Bray F, Jemal A, Grey N, et al. Global cancer transitions according to the human development index (2008-2030): a population-based study. Lancet Oncol. 2012;13:790–801.
Article
PubMed
Google Scholar
Adjiri A. Identifying and targeting the cause of cancer is needed to cure cancer. Oncol Ther. 2016;4:17. https://doi.org/10.1007/s40487-015-0015-6.
Article
PubMed
Google Scholar
Adjiri A. DNA mutations may not be the cause of cancer. Oncol Ther. 2017;5(1):85–101. https://doi.org/10.1007/s40487-017-0047-1.
Article
PubMed
Google Scholar
Lord CJ, Ashworth A. Mechanisms of resistance to therapies targeting BRCA-mutant cancers. Nat Med. 2013;19:1381–8.
Article
PubMed
CAS
Google Scholar
Bouwman P, Jonkers J. Molecular pathways: how can BRCA-mutated tumors become resistant to PARP inhibitors? Clin Cancer Res. 2014;20:540–7.
Article
PubMed
CAS
Google Scholar
Silk AD, Zasadil LM, Holland AJ, et al. Chromosome mis-segregation rate predicts whether aneuploidy will promote or suppress tumors. Proc Natl Acad Sci U S A. 2013;110(44):E4134–41.
Article
PubMed
PubMed Central
Google Scholar
Baylin SB, Jones PA. A decade of exploring the cancer epigenome — biological and translational implications. Nat Rev Cancer. 2011;11:726–34. https://doi.org/10.1038/nrc3130.
Article
PubMed
PubMed Central
CAS
Google Scholar
Hahn WC, Weinberg RA. Modeling the molecular circuitry of cancer. Nature Rev Cancer. 2002;2(5):331–41.
Article
CAS
Google Scholar
Levine AJ, Puzio-Kuter AM. The control of the metabolic switch in cancers by oncogenes and tumor suppressor genes. Science. 2010;330:1340–4. https://doi.org/10.1126/science.1193494.
Article
PubMed
CAS
Google Scholar
Zhu K, Liu Q, Zhou Y, et al. Oncogenes and tumor suppressor genes: comparative genomics and network perspectives. BMC Genomics. 2015;16(Suppl7):S8. https://doi.org/10.1186/1471-2164-16-S7-S8.
Article
PubMed
PubMed Central
Google Scholar
Ohgaki H, Kleihues P. Genetic alterations and signaling pathways in theevolution of gliomas. Cancer Sci. 2009;100(12):2235–41. https://doi.org/10.1111/j.1349-7006.2009.01308.x.
Article
PubMed
CAS
Google Scholar
Nguyen KSH, Kobayashi S, Costa DB. Acquired resistance to epidermal growth factor receptor tyrosine kinase inhibitors in non–small-cell lung cancers dependent on the epidermal growth factor receptor pathway. Clin Lung Cancer. 2009;10(4):281–9. https://doi.org/10.3816/CLC.2009.n.039.
Article
PubMed
PubMed Central
CAS
Google Scholar
Pylayeva-Gupta Y, Grabocka E, Bar-Sagi D. RAS oncogenes: weaving a tumorigenic web. Nat Rev Cancer. 2011;11(11):761–74. https://doi.org/10.1038/nrc3106.
Article
PubMed
PubMed Central
CAS
Google Scholar
Miller TW, Rexer BN, Garrett JT, et al. Mutations in the phosphatidylinositol 3-kinase pathway: role in tumor progression and therapeutic implications in breast cancer. Breast Cancer Res. 2011;13:224.
Article
PubMed
PubMed Central
CAS
Google Scholar
Montagut C, Settleman J. Targeting the RAF-MEK-ERK pathway in cancer therapy. Cancer Lett. 2009;283(2):125–34. https://doi.org/10.1016/j.canlet.2009.01.022.
Article
PubMed
CAS
Google Scholar
Hsieh AL, Walton ZE, Altman BJ, et al. MYC and metabolism on the path to cancer. Semin Cell Dev Biol. 2015;43:11–21.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wang TJ, Huang MS, Hong CY, et al. Comparisons of tumor suppressor p53, p21, and p16 gene therapy effects on glioblastoma Tumorigenicity in Situ. Biohem Biophys Res Commun. 2001;287 (1:173–80.
