Huang X. Iron overload and its association with cancer risk in humans: evidence for iron as a carcinogenic metal. Mutat Res. 2003;533(1-2):153–71.
Article
CAS
PubMed
Google Scholar
Kabat GC, Miller AB, Jain M, Rohan TE. A cohort study of dietary iron and heme iron intake and risk of colorectal cancer in women. Br J Cancer. 2007;97(1):118–22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wen CP, Lee JH, Tai YP, Wen C, SB W, Tsai MK, Hsieh DP, Chiang HC, Hsiung CA, Hsu CY, et al. High serum iron is associated with increased cancer risk. Cancer Res. 2014;74(22):6589–97.
Article
CAS
PubMed
Google Scholar
Huang X. Does iron have a role in breast cancer? Lancet Oncol. 2008;9(8):803–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stevens RG, Jones DY, Micozzi MS, Taylor PR. Body iron stores and the risk of cancer. N Engl J Med. 1988;319(16):1047–52.
Article
CAS
PubMed
Google Scholar
Stevens RG, Beasley RP, Blumberg BS. Iron-binding proteins and risk of cancer in Taiwan. J Natl Cancer Inst. 1986;76(4):605–10.
Article
CAS
PubMed
Google Scholar
Wurzelmann JI, Silver A, Schreinemachers DM, Sandler RS, Everson RB. Iron intake and the risk of colorectal cancer. Cancer Epidemiol Biomark Prev. 1996;5(7):503–7.
CAS
Google Scholar
Paul I, Jones JM. Apoptosis block as a barrier to effective therapy in non small cell lung cancer. World J Clin Oncol. 2014;5(4):588–94.
Article
PubMed
PubMed Central
Google Scholar
Mandishona E, MacPhail AP, Gordeuk VR, Kedda MA, Paterson AC, Rouault TA, Kew MC. Dietary iron overload as a risk factor for hepatocellular carcinoma in black Africans. Hepatology. 1998;27(6):1563–6.
Article
CAS
PubMed
Google Scholar
Efferth T, Dunstan H, Sauerbrey A, Miyachi H, Chitambar CR. The anti-malarial artesunate is also active against cancer. Int J Oncol. 2001;18(4):767–73.
CAS
PubMed
Google Scholar
Mercer AE, Maggs JL, Sun XM, Cohen GM, Chadwick J, O'Neill PM, Park BK. Evidence for the involvement of carbon-centered radicals in the induction of apoptotic cell death by artemisinin compounds. J Biol Chem. 2007;282(13):9372–82.
Article
CAS
PubMed
Google Scholar
Mercer AE, Copple IM, Maggs JL, O'Neill PM, Park BK. The role of heme and the mitochondrion in the chemical and molecular mechanisms of mammalian cell death induced by the artemisinin antimalarials. J Biol Chem. 2011;286(2):987–96.
Article
CAS
PubMed
Google Scholar
Rijpma SR, van den Heuvel JJ, van der Velden M, Sauerwein RW, Russel FG, Koenderink JB. Atovaquone and quinine anti-malarials inhibit ATP binding cassette transporter activity. Malar J. 2014;13:359.
Article
PubMed
PubMed Central
Google Scholar
Seo EJ, Wiench B, Hamm R, Paulsen M, Zu Y, Fu Y, Efferth T. Cytotoxicity of natural products and derivatives toward MCF-7 cell monolayers and cancer stem-like mammospheres. Phytomedicine Int J Phytotherapy Phytopharmacol. 2015;22(4):438–43.
Article
CAS
Google Scholar
Shahbazfar AA, Zare P, Ranjbaran M, Tayefi-Nasrabadi H, Fakhri O, Farshi Y, Shadi S, Khoshkerdar A. A survey on anticancer effects of artemisinin, iron, miconazole, and butyric acid on 5637 (bladder cancer) and 4T1 (breast cancer) cell lines. J Cancer Res Ther. 2014;10(4):1057–62.
