Skip to main content
  • Research article
  • Open access
  • Published:

Treatment and survival of non-alcoholic steatohepatitis associated hepatocellular carcinoma



The incidence of non-alcoholic steatohepatitis (NASH) is increasing worldwide and a poorly defined subset of patients develops end-stage liver disease and hepatocellular carcinoma (HCC). Differences in the biological behaviour, tumour characteristics, associated risk factors, treatment outcomes and overall survival of patients with NASH-HCC remain poorly defined. The aim of this study was to determine and analyze these differences in a large clinical cohort to guide treatment decisions.


1119 patients with HCC treated in an 11 year period at the University Medical Centre of the Johannes Gutenberg University Mainz were retrospectively analyzed.


Patients with NASH-HCC (n = 45) were older (67.6 vs. 65 years), had an increased frequency of the metabolic syndrome and complications with a higher incidence of obesity (31.1% vs. 14.7%), type II diabetes mellitus (66.7% vs. 37.85%), a higher rate of myocardial infarction (13.3% vs. 4.8%) and apoplectic stroke (8.9% vs. 2.1%) (all p < 0.05). Interestingly, liver function was preserved to a higher extent and MELD scores were significantly lower in NASH-HCC. Nonetheless, resection or orthotopic liver transplantation was performed only in 17.8% and 4.4% of NASH-HCC respectively. Overall survival was lower compared to HCC of other aetiologies. Independent of the underlying aetiology BMI exhibited a positive correlation with overall survival.


Despite retained liver function, patients with NASH-associated HCC showed a decreased overall survival. With regards to the expected increasing prevalence of NASH, it will be necessary to improve screening and surveillance strategies to identify HCC in NASH early and improve survival.

Peer Review reports


Hepatocellular carcinoma (HCC) is the fifth most common cancer and the third leading cause of cancer-related deaths worldwide [1]. Globally the majority of HCC are associated with chronic viral hepatitis with a high prevalence in less industrialized countries mainly East Asia and sub-Saharan Africa. Over the last years, the incidence of HCC in these countries is decreasing while the incidence of HCC in developed countries has increased [1,2]. This trend is likely related to the increasing prevalence of the metabolic syndrome and the associated risk factors including insulin resistance and obesity [3]. These risk factors contribute to the development of non-alcoholic fatty liver disease (NAFLD) which has become the most prevalent liver disease world-wide [4]. The clinical spectrum of NAFLD ranges from isolated hepatic steatosis to non-alcoholic steatohepatitis (NASH), which is characterized by hepatic necroinflammation and varying degrees of fibrosis [5]. The estimated prevalence of NAFLD in the adult population ranges from 9-37% with strong cultural and geographic differences and the prevalence of NASH is estimated at 3-5% [6]. Although epidemiological studies have to determine the risk of disease progression, it has become obvious that chronic inflammation in NASH is a trigger that can lead to the development of HCC – even in the absence of cirrhosis in a yet poorly defined subset of patients [7]. Despite advances in screening and therapy for HCC the overall prognosis is poor with a 5-year-survival rate of 15% [8]. Treatment decisions for HCC are commonly based on the Barcelona Clinic Liver Cancer (BCLC) staging system which considers performance status, tumour size and location, extra hepatic spread and the underlying liver function [9]. For the multimodal treatment of HCC different surgical, interventional (radiological/sonographical) and non-interventional procedures have been established. Curative treatment options include resection, orthotopic liver transplantation (OLT) or locoregional therapies and are available for early tumour stages. For intermediate tumour stages (BCLC B), transarterial chemoembolization (TACE) with or without drug-eluting beads (DEB-TACE) and selective internal radiation therapy (SIRT) are used. In advanced tumour stages (BCLC C) systemic therapy with the multikinase inhibitor sorafenib represents the current standard in patients with compensated cirrhosis [10]. Best supportive care is recommended for end-stage HCC patients (BCLC D) [11].

The global increase of metabolic risk factors including diabetes and obesity will lead to an increasing prevalence of NASH and complications including cirrhosis and HCC [7]. Currently only few studies have explored disease characteristics, treatment and outcome of NASH-related HCC. The aim of this retrospective analysis was to evaluate differences in the epidemiology, risk factors, tumour characteristics, therapy and overall survival in patients with NASH-HCC in contrast to non-NASH aetiologies in a European cohort over a period of 11 years.


