Iczkowski KA, Pantazis CG, Collins J: The loss of expression of CD44 standard and variant isoforms is related to prostatic carcinoma development and tumor progression. J Urol Pathol. 1997, 6: 119-129.
Google Scholar
Iczkowski KA, Bai S, Pantazis CG: Prostate cancer overexpresses CD44 variants 7–9 at the messenger RNA and protein level. Anticancer Res. 2003, 23: 3129-3140.
CAS
PubMed
Google Scholar
Omara-Opyene AL, Qiu J, Shah GV, Iczkowski KA: Prostate cancer invasion is influenced more by expression of a CD44 isoform including variant 9 than by Muc18. Lab Invest. 2004, 84: 894-907. 10.1038/labinvest.3700112. Editorial Comment: 811–813.
Article
CAS
PubMed
Google Scholar
Iczkowski KA, Omara-Opyene AL, Shah GV: The predominant CD44 splice variant in prostate cancer binds fibronectin, and calcitonin stimulates its expression. Anticancer Res. 2006, 26: 2863-2872.
CAS
PubMed
Google Scholar
Miyake H, Hara I, Okamoto I, Gohji K, Yamanaka K, Arakawa S, Saya H, Kamidono S: Interaction between CD44 and hyaluronic acid regulates human prostate cancer development. J Urol. 1998, 160: 1562-1566. 10.1016/S0022-5347(01)62613-2.
Article
CAS
PubMed
Google Scholar
Iczkowski KA, Omara-Opyene AL, Kulkarni TR, Pansara M, Shah GV: Paracrine calcitonin in prostate cancer is linked to CD44 variant expression and invasion. Anticancer Res. 2005, 25: 2075-2083.
CAS
PubMed
Google Scholar
Hofmann M, Rudy W, Gunthert U, Zimmer SG, Zawadzki V, Zoller M, Lichtner RB, Herrlich P, Ponta H: A link between ras and metastatic behavior of tumor cells: ras induces CD44 promoter activity and leads to low-level expression of metastasis-specific variants of CD44 in CREF cells. Cancer Res. 1993, 53: 1516-1521.
CAS
PubMed
Google Scholar
Jothy S: CD44 and its partners in metastasis. Clin Exp Metastasis. 2003, 20: 195-201. 10.1023/A:1022931016285.
Article
CAS
PubMed
Google Scholar
Vis AN, van Rhijn BW, Noordzij MA, Schroder FH, Kwast van der TH: Value of tissue markers p27(kip1), MIB-1, and CD44s for the pre-operative prediction of tumour features in screen-detected prostate cancer. J Pathol. 2002, 197: 148-154. 10.1002/path.1084.
Article
CAS
PubMed
Google Scholar
Vis AN, Noordzij MA, Fitoz K, Wildhagen MF, Schroder FH, Kwast van der TH: Prognostic value of cell cycle proteins p27(kip1) and MIB-1, and the cell adhesion protein CD44s in surgically treated patients with prostate cancer. J Urol. 2000, 164: 2156-2161. 10.1016/S0022-5347(05)66989-3.
Article
CAS
PubMed
Google Scholar
Peng ST, Su CH, Kuo CC, Shaw CF, Wang HS: CD44 crosslinking-mediated matrix metalloproteinase-9 relocation in breast tumor cells leads to enhanced metastasis. Int J Oncol. 2007, 31: 1119-1126.
CAS
PubMed
Google Scholar
Lesley J, Kincade PW, Hyman R: Antibody-induced activation of the hyaluronan receptor function of CD44 requires multivalent binding by antibody. Eur J Immunol. 1993, 23: 1902-1909. 10.1002/eji.1830230826.
Article
CAS
PubMed
Google Scholar
Shah GV, Noble MJ, Austenfeld M, Weigel J, Deftos LJ, Mebust WK: Presence of calcitonin-like immunoreactivity in human prostate gland: evidence for iCT secretion by cultured prostate cells. Prostate. 2007, 21: 87-97. 10.1002/pros.2990210202.
Article
Google Scholar
Chien J, Ren Y, Qing Wang Y, Bordelon W, Thompson E, Davis R, Rayford W, Shah G: Calcitonin is a prostate epithelium-derived growth stimulatory peptide. Mol Cell Endocrinol. 2001, 181: 69-79. 10.1016/S0303-7207(01)00530-5.