Article
PubMed
Google Scholar
Gong Y, Gallis BM, Goodlett DR, Yang Y, Lu H, Lacoste E, Lai H, Sasaki T. Effects of transferrin conjugates of artemisinin and artemisinin dimer on breast cancer cell lines. Anticancer Res. 2013;33(1):123–32.
CAS
PubMed
Google Scholar
Kelter G, Steinbach D, Konkimalla VB, Tahara T, Taketani S, Fiebig HH, Efferth T. Role of transferrin receptor and the ABC transporters ABCB6 and ABCB7 for resistance and differentiation of tumor cells towards artesunate. PLoS One. 2007;2(8):e798.
Article
PubMed
PubMed Central
Google Scholar
Kim SH, Kang SH, Kang BS. Therapeutic effects of dihydroartemisinin and transferrin against glioblastoma. Nutr Res Prac. 2016;10(4):393–7.
Article
Google Scholar
Lai H, Nakase I, Lacoste E, Singh NP, Sasaki T. Artemisinin-transferrin conjugate retards growth of breast tumors in the rat. Anticancer Res. 2009;29(10):3807–10.
CAS
PubMed
Google Scholar
Singh NP, Lai H. Selective toxicity of dihydroartemisinin and holotransferrin toward human breast cancer cells. Life Sci. 2001;70(1):49–56.
Article
CAS
PubMed
Google Scholar
Ha VT, Kien VT, Binh le H, Tien VD, My NT, Nam NH, Baltas M, Hahn H, Han BW, Thao do T et al: Design, synthesis and biological evaluation of novel hydroxamic acids bearing artemisinin skeleton. Bioorg Chem 2016, 66:63-71.
Li M, Jiang F, Yu X, Miao Z. Engineering isoprenoid biosynthesis in Artemisia Annua L. for the production of taxadiene: a key intermediate of taxol. Biomed Res Int. 2015;2015:504932.
PubMed
PubMed Central
Google Scholar
Zuma NH, Smit FJ, de Kock C, Combrinck J, Smith PJ, N'Da DD. Synthesis and biological evaluation of a series of non-hemiacetal ester derivatives of artemisinin. Eur J Med Chem. 2016;122:635–46.
Article
CAS
PubMed
Google Scholar
Magoulas GE, Tsigkou T, Skondra L, Lamprou M, Tsoukala P, Kokkinogouli V, Pantazaka E, Papaioannou D, Athanassopoulos CM, Papadimitriou E. Synthesis of nomicronvel artemisinin dimers with polyamine linkers and evaluation of their potential as anticancer agents. Bioorg Med Chem. 2017;25(14):3756–67.
Article
CAS
PubMed
Google Scholar
Noori S, Hassan ZM. Tehranolide inhibits proliferation of MCF-7 human breast cancer cells by inducing G0/G1 arrest and apoptosis. Free Radic Biol Med. 2012;52(9):1987–99.
Article
CAS
PubMed
Google Scholar
Wang S, Sasaki T. Synthesis of artemisinin dimers using the Ugi reaction and their in vitro efficacy on breast cancer cells. Bioorg Med Chem Lett. 2013;23(15):4424–7.
Article
CAS
PubMed
Google Scholar
Zuo ZZ, Zhong H, Cai T, Bao Y, Liu ZQ, Liu D, Zhao LX. Design, synthesis and antiproliferative activities of artemisinin derivatives substituted by N-heterocycles. Yao Xue Xue Bao Acta Pharmaceutica Sinica. 2015;50(7):868–74.
CAS
PubMed
Google Scholar
Dadgar N, Alavi SE, Esfahani MK, Akbarzadeh A. Study of toxicity effect of pegylated nanoliposomal artemisinin on breast cancer cell line. Indian J Clin Biochem. 2013;28(4):410–2.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dadgar N, Koohi Moftakhari Esfahani M, Torabi S, Alavi SE, Akbarzadeh A. Effects of nanoliposomal and pegylated nanoliposomal artemisinin in treatment of breast cancer. Indian J Clin Biochem. 2014;29(4):501–4.