Patient characteristics

Patients with HCC who were referred to the University Medical Centre of the Johannes Gutenberg University Mainz between January 2000 and December 2010 were included in a clinical database after informed consent was given and analyses were performed retrospectively. The diagnosis of HCC was made according to the AASLD/EASL criteria [12]. All patients were classified according to the tumour node metastasis staging system of the UICC [13] and the stage of HCC was described according to BCLC-classification [12]. Survival data were acquired from clinical records or by contacting registration offices. Tumor-specific treatment and survival times were extracted from patient records. Diabetes mellitus, hypertension, hyperlipidemia and the metabolic syndrome were defined according to the definitions of the Joint Scientific Statement for Harmonizing the Metabolic Syndrome [14]. Laboratory results were obtained at the time of initial diagnosis of HCC and were considered missing if not available within a maximum of 90 days. Liver cirrhosis was determined based on histological features or clinical signs including ascites, hepatic encephalopathy, thrombocytopenia, splenomegaly, laboratory results indicating impaired liver function. NASH was defined according to the histological features of NASH, when biopsy results were available. Cryptogenic cirrhosis in the presence of metabolic risk factors and in the absence of significant alcohol consumption was considered as NASH as previously established [15].

Ethical consideration

This study was carried out in compliance with the Helsinki Declaration ( No formal ethics approval was required for this strictly retrospective study as was ruled by the local ethics committee (Ethik-Kommission der Landesärztekammer Rheinland-Pfalz).

Data analyses and statistics

Data are given as median and range for numeric variables, or as counts and percentages for categorical variables. For statistical evaluation continuous variables are compared between groups of patients by the Mann–Whitney U test; categorical variables are compared using Fisher exact test or its equivalent for more than 2 categories. All calculations were done with R version 3.0.2. A p-value below 0.05 was considered significant.


Clinical characteristic and complications of the metabolic syndrome in NASH-HCC

A total of 1119 patients with HCC were included between 2000 and 2010 for further analysis. The median age for the entire cohort was 65.1 years (range 15.3-89.9), of which 82.6% (n = 924) were male and 98.3% (n = 1100) of Caucasian origin. Chronic viral hepatitis was the most frequent underlying cause of HCC (HBV 12.1%, HCV 22.7%), followed by alcohol-induced liver disease in 36%. In 17% of patients HCC developed in cryptogenic liver disease. Histological or morphologically confirmed NASH was identified in 4% (n = 45), which was validated by liver histology and after exclusion of significant alcohol consumption. Aetiologies of HCC are pictured in Figure 1. Baseline patient characteristics are summarized in Table 1. Patients with NASH-HCC were significant older (median age 67.6 versus 65 years, respectively; p = 0.007) and exhibited a lower predominance of male gender compared to non-NASH-HCC (77.8% (n = 35) vs. 82.7% (n = 888), p = 0.820).

Figure 1
figure 1

Aetiologies of HCC. Aetiologies of HCC in 1119 patients between 2000 and 2010.

Table 1 Demographic data, prevalence of metabolic risk factors, complications and characteristics of liver function at time of initial HCC diagnosis

The NASH-HCC group was defined by higher BMI and average BMI in NASH-HCC was (median [range]) 29 [19.4-49.6] kg/m2 vs. 26.6 [16.5-48.4] kg/m2; p = 0.022. Additionally, patients with NASH-HCC exhibited a higher prevalence of type 2 diabetes mellitus (66.7% vs. 37.8%, p = 0.024) and had a trend towards arterial hypertension (71.1% vs. 45.2%, p = 0.060). The rate of cardiovascular complications such as myocardial infarction (13.3% (n = 6) vs. 4.8% (n = 52), p = 0.035) and apoplectic stroke (8.9% (n = 4) vs. 2.1% (n = 23), p = 0.025) was significantly higher in patients with NASH-HCC (Table 1). Prevalence of metabolic risk factors and complications according to the underlying aetiology of HCC are displayed in Table 2.