Article
CAS
Google Scholar
Sherr CJ. Principles of tumor suppression. Cell. 2004;116:235–46.
Article
PubMed
CAS
Google Scholar
Turner DP, Watson DK. ETS transcription factors: oncogenes and tumor suppressor genes as therapeutic targets for prostate cancer. Expert Rev Anticancer Ther. 2008;8(1):33–42. https://doi.org/10.1586/14737140.8.1.33.
Article
PubMed
CAS
Google Scholar
Martinez LA. Mutant p53 and ETS2, a tale of reciprocity. Front Oncol. 2016;6:35. https://doi.org/10.3389/fonc.2016.00035.
Article
PubMed
PubMed Central
Google Scholar
Xie Y, Ma X, Gu L, et al. Prognostic and Clinicopathological significance of Survivin expression in renal cell carcinoma: a systematic review and meta-analysis. Sci Rep. 2016;6:29794. https://doi.org/10.1038/srep29794.
Article
PubMed
PubMed Central
CAS
Google Scholar
Janiec-Jankowska A, Konopka B, Goluda C, et al. TP53 mutations in endometrial cancers: relation to PTEN gene defects. Int J Gynecol Cancer. 2010;20(2):196–202.
Article
PubMed
Google Scholar
Morin PJ, Sparks AB, Korinek V, et al. Activation of β-catenin-Tcf signaling in Colon Cancer by mutations in β-catenin or APC. Science. 1997;275(5307):1787–90. https://doi.org/10.1126/science.275.5307.1787.
Article
PubMed
CAS
Google Scholar
He TC, Sparks AB, Rago C, et al. Identification of c-MYC as a target of the APC pathway. Science. 1998;281(5382):1509–12.
Article
PubMed
CAS
Google Scholar
van de Wetering M, de Lau W, Clevers H. WNT signaling and lymphocyte development. Cell. 2002;109:S13–9.
Article
PubMed
CAS
Google Scholar
Besson A, Dowdy SF, Roberts JM. CDK inhibitors: cell cycle regulators and beyond. Dev Cell. 2008;14:159–69. https://doi.org/10.1016/j.devcel.2008.01.013.
Article
PubMed
CAS
Google Scholar
Gauthier ML, Berman HK, Miller C, et al. Abrogated response to cellular stress identifies DCIS associated with subsequent tumor events and defines basal-like breast tumors. Cancer Cell. 2007;12(5):479–91.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lewis CM, Cler LR, Bu DW, et al. Promoter Hypermethylation in Benign Breast Epithelium in Relation to Predicted Breast Cancer Risk. Clin Cancer Res. 2005;11:166–72.
Yan PS, Venkataramu C, Ibrahim A, et al. Mapping geographic zones of cancer risk with epigenetic biomarkers in normal breast tissue. Clin Cancer Res. 2006;12(22):6626–36.
Article
PubMed
CAS
Google Scholar
Yin Y, Shen WH. PTEN: a new guardian of the genome. Oncogene. 2008;27(41):5443–53.
Article
PubMed
CAS
Google Scholar
Wood LD, Parsons DW, Jones S, et al. The genomic landscapes of human breast and colorectal cancers. Science. 2007;318(5853):8–9.
Article
CAS
Google Scholar
Vogelstein B, Papadopoulos N, Velculescu VE, et al. Cancer genome landscapes. Science. 2013;339(6127):1546–58.
Article
PubMed
PubMed Central
CAS
Google Scholar
Campisi J, d’Adda di Fagagna F. Cellular senescence: when bad things happen to good cells. Nat Rev Mol Cell Biol. 2007;8:729–40.
Article
PubMed
CAS
Google Scholar
Gosselin K, Martien S, Pourtier A, et al. Senescence-associated oxidative DNA damage promotes the generation of neoplastic cells. Cancer Res. 2009;69:7917–25.
Article
PubMed
CAS
Google Scholar
Beauséjour CM, Krtolica A, Galimi F, et al. Reversal of human cellular senescence: roles of the p53 and p16 pathways. EMBO J. 2003;22(16):4212–22.