Article
CAS
PubMed
Google Scholar
Gharib A, Faezizadeh Z, Mesbah-Namin SA, Saravani R. Experimental treatment of breast cancer-bearing BALB/c mice by artemisinin and transferrin-loaded magnetic nanoliposomes. Pharmacogn Mag. 2015;11(Suppl 1):S117–22.
Article
PubMed
PubMed Central
Google Scholar
Natesan S, Ponnusamy C, Sugumaran A, Chelladurai S, Shanmugam Palaniappan S, Palanichamy R. Artemisinin loaded chitosan magnetic nanoparticles for the efficient targeting to the breast cancer. Int J Biol Macromol. 2017;
Tran TH, Nguyen AN, Kim JO, Yong CS, Nguyen CN. Enhancing activity of artesunate against breast cancer cells via induced-apoptosis pathway by loading into lipid carriers. Artificial Cells, Nanomed Biotechnol. 2016;44(8):1979–87.
Article
CAS
Google Scholar
Tran TH, Nguyen TD, Poudel BK, Nguyen HT, Kim JO, Yong CS, Nguyen CN. Development and evaluation of Artesunate-loaded Chitosan-coated lipid Nanocapsule as a potential drug delivery system against breast cancer. AAPS PharmSciTech. 2015;16(6):1307–16.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang Z, Yu Y, Ma J, Zhang H, Zhang H, Wang X, Wang J, Zhang X, Zhang Q. LyP-1 modification to enhance delivery of artemisinin or fluorescent probe loaded polymeric micelles to highly metastatic tumor and its lymphatics. Mol Pharm. 2012;9(9):2646–57.
Article
CAS
PubMed
Google Scholar
Jabbarzadegan M, Rajayi H, Mofazzal Jahromi MA, Yeganeh H, Yousefi M, Muhammad Hassan Z, Majidi J. Application of arteether-loaded polyurethane nanomicelles to induce immune response in breast cancer model. Artificial Cells Nanomed Biotechnol. 2017;45(4):808–16.
Article
CAS
Google Scholar
Zhang YJ, Gallis B, Taya M, Wang S, Ho RJ, Sasaki T. pH-responsive artemisinin derivatives and lipid nanoparticle formulations inhibit growth of breast cancer cells in vitro and induce down-regulation of HER family members. PLoS One. 2013;8(3):e59086.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen G, Gong R, Shi X, Yang D, Zhang G, Lu A, Yue J, Bian Z. Halofuginone and artemisinin synergistically arrest cancer cells at the G1/G0 phase by upregulating p21Cip1 and p27Kip1. Oncotarget. 2016;7(31):50302–14.
Article
PubMed
PubMed Central
Google Scholar
GS W, JJ L, Guo JJ, Huang MQ, Gan L, Chen XP, Wang YT. Synergistic anti-cancer activity of the combination of dihydroartemisinin and doxorubicin in breast cancer cells. Pharmacological Reports. 2013;65(2):453–9.
Article
Google Scholar
Wang D, Zhao Y, Wang Y, Rong Y, Qin H, Bao Y, Song Z, Yu C, Sun L, Li Y. 25-methoxyl-dammarane-3beta, 12beta, 20-triol and artemisinin synergistically inhibit MDA-MB-231 cell proliferation through downregulation of testes-specific protease 50 (TSP50) expression. Tumour Biology. 2016;37(9):11805–13.
Article
CAS
PubMed
Google Scholar
Li Q, Wang W, Liu Y, Lian B, Zhu Q, Yao L, Liu T. The biological characteristics of a novel camptothecin-artesunate conjugate. Bioorg Med Chem Lett. 2015;25(1):148–52.