Article
CAS
PubMed
Google Scholar
Shah GV, Rayford W, Noble MJ, Austenfeld M, Weigel J, Vamos S, Mebust WK: Calcitonin stimulates growth of human prostate cancer cells through receptor-mediated increase in cyclic adenosine 3',5'-monophosphates and cytoplasmic Ca2+ transients. Endocrinology. 1994, 134: 596-602. 10.1210/en.134.2.596.
CAS
PubMed
Google Scholar
Sabbisetti VS, Chirugupati S, Thomas S, Vaidya KS, Reardon D, Chiriva-Internati M, Iczkowski KA, Shah GV: Calcitonin increases invasiveness of prostate cancer cells: role for cyclic AMP-dependent protein kinase A in calcitonin action. Int J Cancer. 2005, 117: 551-560. 10.1002/ijc.21158.
Article
CAS
PubMed
Google Scholar
Chien J, Wong E, Nikes E, Noble MJ, Pantazis CG, Shah GV: Constitutive activation of stimulatory guanine nucleotide binding protein (Gsalpha-QL)-mediated signaling increases invasiveness and tumorigenicity of PC-3M prostate cancer cells. Oncogene. 1999, 18: 3376-3382. 10.1038/sj.onc.1202690.
Article
CAS
PubMed
Google Scholar
Thomas S, Muralidharan A, Shah GV: Knock-down of calcitonin receptor expression induces apoptosis and growth arrest of prostate cancer cells. Int J Oncol. 2007, 31: 1425-1437.
CAS
PubMed
Google Scholar
Chien J, Shah GV: Role of stimulatory guanine nucleotide binding protein (Gsalpha) in proliferation of PC-3M prostate cancer cells. Int J Cancer. 2001, 91: 46-54. 10.1002/1097-0215(20010101)91:1<46::AID-IJC1008>3.0.CO;2-0.
Article
CAS
PubMed
Google Scholar
Marhaba R, Bourouba M, Zoller M: CD44v6 promotes proliferation by persisting activation of MAP kinases. Cell Signal. 2005, 17: 961-973. 10.1016/j.cellsig.2004.11.017.
Article
CAS
PubMed
Google Scholar
Orian-Rousseau V, Chen L, Sleeman JP, Herrlich P, Ponta H: CD44 is required for two consecutive steps in HGF/c-Met signaling. Genes Dev. 2002, 16: 3074-3086. 10.1101/gad.242602.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ponta H, Sherman L, Herrlich PA: CD44: from adhesion molecules to signaling regulators. Nat Rev Mol Cell Biol. 2003, 4: 33-45. 10.1038/nrm1004.
Article
CAS
PubMed
Google Scholar
Cheng C, Yaffe MB, Sharp PA: A positive feedback loop couples Ras activation and CD44 alternative splicing. Genes Dev. 2006, 20: 1715-1720. 10.1101/gad.1430906.
Article
CAS
PubMed
PubMed Central
Google Scholar
Weg-Remers S, Ponta H, Herrlich P, Konig H: Regulation of alternative pre-mRNA splicing by the ERK MAP-kinase pathway. EMBO J. 2001, 20: 4194-4203. 10.1093/emboj/20.15.4194.
Article
CAS
PubMed
PubMed Central
Google Scholar
Thomas S, Chigurupati S, Anbalagan M, Shah G: Calcitonin increases tumorigenicity of prostate cancer cells: evidence for the role of protein kinase A and urokinase-type plasminogen receptor. Mol Endocrinol. 2006, 20: 1894-1911. 10.1210/me.2005-0284.
Article
CAS
PubMed
Google Scholar
Forster-Horváth C, Bocsi J, Rásó E, Orbán TI, Olah E, Tímár J, Ladányi A: Constitutive intracellular expression and activation-induced cell surface up-regulation of CD44v3 in human T lymphocytes. Eur J Immunol. 2001, 31: 600-608. 10.1002/1521-4141(200102)31:2<600::AID-IMMU600>3.0.CO;2-8.
Article
PubMed
Google Scholar
Leemhuis J, Boutillier S, Schmidt G, Meyer DK: The protein kinase A inhibitor H89 acts on cell morphology by inhibiting Rho kinase. J Pharmacol Exp Ther. 2002, 300: 1000-1007. 10.1124/jpet.300.3.1000.