Article
PubMed
PubMed Central
Google Scholar
Rheinwald JG, Hahn WC, Ramsey MR, et al. A Two-Stage, p16INK4A- and p53-Dependent Keratinocyte Senescence Mechanism That Limits Replicative Potential Independent of Telomere Status. Mol Cell Biol. 2002;22(14):5157–72. https://doi.org/10.1128/MCB.22.14.5157-5172.2002.
Article
PubMed
PubMed Central
CAS
Google Scholar
Campisi J. Aging, cellular senescence, and Cancer. Annu Rev Physiol. 2013;75:685–705. https://doi.org/10.1146/annurev-physiol-030212-183653.
Article
PubMed
CAS
Google Scholar
Chung HY, Cesari M, Anton S, et al. Molecular inflammation: underpinnings of aging and age-related diseases. Ageing Res Rev. 2009;8:18–30.
Article
PubMed
CAS
Google Scholar
Capell BC, Drake AM, Zhu J, et al. MLL1 is essential for the senescence-associated secretory phenotype. Genes Dev. 2016;30:321–36.
Article
PubMed
PubMed Central
CAS
Google Scholar
Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74. https://doi.org/10.1016/j.cell.2011.02.013.
Article
PubMed
CAS
Google Scholar
Muller D, Breathnach R, Engelmann A, et al. Expression of collagenase-related metalloproteinase genes in human lung or head and neck tumours. Int J Cancer. 1991;48:550–6.
Article
PubMed
CAS
Google Scholar
Wolf C, Rovyer N. Stromelysin-3 belongs to a subgroup of proteinases expressed in breast carcinoma fibroblastic cells and possibly implicated in tumour progression. Proc Natl Acad Sci U S A. 1993;90:1843–7.
Article
PubMed
PubMed Central
CAS
Google Scholar
Newell KJ, Witty JP, Rodgers WH, et al. Expression and localisation of matrix-degrading metalloproteinases during colorectal tumourigenesis. Mol Carcinog. 1994;10:199–206.
Article
PubMed
CAS
Google Scholar
Egeblad M, Werb Z. New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer. 2002;2:161–74.
Article
PubMed
CAS
Google Scholar
Dvorak HF. Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. N Engl J Med. 1986;315:1650–9.
Article
PubMed
CAS
Google Scholar
Kalluri R, Zeisberg M. Fibroblasts in cancer. Nat Rev Cancer. 2006;6:392–401.
Article
PubMed
CAS
Google Scholar
Coussens LM, Werb Z. Inflammation and cancer. Nature. 2002;420:860–7.
Article
PubMed
PubMed Central
CAS
Google Scholar
Pollard JW. Tumour-educated macrophages promote tumour progression and metastasis. Nat Rev Cancer. 2004;4:71–8.
Article
PubMed
CAS
Google Scholar
Roberts CK, Sindhu KK. Oxidative stress and metabolic syndrome. Life Sci. 2009;84(21–22):705–12.
Article
PubMed
CAS
Google Scholar
Sedelnikova OA, Horikawa I, Zimonjic DB, et al. Senescing human cells and ageing mice accumulate DNA lesions with unrepairable double strand breaks. Nat Cell Biol. 2004;6(2):168–70.
Article
PubMed
CAS
Google Scholar
Passos JF, Saretzki G, von Zglinicki T. DNA damage in telomeres and mitochondria during cellular senescence: is there a connection? Nucleic Acids Res. 2007;35(22):7505–13.
Article
PubMed
PubMed Central
CAS
Google Scholar
Levine B, Klionsky DJ. Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev Cell. 2004;6:463–77.
Article
PubMed
CAS
Google Scholar
Codogno P, Mehrpour M, Proikas-Cezanne T. Canonical and non-canonical autophagy: variations on a common theme of self-eating? Nat Rev Mol Cell Biol. 2012;13:7–12. https://doi.org/10.1038/nrm3249.
Article
CAS
Google Scholar
Levine B, Deretic V. Unveiling the roles of autophagy in innate and adaptive immunity. Nat Rev Immunol. 2007;7:767–77. https://doi.org/10.1038/nri2161.