Article
CAS
PubMed
Google Scholar
Langroudi L, Hassan ZM, Ebtekar M, Mahdavi M, Pakravan N, Noori S. A comparison of low-dose cyclophosphamide treatment with artemisinin treatment in reducing the number of regulatory T cells in murine breast cancer model. Int Immunopharmacol. 2010;10(9):1055–61.
Article
CAS
PubMed
Google Scholar
Suberu JO, Romero-Canelon I, Sullivan N, Lapkin AA, Barker GC. Comparative cytotoxicity of artemisinin and cisplatin and their interactions with chlorogenic acids in MCF7 breast cancer cells. ChemMedChem. 2014;9(12):2791–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Singh NP, Lai HC, Park JS, Gerhardt TE, Kim BJ, Wang S, Sasaki T. Effects of artemisinin dimers on rat breast cancer cells in vitro and in vivo. Anticancer Res. 2011;31(12):4111–4.
CAS
PubMed
Google Scholar
Tai X, Cai XB, Zhang Z, Wei R. In vitro and in vivo inhibition of tumor cell viability by combined dihydroartemisinin and doxorubicin treatment, and the underlying mechanism. Oncol Lett. 2016;12(5):3701–6.
PubMed
PubMed Central
Google Scholar
Zhang YJ, Zhan X, Wang L, Ho RJ, Sasaki T. pH-responsive artemisinin dimer in lipid nanoparticles are effective against human breast cancer in a xenograft model. J Pharm Sci. 2015;104(5):1815–24.
Article
CAS
PubMed
PubMed Central
Google Scholar
Osaki T, Uto Y, Ishizuka M, Tanaka T, Yamanaka N, Kurahashi T, Azuma K, Murahata Y, Tsuka T, Itoh N, et al. Artesunate enhances the Cytotoxicity of 5-Aminolevulinic acid-based Sonodynamic therapy against mouse mammary tumor cells in vitro. Molecules. 2017;22(4)
Noori S, Hassan ZM. Dihydroartemisinin shift the immune response towards Th1, inhibit the tumor growth in vitro and in vivo. Cell Immunol. 2011;271(1):67–72.
Article
CAS
PubMed
Google Scholar
Farsam V, Hassan ZM, Zavaran-Hosseini A, Noori S, Mahdavi M, Ranjbar M. Antitumor and immunomodulatory properties of artemether and its ability to reduce CD4+ CD25+ FoxP3+ T reg cells in vivo. Int Immunopharmacol. 2011;11(11):1802–8.
Article
CAS
PubMed
Google Scholar
Lai H, Singh NP. Oral artemisinin prevents and delays the development of 7,12-dimethylbenz[a]anthracene (DMBA)-induced breast cancer in the rat. Cancer Lett. 2006;231(1):43–8.
Article
CAS
PubMed
Google Scholar
Feng MX, Hong JX, Wang Q, Fan YY, Yuan CT, Lei XH, Zhu M, Qin A, Chen HX, Hong D. Dihydroartemisinin prevents breast cancer-induced osteolysis via inhibiting both breast caner cells and osteoclasts. Sci Rep. 2016;6:19074.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ericsson T, Blank A, von Hagens C, Ashton M, Abelo A. Population pharmacokinetics of artesunate and dihydroartemisinin during long-term oral administration of artesunate to patients with metastatic breast cancer. Eur J Clin Pharmacol. 2014;70(12):1453–63.
Article
CAS
PubMed
Google Scholar
Konig M, von Hagens C, Hoth S, Baumann I, Walter-Sack I, Edler L, Sertel S. Investigation of ototoxicity of artesunate as add-on therapy in patients with metastatic or locally advanced breast cancer: new audiological results from a prospective, open, uncontrolled, monocentric phase I study. Cancer Chemother Pharmacol. 2016;77(2):413–27.
Article
PubMed
Google Scholar
Panossian LA, Garga NI, Pelletier D. Toxic brainstem encephalopathy after artemisinin treatment for breast cancer. Ann Neurol. 2005;58(5):812–3.