Table 2 Prevalence of metabolic risk factors and complications according to the underlying aetiology of HCC

Preserved hepatic function in NASH-HCC

Hepatic function in patients with NASH and non-NASH-HCC at the time of initial diagnosis are summarized and compared in Table 1. In contrast to the reports in the literature, there was a similar rate of cirrhosis in both groups (77.8% in NASH patients vs. 79.9%), with 21.2% of all HCCs developing in non-cirrhotic liver [16]. Patients with NASH-HCC exhibited a better hepatic function at the time of diagnosis. Correspondingly, the MELD score (median [range]: 9 [6–21] vs. 10 [6–40], p = 0.005), levels of bilirubin and INR were significantly lower in NASH-HCC. Regarding Child-Turcotte-Pugh Score (CTP) there was a lower rate of CTP stage C (p = 0.012) in NASH-HCC and a significant difference in platelet counts (NASH vs. non-NASH-HCC: 215/nl vs. 152/nl, p = 0.017). No differences with regards to ascites, portal vein thrombosis, oesophageal varices, presence of encephalopathy or levels of alpha-fetoprotein (AFP) at the time of diagnosis were observed.

HCC characteristics in NASH and non-NASH origin

Histological confirmation of HCC was obtained in 87.1% of all patients. Tumour grading by the Edmondson-Steiner classification and BCLC tumour stages were comparable between NASH-HCC and HCC of other aetiology (Table 3). In NASH-HCC tumour size at the time of initial diagnosis exhibited a trend towards larger size compared to non-NASH-HCC (median [range]: 6 cm [1.5-16.5] vs. 4.8 cm [0–28], p = 0,176). Although no statistically relevant differences with regards to multifocal tumour spread was observed, this occurred in 80% of NASH-HCC and only in 69.7% of the non-NASH-HCC group. No difference was present with regard to lymph node metastasis while there was a trend towards more distant metastases in NASH-HCC.

Table 3 Tumour characteristics and treatment in NASH vs non-NASH-HCC

Differences in treatment and overall survival in NASH and non-NASH-HCC

Primary therapy and overall survival (OS) are listed in Table 3. The most common treatment of HCC was transarterial chemoembolization (TACE) in both groups. No patient in the NASH-HCC group underwent orthotropic liver transplantation (OLT) as primary treatment while 4% of patients with non-NASH-HCC were transplanted. OLT following bridging therapy with TACE was performed in 4.4% of NASH and in 17.5% of non-NASH-HCC patients. Systemic therapy with sorafenib as a first line treatment was significantly more frequently performed in NASH-HCC (17.8% vs. 3.5%, p < 0.001). The median survival of all patients was 15.3 months (range 0–131 months). Notably overall survival (OS) in NASH-HCC was 4.22 months shorter compared to non-NASH-HCC (median [range]: 11.28 [0.7-127.6] vs. 15.5 [0–131.3], p = 0.287) (Figure 2). In HCC, OS is strongly depended on liver function. Imn the absence of cirrhosis, NASH-HCC patients showed a trend to an increased OS compared to non-NASH HCC patients (43.4 vs. 25 month, p = 0.748) (Figure 2). Both, compensated cirrhosis (CTP stage A) and decompensated cirrhosis (CTP stage B and C) were associated with a decreased survival in NASH-HCC compared to non-NASH-HCC. Patients with NASH-HCC in CTP stage A exhibited a decreased in OS (15.5 vs. 24.2 months, p = 0.268). The difference in OS in CTP stage B reached statistical significance (5.55 vs. 10.6 month, p < 0.05). In this clinical cohort there were no NASH-HCC patients with CTP stage C (Figure 2). A second factor that was identified to contribute to the OS in these patients was BMI. A higher BMI was associated with longer survival in all groups of HCC even independent of the underlying aetiology (Figure 2).

Figure 2
figure 2

Kaplan-Meier survival curves. Kaplan-Meier survival curves comparing overall survival in NASH-HCC and non-NASH-HCC patients; A for all patients; B for all patients regarding presence of liver cirrhosis; C for all patients with Child Pugh stage A; D for all patients with Child Pugh stage B; E for all patients regarding obesity; F for NASH-HCC and non-NASH-HCC patients regarding obesity.