Article
PubMed
CAS
PubMed Central
Google Scholar
Ma Y, Galluzzi L, Zitvogel L, et al. Autophagy and Cellular Immune Responses. Immunity. 2013;39:211–27. https://doi.org/10.1016/j.immuni.2013.07.017.
Article
PubMed
CAS
Google Scholar
Degenhardt K, Chen G, Lindsten T, et al. BAX and BAK mediate p53-independent suppression of tumorigenesis. Cancer Cell. 2002;2:193–203.
Article
PubMed
CAS
Google Scholar
Guo JY, Chen HY, Mathew R, et al. Activated Ras requires autophagy to maintain oxidative metabolism and tumorigenesis. Genes Dev. 2011;25:460–70.
Article
PubMed
PubMed Central
CAS
Google Scholar
Yang S, Wang X, Contino G, et al. Pancreatic cancers require autophagy for tumor growth. Genes Dev. 2011;25:717–29.
Article
PubMed
PubMed Central
CAS
Google Scholar
Deretic V, Saitoh T, Akira S. Autophagy in infection, inflammation and immunity. Nat Rev Immunol. 2013;13:722–37. https://doi.org/10.1038/nri3532.
Article
PubMed
PubMed Central
CAS
Google Scholar
Rodriguez OC, Choudhury S, Kolukula V, et al. Dietary down-regulation of mutant p53 levels via glucose restriction: mechanisms and implications for tumor therapy. Cell Cycle. 2012;11:4436–46.
Article
PubMed
PubMed Central
CAS
Google Scholar
Choudhury S, Kolukula VK, Preet A, et al. Dissecting the pathways that destabilize mutant p53: the proteasome or autophagy? Cell Cycle. 2013;12:1022–9.
Article
PubMed
PubMed Central
CAS
Google Scholar
Garufi A, Pucci D, D’Orazi V, et al. Degradation of mutant p53H175 protein by Zn (II) through autophagy. Cell Death Disease. 2014;5:e1271. https://doi.org/10.1038/cddis.2014.217.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lazova R, Camp RL, Klump V, et al. Punctate LC3B expression is a common feature of solid tumors and associated with proliferation, metastasis, and poor outcome. Clin Cancer Res. 2012;18:370–9.
Article
PubMed
CAS
Google Scholar
Mikhaylova O, Stratton Y, Hall D, et al. VHL-regulated MiR-204 suppresses tumor growth through inhibition of LC3B-mediated autophagy in renal clear cell carcinoma. Cancer Cell. 2012;21:532–46. https://doi.org/10.1016/j.ccr.2012.02.019.
Article
PubMed
PubMed Central
CAS
Google Scholar
Onodera J, Ohsumi Y. Autophagy is required for maintenance of amino acid levels and protein synthesis under nitrogen starvation. J Biol Chem. 2005;280:31582–6. https://doi.org/10.1074/jbc.M506736200.
Article
PubMed
CAS
Google Scholar
Degenhardt K, Mathew R, Beaudoin B, et al. Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis. Cancer Cell. 2006;10:51–64. https://doi.org/10.1016/j.ccr.2006.06.001.
Article
PubMed
PubMed Central
CAS
Google Scholar
Jones RG, Thompson CB. Tumor suppressors and cell metabolism: a recipe for cancer growth. Genes Dev. 2009;23:537–48. https://doi.org/10.1101/gad.1756509.
Article
PubMed
PubMed Central
CAS
Google Scholar
Guo JY, Xia B, White E. Autophagy-mediated tumor promotion. Cell. 2013;155:1216–9. https://doi.org/10.1016/j.cell.2013.11.019.
Article
PubMed
PubMed Central
CAS
Google Scholar
Cruickshanks HA, McBryan T, Nelson DM, et al. Senescent cells harbour features of the cancer epigenome. Nat Cell Biol. 2013;15(12):1495–506. https://doi.org/10.1038/ncb2879.
Article
PubMed
PubMed Central
CAS
Google Scholar
Qureshi-Baig K, Ullmann P, Haan S, et al. Tumor-initiating cells: a criTICal review of isolation approaches and new challenges in targeting strategies. Mol Cancer. 2017;16:40–56. https://doi.org/10.1186/s12943-017-0602-2.
