 Aug 11;16:622. https://doi.org/10.1186/s12885-016-2626-1.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sjoblom T, Jones S, Wood LD, et al. The consensus coding sequences of human breast and colorectal cancers. Science. 2006;268–74(PubMed):314.
Google Scholar
Greenman C, Stephens P, Smith R, et al. Patterns of somatic mutation in human cancer genomes. Nature. 2007; 446:153–8. [PMC free article] [PubMed].
Gordon V, Banerji S. Molecular pathways: PI3K pathway targets in triple-negative breast cancers. Clin Cancer Res. 2013 Jul 15;19(14):3738–44. https://doi.org/10.1158/1078-0432.CCR-12-0274 Epub 2013 Jun 7.
Article
CAS
Google Scholar
Chan S, Scheulen ME, Johnston S, Mross K, Cardoso F, Dittrich C, et al. Phase II study of temsirolimus (CCI-779), a novel inhibitor of mTOR, in heavily pretreated patients with locally advanced or metastatic breast cancer. J Clin Oncol. 2005;23:5314–22.
Article
CAS
Google Scholar
Baselga J, Campone M, Piccart M, Burris HA, Rugo HS, Sahmoud T, et al. Everolimus in postmenopausal hormone-receptor-positive advanced breast cancer. N Engl J Med 2012;366:520–9. [CrossRef] [PubMed] [Google Scholar].
Article
CAS
Google Scholar