NAFLD – beeing the most prevalent liver disease in industrialized countries – can lead to NASH, where the emergence of HCC – even in the absence of cirrhosis – has been described [1]. Among all patients with NAFLD, the third leading cause of death is related to liver-specific causes [17] and HCC contributes significantly to this mortality [18]. Still, the underlying pathomechanism, the associated risk factors and incidence of NASH-HCC are poorly understood. In the current retrospective analysis, epidemiology, risk factors, tumour characteristics, therapy and overall survival in patients with NASH-HCC were evaluated in a large single-centre cohort consisting of 1119 HCC patients in Germany, which represents one of the most comprehensive cohorts in Germany [19]. In accordance to the literature, patients with NASH-HCC were significantly older compared to HCC of other aetiology [7]. However, the predominance of male gender commonly observed in HCC was less pronounced in the NASH-HCC group [20].

Since the definition of NASH-HCC included metabolic risk factors, the frequency of metabolic features and the frequency of obesity (BMI > 30 kg/m2) were significantly higher in this group. Recent studies have shown that a body mass index above 30 kg/m2 and the presence of type 2 diabetes are associated with an increased risk of HCC development [21,22]. In our analysis the prevalence of type 2 diabetes mellitus was almost two fold higher in NASH-HCC, comparable to the findings of Davila et al. [23]. Likewise, the prevalence of hypertension, as a common co-morbidity, was increased in NASH-HCC and a significant higher rate of myocardial infarction and apoplectic stroke was detected among NASH-HCC patients.

Recent studies showed an increasing number of patients with NASH-associated HCC in comparison to other underlying aetiologies and it has been suggested that NASH may become the most frequent cause of HCC in an era with improving therapeutic options for chronic viral hepatitis [1]. In the current analysis alcoholic liver disease (36%) was the most frequent cause of HCC, comparable to other investigations in Germany [24,25]. Interestingly, NASH-HCC accounted for only 4% of all HCC cases. The frequency of NASH-related HCC is likely influenced by the retrospective analysis which excluded all patients with any reported alcohol consumption. Thus this analysis likely excludes patients with NASH and a regular but low consumption of alcoholic beverages. Additionally, NASH as a cofactor in other underlying disease was not considered in this analysis. Several studies suggested that undiagnosed NASH is existent in patients with idiopathic or cryptogenic cirrhosis [2,7]. In the current cohort, cryptogenic cirrhosis accounted for 17% of cases, in analogy to findings in the literature, where a range between 6.9 up to 50% has been described in industrialized countries [7]. The prevalence of cryptogenic cirrhosis is clearly related to the quality of the data acquisition and handling and is also a potential confounder.

Superior hepatic function in NASH-HCC patients compared to other HCC is among the most relevant findings of the current analysis. Although there was no difference with regards to the prevalence of hepatic cirrhosis, more NASH-HCC patients presented in early CTP stage A or B and the MELD score was significantly lower. The difference between the two groups regarding the absolute MELD score with 9 vs. 10 seems low, but with regard to the range, the highest MELD score in NASH-HCC patients was 21 while in the other group it was 40. These findings are in accordance with data in the United States that found a lower MELD score in NASH-HCC patients [20].

The majority of HCC in this cohort was confirmed by histology. Although EASL and AASLD guidelines do not require a biopsy for diagnosis, these were frequently obtained following patient consent to (1) differentiate regenerative nodules from HCC and (2) to develop and identify prognostic marker. Thus we were able to assess tumour grading, where no significant difference between the two groups was observed. Interestingly, HCC was larger in the NASH-HCC group and we observed a trend towards multifocality and a higher rate of distant metastases at the time of diagnosis. In the literature, NASH-HCC has been typically described as large and well-differentiated at the time of presentation [7]. In HCC, curative treatment is only available in early stages, in which liver transplantation or resection is feasible. In the current analysis liver transplantation was not performed as primary therapy in any of the 45 cases of NASH-HCC. This might be related to the tendency of NASH-HCC to have a larger tumour size and a higher rate of multifocality at the time of diagnosis, possibly restricting surgical therapy. As discussed above, hepatic function was significantly better in these patients, and thus it is conceivable that the detection of cirrhosis and its complications were delayed. Other studies have made similar observations and suggested that NASH-related HCC may be diagnosed at a later time point and more advanced stage [26]. The differences in hepatic function also influenced the decision to initiate systemic treatment with sorafenib, which was significantly more frequently applied as primary treatment in our NASH-HCC patients. Sorafenib and transarterial chemoembolization are currently the only non-curative treatments that improve survival [27].