Article
PubMed
PubMed Central
CAS
Google Scholar
Reya T, Morrison SJ, Clarke MF, et al. Stem cells, cancer, and cancer stem cells. Nature. 2001;414:105–11.
Article
PubMed
CAS
Google Scholar
Fulawka L, Donizy P, Halon A. Cancer stem cells-the current status of an old concept: literature review and clinical approaches. Biol Res. 2014;47:66.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kim W-T, Ry CJ. Cancer stem cell surface markers on normal stem cells. BMB Rep. 2017;50(6):285–98.
Article
PubMed
PubMed Central
CAS
Google Scholar
Clarke MF, Fuller M. Stem cells and cancer: two faces of eve. Cell. 2006;124:1111–5.
Article
PubMed
CAS
Google Scholar
Bianco C, Salomon DS. Targeting the embryonic gene Cripto-1 in cancer and beyond. Expert Opin Ther Pat. 2010;20(12):1739–49. https://doi.org/10.1517/13543776.2010.530659.
Article
PubMed
PubMed Central
CAS
Google Scholar
Quintana E, Shackleton M, Sabel MS, et al. Efficient tumour formation by single human melanoma cells. Nature. 2008;456:593–8.
Article
PubMed
PubMed Central
CAS
Google Scholar
Shackleton M, Quintana E, Fearon ER, et al. Heterogeneity in cancer: cancer stem cells versus clonal evolution. Cell. 2009;138:822–9.
Article
PubMed
CAS
Google Scholar
Quintana E, Shackleton M, Foster HR, et al. Phenotypic heterogeneity among tumorigenic melanoma cells from patients that is reversible and not hierarchically organized. Cancer Cell. 2010;18:510–23.
Article
PubMed
PubMed Central
CAS
Google Scholar
Campbell LL, Polyak K. Breast tumor heterogeneity: cancer stem cells or clonal evolution? Cell Cycle. 2007;6:2332–8.
Article
PubMed
CAS
Google Scholar
Visvader JE, Lindeman GJ. Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat Rev Cancer. 2008;8:755–68.
Article
PubMed
CAS
Google Scholar
Vermeulen L, Sprick MR, Kemper K, et al. Cancer stem cells – old concepts, new insights. Cell Death Differ. 2008;15:947–58.
Article
PubMed
CAS
Google Scholar
van Zijl F, Krupitza G, Mikulits W. Initial steps of metastasis: cell invasion and endothelial transmigration. Mutat Res. 2011;728:23–34. https://doi.org/10.1016/j.mrrev.2011.05.002.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kaplan RN, Riba RD, Zacharoulis S, et al. VEGFR1-positive haematopoietic bone marrow progenitors initiate the premetastatic niche. Nature. 2005;438:820–7.
Article
PubMed
PubMed Central
CAS
Google Scholar
Talmadge JE, Wolman SR, Fidler IJ. Evidence for the clonal origin of spontaneous metastases. Science. 1982;217:361–3.
Article
PubMed
CAS
Google Scholar
Bernards R, Weinberg RA. Metastasis genes: A progression puzzle. Nature. 2002;418(6900):823. https://doi.org/10.1038/418823a.
Article
PubMed
CAS
Google Scholar
Mueller MM, Fusenig NE. Friends or foes—bipolar effects of the tumour stroma in cancer. Nat Rev Cancer. 2004;4:839–49.
Article
PubMed
CAS
Google Scholar
Wels J, Kaplan RN, Rafii S, et al. Migratory neighbors and distant invaders: tumor-associated niche cells. Genes Dev. 2008;22:559–74.
Article
PubMed
PubMed Central
CAS
Google Scholar
Liotta LA, Kohn E. Anoikis: cancer and the homeless cell. Nature. 2004;430:973–4.
Article
PubMed
CAS
Google Scholar
Wyckoff B, Wang Y, Lin EY, et al. Direct visualization of macrophage-assisted tumor cell intravasation in mammary tumors. Cancer Res. 2007;67:2649–56.
Article
PubMed
CAS
Google Scholar
Paget S. The distribution of secondary growths in cancer of the breast. Lancet. 1889;1:571–3.
Article
Google Scholar
Fidler IJ. The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited. Nat Rev Cancer. 2003;3:453–8.
Article
PubMed
CAS
Google Scholar
Sullivan R, Graham CH. Hypoxia-driven selection of the metastatic phenotype. Cancer Metastasis Rev. 2007;26:319–31.
Article
PubMed
CAS
Google Scholar
Kang TW, Yevsa T, Woller N, et al. Senescence surveillance of pre-malignant hepatocytes limits liver cancer development. Nature. 2011;479:547–51.
Article
PubMed
CAS
Google Scholar
McElhaney JE, Effros RB. Immunosenescence: what does it mean to health outcomes in older adults? Curr Opin Immunol. 2009;21:418–24.
Article
PubMed
PubMed Central
CAS
Google Scholar
Thiery JP. Epithelial–mesenchymal transitions in tumour progression. Nat Rev Cancer. 2002;2:442–54.
Article
PubMed
CAS
Google Scholar
Thiery JP, Sleeman JP. Complex networks orchestrate epithelial–mesenchymal transitions. Nat Rev Mol Cell Biol. 2006;7:131–42.
Article
PubMed
CAS
Google Scholar
Friedl P, Wolf K. Tumour-cell invasion and migration: diversity and escape mechanisms. Nat Rev Cancer. 2003;3:362–74.
Article
PubMed
CAS
Google Scholar
Wolf K, Mazo I, Leung H, et al. Compensation mechanism in tumor cell migration: mesenchymal–amoeboid transition after blocking of pericellular proteolysis. J Cell Biol. 2003;160:267–77.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lewis K, Shan Y. Why tolerance invites resistance. Science. 2017;355(6327):796. https://doi.org/10.1126/science.aam7926.
Article
PubMed
CAS
Google Scholar
Levin-Reisman I, Ronin I, Gefen O, et al. Antibiotic tolerance facilitates the evolution of resistance. Science. 2017;355(6327):826–30. https://doi.org/10.1126/science.aaj2191.
Article
PubMed
CAS
Google Scholar
Baer CF, Miyamoto MM, Denver DR. Mutation rate variation in multicellular eukaryotes: causes and consequences. Nature Rev Genet. 2007;8:619–31.
Article
PubMed
CAS
Google Scholar
Rew DA, Wilson GD. Cell production rates in human tissues and tumours and their significance. Part II: clinical data. Eur J Surg Oncol. 2000;26(4):405–17. https://doi.org/10.1053/ejso.1999.0907.
Article
PubMed
CAS
Google Scholar
Tubiana M. Tumor cell proliferation kinetics and tumor growth rate. Acta Oncol. 1989;28(1):113–21. https://doi.org/10.3109/02841868909111193.
Article
PubMed
CAS
Google Scholar
Bates RC, Edwards NS, Yates JD. Spheroids and cell survival. Crit Rev Oncol Hematol. 2000;36:61–74.
Article
PubMed
CAS
Google Scholar
He Z, Kannan N, Nemirovsky O, et al. BRCA1 controls the cell division axis and governs ploidy and phenotype in human mammary cells. Oncotarget. 2017;8(20):32461–75.
PubMed
PubMed Central
Google Scholar
Morroni M, Giordano A, Zingaretti MC, et al. Reversible trans-differentiation of secretory epithelial cells into adipocytes in the mammary gland. Proc Natl Acad Sci U S A. 2004;101:16801–6.
Article
PubMed
PubMed Central
CAS
Google Scholar
Murga M, Fernandez-Capetillo O. Genomic instability: on the birth and death of cancer. Clin Transl Oncol. 2007;9:216–20. https://doi.org/10.1007/s12094-007-0042-3.
Article
PubMed
CAS
Google Scholar
Ben-Porath I, Weinberg RA. The signals and pathways activating cellular senescence. Int J Biochem Cell Biol. 2005;37(5):961–76.
Article
PubMed
CAS
Google Scholar
Dolcetti R, de Rossi A. Telomere/telomerase interplay in virus-driven and virus-independent lymphomagenesis: pathogenic and clinical implications. Med Res Rev. 2012;32:233–53.
Article
PubMed
CAS
Google Scholar