Article
PubMed
Google Scholar
Hargraves KG, He L, Firestone GL. Phytochemical regulation of the tumor suppressive microRNA, miR-34a, by p53-dependent and independent responses in human breast cancer cells. Mol Carcinog. 2016;55(5):486–98.
Article
CAS
PubMed
Google Scholar
Odaka Y, Xu B, Luo Y, Shen T, Shang C, Wu Y, Zhou H, Huang S. Dihydroartemisinin inhibits the mammalian target of rapamycin-mediated signaling pathways in tumor cells. Carcinogenesis. 2014;35(1):192–200.
Article
CAS
PubMed
Google Scholar
Lucibello M, Adanti S, Antelmi E, Dezi D, Ciafre S, Carcangiu ML, Zonfrillo M, Nicotera G, Sica L, De Braud F, et al. Phospho-TCTP as a therapeutic target of Dihydroartemisinin for aggressive breast cancer cells. Oncotarget. 2015;6(7):5275–91.
Article
PubMed
PubMed Central
Google Scholar
Tin AS, Sundar SN, Tran KQ, Park AH, Poindexter KM, Firestone GL. Antiproliferative effects of artemisinin on human breast cancer cells requires the downregulated expression of the E2F1 transcription factor and loss of E2F1-target cell cycle genes. Anti-Cancer Drugs. 2012;23(4):370–9.
Article
CAS
PubMed
Google Scholar
Chen K, Shou LM, Lin F, Duan WM, MY W, Xie X, Xie YF, Li W, Tao M. Artesunate induces G2/M cell cycle arrest through autophagy induction in breast cancer cells. Anti-Cancer Drugs. 2014;25(6):652–62.
PubMed
Google Scholar
Sundar SN, Marconett CN, Doan VB, Willoughby JA Sr, Firestone GL. Artemisinin selectively decreases functional levels of estrogen receptor-alpha and ablates estrogen-induced proliferation in human breast cancer cells. Carcinogenesis. 2008;29(12):2252–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hamacher-Brady A, Stein HA, Turschner S, Toegel I, Mora R, Jennewein N, Efferth T, Eils R, Brady NR. Artesunate activates mitochondrial apoptosis in breast cancer cells via iron-catalyzed lysosomal reactive oxygen species production. J Biol Chem. 2011;286(8):6587–601.
Article
CAS
PubMed
Google Scholar
Mao H, Gu H, Qu X, Sun J, Song B, Gao W, Liu J, Shao Q. Involvement of the mitochondrial pathway and Bim/Bcl-2 balance in dihydroartemisinin-induced apoptosis in human breast cancer in vitro. Int J Mol Med. 2013;31(1):213–8.
Article
CAS
PubMed
Google Scholar
Bachmeier B, Fichtner I, Killian PH, Kronski E, Pfeffer U, Efferth T. Development of resistance towards artesunate in MDA-MB-231 human breast cancer cells. PLoS One. 2011;6(5):e20550.
Article
CAS
PubMed
PubMed Central
Google Scholar
Qaderi A, Dadgar N, Mansouri H, Alavi SE, Esfahani MK, Akbarzadeh A. Modeling and prediction of cytotoxicity of artemisinin for treatment of the breast cancer by using artificial neural networks. SpringerPlus. 2013;2:340.
Article
PubMed
PubMed Central
Google Scholar
Chekhun VF, Lukianova NY, Borikun TV, Zadvorny TV, Mokhir A. Artemisinin modulating effect on human breast cancer cell lines with different sensitivity to cytostatics. Exp Oncol. 2017;39(1):25–9.
CAS
PubMed
Google Scholar
Zhong H, Zhao X, Zuo Z, Sun J, Yao Y, Wang T, Liu D, Zhao L. Combating P-glycoprotein-mediated multidrug resistance with 10-O-phenyl dihydroartemisinin ethers in MCF-7 cells. Eur J Med Chem. 2016;108:720–9.
Article
CAS
PubMed
Google Scholar
Sagar S, Esau L, Moosa B, Khashab NM, Bajic VB, Kaur M. Cytotoxicity and apoptosis induced by a plumbagin derivative in estrogen positive MCF-7 breast cancer cells. Anti Cancer Agents Med Chem. 2014;14(1):170–80.
Article
CAS
Google Scholar
Lemmo S, Nasrollahi S, Tavana H. Aqueous biphasic cancer cell migration assay enables robust, high-throughput screening of anti-cancer compounds. Biotechnol J. 2014;9(3):426–34.
Article
CAS
PubMed
Google Scholar
Guarino M, Rubino B, Ballabio G. The role of epithelial-mesenchymal transition in cancer pathology. Pathology. 2007;39(3):305–18.
Article
CAS
PubMed
Google Scholar
Stein RA, Chang CY, Kazmin DA, Way J, Schroeder T, Wergin M, Dewhirst MW, McDonnell DP. Estrogen-related receptor alpha is critical for the growth of estrogen receptor-negative breast cancer. Cancer Res. 2008;68(21):8805–12.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim JH, Choi YK, Byun JK, Kim MK, Kang YN, Kim SH, Lee S, Jang BK, Park KG. Estrogen-related receptor gamma is upregulated in liver cancer and its inhibition suppresses liver cancer cell proliferation via induction of p21 and p27. Exp Mol Med. 2016;48:e213.
Article
CAS
PubMed
PubMed Central
Google Scholar
Daniel AR, Gaviglio AL, Knutson TP, Ostrander JH, D'Assoro AB, Ravindranathan P, Peng Y, Raj GV, Yee D, Lange CA. Progesterone receptor-B enhances estrogen responsiveness of breast cancer cells via scaffolding PELP1- and estrogen receptor-containing transcription complexes. Oncogene. 2015;34(4):506–15.
Article
CAS
PubMed
Google Scholar
Lazennec G, Bresson D, Lucas A, Chauveau C, Vignon F. ER beta inhibits proliferation and invasion of breast cancer cells. Endocrinology. 2001;142(9):4120–30.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dai M, Al-Odaini AA, Fils-Aime N, Villatoro MA, Guo J, Arakelian A, Rabbani SA, Ali S, Lebrun JJ. Cyclin D1 cooperates with p21 to regulate TGFbeta-mediated breast cancer cell migration and tumor local invasion. Breast Cancer Res. 2013;15(3):R49.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ramsey B, Bai T, Hanlon Newell A, Troxell M, Park B, Olson S, Keenan E, Luoh SW. GRB7 protein over-expression and clinical outcome in breast cancer. Breast Cancer Res Treat. 2011;127(3):659–69.
Article
CAS
PubMed
Google Scholar
Lawlor MA, Alessi DR. PKB/Akt: a key mediator of cell proliferation, survival and insulin responses? J Cell Sci. 2001;114(Pt 16):2903–10.
CAS
PubMed
Google Scholar
Inwald EC, Klinkhammer-Schalke M, Hofstadter F, Zeman F, Koller M, Gerstenhauer M, Ortmann O. Ki-67 is a prognostic parameter in breast cancer patients: results of a large population-based cohort of a cancer registry. Breast Cancer Res Treat. 2013;139(2):539–52.
Article
CAS
PubMed
PubMed Central
Google Scholar
Qiu M, Bao W, Wang J, Yang T, He X, Liao Y, Wan X. FOXA1 promotes tumor cell proliferation through AR involving the notch pathway in endometrial cancer. BMC Cancer. 2014;14:78.
Article
PubMed
PubMed Central
Google Scholar
Xu J, Chen Y, Olopade OI. MYC and breast cancer. Genes Cancer. 2010;1(6):629–40.
Article
CAS
PubMed
PubMed Central
Google Scholar
Giacinti C, Giordano A. RB and cell cycle progression. Oncogene. 2006;25(38):5220–7.
Article
CAS
PubMed
Google Scholar
Dydensborg AB, Rose AA, Wilson BJ, Grote D, Paquet M, Giguere V, Siegel PM, Bouchard M. GATA3 inhibits breast cancer growth and pulmonary breast cancer metastasis. Oncogene. 2009;28(29):2634–42.
Article
CAS
PubMed
Google Scholar
Lu XX, Cao LY, Chen X, Xiao J, Zou Y, Chen Q. PTEN inhibits cell proliferation, promotes cell apoptosis, and induces cell cycle arrest via Downregulating the PI3K/AKT/hTERT pathway in lung Adenocarcinoma A549 cells. Biomed Res Int. 2016;2016:2476842.
PubMed
PubMed Central
Google Scholar
Birchmeier W, Behrens J. Cadherin expression in carcinomas: role in the formation of cell junctions and the prevention of invasiveness. Biochim Biophys Acta. 1994;1198(1):11–26.
CAS
PubMed
Google Scholar
Lebrun JJ. The dual role of TGFbeta in human cancer: from tumor suppression to cancer metastasis. ISRN Mol Biol. 2012;2012:381428.
Article
PubMed
PubMed Central
Google Scholar
Sanchez-Tillo E, de Barrios O, Siles L, Cuatrecasas M, Castells A, Postigo A. Beta-catenin/TCF4 complex induces the epithelial-to-mesenchymal transition (EMT)-activator ZEB1 to regulate tumor invasiveness. Proc Natl Acad Sci U S A. 2011;108(48):19204–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Das AK. Anticancer effect of AntiMalarial Artemisinin compounds. Ann Med Health Sci Res. 2015;5(2):93–102.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wurstle ML, Laussmann MA, Rehm M. The central role of initiator caspase-9 in apoptosis signal transduction and the regulation of its activation and activity on the apoptosome. Exp Cell Res. 2012;318(11):1213–20.
Article
CAS
PubMed
Google Scholar
Chen HH, Zhou HJ, Fang X. Inhibition of human cancer cell line growth and human umbilical vein endothelial cell angiogenesis by artemisinin derivatives in vitro. Pharmacol Res. 2003;48(3):231–6.
Article
CAS
PubMed
Google Scholar
Lombard MC, N'Da DD, Breytenbach JC, Kolesnikova NI, Tran Van Ba C, Wein S, Norman J, Denti P, Vial H, Wiesner L. Antimalarial and anticancer activities of artemisinin-quinoline hybrid-dimers and pharmacokinetic properties in mice. Eur J Pharm Sci. 2012;47(5):834–41.
Article
CAS
PubMed
Google Scholar
KW L, Chen JC, Lai TY, Yang JS, Weng SW, Ma YS, PJ L, Weng JR, Chueh FS, Wood WG, et al. Gypenosides inhibits migration and invasion of human oral cancer SAS cells through the inhibition of matrix metalloproteinase-2 -9 and urokinase-plasminogen by ERK1/2 and NF-kappa B signaling pathways. Hum Exp Toxicol. 2011;30(5):406–15.
Article
Google Scholar
Zhou QM, Wang XF, Liu XJ, Zhang H, YY L, Huang S, SB S. Curcumin improves MMC-based chemotherapy by simultaneously sensitising cancer cells to MMC and reducing MMC-associated side-effects. Eur J Cancer. 2011;47(14):2240–7.
Article
CAS
PubMed
Google Scholar
Finucane DM, Bossy-Wetzel E, Waterhouse NJ, Cotter TG, Green DR. Bax-induced caspase activation and apoptosis via cytochrome c release from mitochondria is inhibitable by Bcl-xL. J Biol Chem. 1999;274(4):2225–33.
Article
CAS
PubMed
Google Scholar