The results regarding the overall survival in NASH-HCC are inconsistent. In a recent study the overall survival following curative treatment approaches for HCC was increased in NASH compared to patients with HCV and/or alcoholic liver disease [20]. Wong et al. found that patients with NASH in the absence of HCC exhibited a better survival following OLT compared to patients with HCV or HCC of non-NASH origin [28], while Dyson and colleagues reported similar survival of NAFLD and other aetiologies for HCC [29]. In the current cohort, overall survival was shorter in NASH-HCC and a significant difference existed in the subgroup of patients with CTP B. It can be speculated that this decrease in survival is related to a delay in detection of the disease. Alternatively, these differences could be explained by different treatment strategies, since systemic therapy with sorafenib is currently only recommended for CTP A. Other explanations include the existence of co-morbidities and the higher age in NASH-associated HCC. A second central observation with regards to overall survival was the differences in patients with a higher BMI, which was protective. These observations are in contrast to several other studies, which reported a negative correlation of BMI and mortality in HCC [30,31]. Limitations of this analysis are related to the retrospective nature of the clinical cohort. Also, follow-up data regarding the cause of death was not completed available. In cases with complete death records mortality was related to complications of the underlying liver disease and tumour progression, rather than co-morbidities or cardiovascular disease.


In conclusion, despite the growing prevalence of NASH, the frequency of NASH-HCC in a retrospectively derived European cohort between 2000 and 2010 is low. Nonetheless, metabolic risk factors are highly prevalent in these patients and a further increase is expected due to the strong association with obesity and diabetes [32]. Thus, screening efforts in NASH have to be intensified to avoid diagnosis at a late stage which excludes curative treatment options and exhibit a decrease in survival.





Barcelona Clinic Liver Cancer


Body mass index


Child-Turcotte-Pugh Score


Hepatocellular carcinoma


International Normalized Ratio


Model of end-stage liver disease


Non-alcoholic fatty liver disease


Non-alcoholic steatohepatitis


Orthotopic liver transplantation


Overall survival


Percutaneous ethanol injection


Radiofrequency ablation


Selective internal radiation therapy


Transarterial chemoembolization


Union Internationale Contre le Cancer


  1. Baffy G, Brunt EM, Caldwell SH. Hepatocellular carcinoma in non-alcoholic fatty liver disease: an emerging menace. J Hepatol. 2012;56(6):1384–91.

    Article  PubMed  Google Scholar 

  2. El-Serag HB, Rudolph KL. Hepatocellular carcinoma: epidemiology and molecular carcinogenesis. Gastroenterology. 2007;132(7):2557–76.

    Article  CAS  PubMed  Google Scholar 

  3. White DL, Kanwal F, El-Serag HB. Association between nonalcoholic fatty liver disease and risk for hepatocellular cancer, based on systematic review. Clin Gastroenterol Hepatol. 2012;10(12):1342–1359.e1342.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Fabbrini E, Sullivan S, Klein S. Obesity and nonalcoholic fatty liver disease: biochemical, metabolic, and clinical implications. Hepatology. 2010;51(2):679–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Schattenberg JM, Schuppan D. Nonalcoholic steatohepatitis: the therapeutic challenge of a global epidemic. Curr Opin Lipidol. 2011;22(6):479–88.

    Article  CAS  PubMed  Google Scholar 

  6. Vernon G, Baranova A, Younossi ZM. Systematic review: the epidemiology and natural history of non-alcoholic fatty liver disease and non-alcoholic steatohepatitis in adults. Aliment Pharmacol Ther. 2011;34(3):274–85.

    Article  CAS  PubMed  Google Scholar 

  7. Starley BQ, Calcagno CJ, Harrison SA. Nonalcoholic fatty liver disease and hepatocellular carcinoma: a weighty connection. Hepatology. 2010;51(5):1820–32.