Article
CAS
PubMed
Google Scholar
Lee HY, Oh SH, Suh YA, Baek JH, Papadimitrakopoulou V, Huang S, Hong WK: Response of non-small cell lung cancer cells to the inhibitors of phosphatidylinositol 3-kinase/Akt- and MAPK kinase 4/c-Jun NH2-terminal kinase pathways: an effective therapeutic strategy for lung cancer. Clin Cancer Res. 2005, 11: 6065-6074. 10.1158/1078-0432.CCR-05-0009.
Article
CAS
PubMed
Google Scholar
Davoodpour P, Landstrom M: 2-Methoxyestradiol-induced apoptosis in prostate cancer cells requires Smad7. J Biol Chem. 2005, 280: 14773-14779. 10.1074/jbc.M414470200.
Article
CAS
PubMed
Google Scholar
Chen L, He HY, Li HM, Zheng J, Heng WJ, You JF, Fang WG: ERK1/2 and p38 pathways are required for P2Y receptor-mediated prostate cancer invasion. Cancer Lett. 2004, 215: 239-247. 10.1016/j.canlet.2004.05.023.
Article
CAS
PubMed
Google Scholar
Livak KL, Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-ΔΔCT) method. Methods. 2001, 25: 402-408. 10.1006/meth.2001.1262.
Article
CAS
PubMed
Google Scholar
Shida Y, Igawa T, Hakariya T, Sakai H, Kanetake H: p38MAPK activation is involved in androgen-independent proliferation of human prostate cancer cells by regulating IL-6 secretion. Biochem Biophys Res Commun. 2007, 353: 744-749. 10.1016/j.bbrc.2006.12.077.
Article
CAS
PubMed
Google Scholar
Burger M, Denzinger S, Hammerschmied C, Tannapfel A, Maderstorfer A, Wieland WF, Hartmann A, Stoehr R: Mitogen-activated protein kinase signaling is activated in prostate tumors but not mediated by B-RAF mutations. Eur Urol. 2006, 50: 1102-1109. 10.1016/j.eururo.2005.11.031.
Article
CAS
PubMed
Google Scholar
Fujita Y, Kitagawa M, Nakamura S, Azuma K, Ishii G, Higashi M, Kishi H, Hiwasa T, Koda K, Nakajima N, Harigaya K: CD44 signaling through focal adhesion kinase and its anti-apoptotic effect. FEBS Lett. 2002, 528: 101-118. 10.1016/S0014-5793(02)03262-3.
Article
CAS
PubMed
Google Scholar
Harrison GM, Davies G, Martin TA, Mason MD, Jiang WG: The influence of CD44v3–v10 on adhesion, invasion and MMP-14 expression in prostate cancer cells. Oncol Rep. 2006, 15: 199-206.
CAS
PubMed
Google Scholar
Ricote M, Garcia-Tunon I, Bethencourt F, Fraile B, Onsurbe P, Paniagua R, Royuela M: The p38 transduction pathway in prostatic neoplasia. J Pathol. 2006, 208: 401-407. 10.1002/path.1910.
Article
CAS
PubMed
Google Scholar
Raught B, Gingras AC: eIF4E activity is regulated at multiple levels. Int J Biochem Cell Biol. 1999, 31: 43-57. 10.1016/S1357-2725(98)00131-9.
Article
CAS
PubMed
Google Scholar
Cho SD, Ahn NS, Jung JW, Yang SR, Park JS, Lee YS, Jo EH, Hwang JW, Lii J, Kang KS: Critical role of the c-JunNH2-terminal kinase and p38 mitogen-activated protein kinase pathways on sodium butyrate-induced apoptosis in DU145 human prostate cancer cells. Eur J Cancer Prev. 2006, 15: 57-63. 10.1097/01.cej.0000195704.05246.fc.
Article
CAS
PubMed
Google Scholar
Ster J, De Bock F, Guerineau NC, Janossy A, Barrere-Lemaire S, Bos JL, Bockaert J, Fagni L: Exchange protein activated by cAMP (Epac) mediates cAMP activation of p38 MAPK and modulation of Ca2+-dependent channels in cerebellar neurons. Proc Natl Acad Sci USA. 2007, 104: 2519-2524. 10.1073/pnas.0611031104.
Article
CAS
PubMed
PubMed Central
Google Scholar