    Article  PubMed  Google Scholar 

  8. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61(2):69–90.

    Article  PubMed  Google Scholar 

  9. Llovet JM, Bru C, Bruix J. Prognosis of hepatocellular carcinoma: the BCLC staging classification. Semin Liver Dis. 1999;19(3):329–38.

    Article  CAS  PubMed  Google Scholar 

  10. Worns MA, Koch S, Niederle IM, Marquardt JU, Nguyen-Tat M, Gamstatter T, et al. The impact of patient and tumour baseline characteristics on the overall survival of patients with advanced hepatocellular carcinoma treated with sorafenib. Dig Liver Dis. 2013;45(5):408–13.

    Article  PubMed  Google Scholar 

  11. Worns MA, Galle PR. HCC therapies-lessons learned. Nat Rev Gastroenterol Hepatol. 2014;11(7):447–52.

    Article  PubMed  Google Scholar 

  12. Bruix J, Sherman M, American Association for the Study of Liver D. Management of hepatocellular carcinoma: an update. Hepatology. 2011;53(3):1020–2.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Edge SB, Compton CC. The American Joint Committee on Cancer: the 7th edition of the AJCC cancer staging manual and the future of TNM. Ann Surg Oncol. 2010;17(6):1471–4.

    Article  PubMed  Google Scholar 

  14. Alberti KG, Eckel RH, Grundy SM, Zimmet PZ, Cleeman JI, Donato KA, et al. Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation. 2009;120(16):1640–5.

    Article  CAS  PubMed  Google Scholar 

  15. Ascha MS, Hanouneh IA, Lopez R, Tamimi TA, Feldstein AF, Zein NN. The incidence and risk factors of hepatocellular carcinoma in patients with nonalcoholic steatohepatitis. Hepatology. 2010;51(6):1972–8.

    Article  PubMed  Google Scholar 

  16. Kawada N, Imanaka K, Kawaguchi T, Tamai C, Ishihara R, Matsunaga T, et al. Hepatocellular carcinoma arising from non-cirrhotic nonalcoholic steatohepatitis. J Gastroenterol. 2009;44(12):1190–4.

    Article  PubMed  Google Scholar 

  17. Adams LA, Lymp JF, St Sauver J, Sanderson SO, Lindor KD, Feldstein A, et al. The natural history of nonalcoholic fatty liver disease: a population-based cohort study. Gastroenterology. 2005;129(1):113–21.

    Article  PubMed  Google Scholar 

  18. Yatsuji S, Hashimoto E, Tobari M, Taniai M, Tokushige K, Shiratori K. Clinical features and outcomes of cirrhosis due to non-alcoholic steatohepatitis compared with cirrhosis caused by chronic hepatitis C. J Gastroenterol Hepatol. 2009;24(2):248–54.

    Article  CAS  PubMed  Google Scholar 

  19. Schutte K, Kipper M, Kahl S, Bornschein J, Gotze T, Adolf D, et al. Clinical characteristics and time trends in etiology of hepatocellular cancer in Germany. Digestion. 2013;87(3):147–59.

    Article  PubMed  Google Scholar 

  20. Reddy SK, Steel JL, Chen HW, DeMateo DJ, Cardinal J, Behari J, et al. Outcomes of curative treatment for hepatocellular cancer in nonalcoholic steatohepatitis versus hepatitis C and alcoholic liver disease. Hepatology. 2012;55(6):1809–19.

    Article  PubMed  Google Scholar 

  21. Polesel J, Zucchetto A, Montella M, Dal Maso L, Crispo A, La Vecchia C, et al. The impact of obesity and diabetes mellitus on the risk of hepatocellular carcinoma. Ann Oncol. 2009;20(2):353–7.

    Article  CAS  PubMed  Google Scholar 

  22. El-Serag HB. Hepatocellular carcinoma. N Engl J Med. 2011;365(12):1118–27.

    Article  CAS  PubMed  Google Scholar 

  23. Davila JA, Morgan RO, Shaib Y, McGlynn KA, El-Serag HB. Diabetes increases the risk of hepatocellular carcinoma in the United States: a population based case control study. Gut. 2005;54(4):533–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kirchner G, Kirovski G, Hebestreit A, Scholmerich J, Schlitt HJ, Stoeltzing O, et al. Epidemiology and survival of patients with hepatocellular carcinoma in Southern Germany. Int J Clin Exp Med. 2010;3(2):169–79.

    PubMed  PubMed Central  Google Scholar 

  25. Ertle J, Dechene A, Sowa JP, Penndorf V, Herzer K, Kaiser G, et al. Non-alcoholic fatty liver disease progresses to hepatocellular carcinoma in the absence of apparent cirrhosis. Int J Cancer. 2011;128(10):2436–43.

    Article  CAS  PubMed  Google Scholar 

  26. Wakai T, Shirai Y, Sakata J, Korita PV, Ajioka Y, Hatakeyama K. Surgical outcomes for hepatocellular carcinoma in nonalcoholic fatty liver disease. J Gastrointest Surg. 2011;15(8):1450–8.

    Article  PubMed  Google Scholar 

  27. Forner A, Llovet JM, Bruix J. Hepatocellular carcinoma. Lancet. 2012;379(9822):1245–55.

    Article  PubMed  Google Scholar 

  28. Wong RJ, Cheung R, Ahmed A. Nonalcoholic steatohepatitis is the most rapidly growing indication for liver transplantation in patients with hepatocellular carcinoma in the U.S. Hepatology. 2014;59(6):2188–95. doi:10.1002/hep.26986. Epub 2014 Apr 25.

    Article  PubMed  Google Scholar 

  29. Dyson J, Jaques B, Chattopadyhay D, Lochan R, Graham J, Das D, et al. Hepatocellular cancer: the impact of obesity, type 2 diabetes and a multidisciplinary team. J Hepatol. 2014;60(1):110–7.

    Article  PubMed  Google Scholar 

  30. Siegel AB, Lim EA, Wang S, Brubaker W, Rodriguez RD, Goyal A, et al. Diabetes, body mass index, and outcomes in hepatocellular carcinoma patients undergoing liver transplantation. Transplantation. 2012;94(5):539–43.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Calle EE, Rodriguez C, Walker-Thurmond K, Thun MJ. Overweight, obesity, and mortality from cancer in a prospectively studied cohort of U.S. adults. N Engl J Med. 2003;348(17):1625–38.

    Article  PubMed  Google Scholar 

  32. Ong JP, Younossi ZM. Epidemiology and natural history of NAFLD and NASH. Clin Liver Dis. 2007;11(1):1–16. vii.

    Article  PubMed  Google Scholar 

Download references


The authors acknowledge to the patients and their families that contributed to this study. Grant Support: JMS received funding of the Deutsche Krebshilfe and intramural funds of the Johannes Gutenberg University, Mainz, Germany

Author information

Authors and Affiliations


Corresponding author

Correspondence to Jörn M Schattenberg.

Additional information

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

AW analysed and interpreted data, obtained administrative, technical and material support and supervised the study. YA made acquisition of data, analysed and interpreted the data, performed statistical analysis and drafted the manuscript. SK participated in the design of the study, contributed to the acquisition of data, analysed the data and performed statistical analysis. CN contributed to data acquisition, analysed and interpreted the data. The analysis are parts of the doctoral thesis of CN at the Johannes Gutenberg University Mainz. CD and HL obtained administrative, technical or material support. GO analysed and interpreted the data and obtained administrative and material support. TZ and JUM analysed and interpreted the data. PRG obtained administrative support and supervised the study. MAW participated in the design of the study, supervised the study and critically revised the manuscript. JMS conceived of the study, participated in its design, analysed and interpreted the data, drafted the manuscript, obtained funding support and supervised the study. All authors read and approved the final manuscript.

Authors’ information

Arndt Weinmann and Yvonne Alt contributed equally as first authors to this work.

Arndt Weinmann and Yvonne Alt contributed equally to this work.

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit

The Creative Commons Public Domain Dedication waiver ( applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weinmann, A., Alt, Y., Koch, S. et al. Treatment and survival of non-alcoholic steatohepatitis associated hepatocellular carcinoma. BMC Cancer 15, 210 (2015).

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: