American Cancer Society: Cancer Facts & Figures 2012. 2012, Atlanta: American Cancer Society
Google Scholar
Siegel R, DeSantis C, Virgo K, Stein K, Mariotto A, Smith T, Cooper D, Gansler T, Lerro C, Fedewa S, Lin C, Leach C, Cannady RS, Cho H, Scoppa S, Hachey M, Kirch R, Jemal A, Ward E: Cancer treatment and survivorship statistics, 2012. CA Cancer J Clin. 2012, 62 (4): 220-241. 10.3322/caac.21149.
Article
PubMed
Google Scholar
Smith JA, Seaman JP, Gleidman JB, Middleton RG: Pelvic lymph node metastasis from prostatic cancer: influence of tumor grade and stage in 452 consecutive patients. J Urol. 1983, 130 (2): 290-292.
PubMed
Google Scholar
Dadras SS, Paul T, Bertoncini J, Brown LF, Muzikansky A, Jackson DG, Ellwanger U, Garbe C, Mihm MC, Detmar M: Tumor lymphangiogenesis: a novel prognostic indicator for cutaneous melanoma metastasis and survival. Am J Pathol. 2003, 162 (6): 1951-1960. 10.1016/S0002-9440(10)64328-3.
Article
PubMed
PubMed Central
Google Scholar
Cheng L, Jones TD, Lin H, Eble JN, Zeng G, Carr MD, Koch MO: Lymphovascular invasion is an independent prognostic factor in prostatic adenocarcinoma. J Urol. 2005, 174 (6): 2181-2185. 10.1097/01.ju.0000181215.41607.c3.
Article
PubMed
Google Scholar
Rinderknecht M, Detmar M: Tumor lymphangiogenesis and melanoma metastasis. J Cell Physiol. 2008, 216 (2): 347-354. 10.1002/jcp.21494.
Article
CAS
PubMed
Google Scholar
Karakiewicz PI, Hutterer GC: Predictive models and prostate cancer. Nat Clin Pract Urol. 2008, 5 (2): 82-92. 10.1038/ncpuro0972.
Article
PubMed
Google Scholar
Sleeman JP, Thiele W: Tumor metastasis and the lymphatic vasculature. Int J Cancer. 2009, 125 (12): 2747-2756. 10.1002/ijc.24702.
Article
CAS
PubMed
Google Scholar
Zwaans BM, Bielenberg DR: Potential therapeutic strategies for lymphatic metastasis. Microvasc Res. 2007, 74 (2–3): 145-158.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wilt TJ, Brawer MK, Jones KM, Barry MJ, Aronson WJ, Fox S, Gingrich JR, Wei JT, Gilhooly P, Grob BM, Nsouli I, Iyer P, Cartagena R, Snider G, Roehrborn C, Sharifi R, Blank W, Pandya P, Andriole GL, Culkin D, Wheeler T, Prostate Cancer Intervention versus Observation Trial (PIVOT) Study Group: Radical prostatectomy versus observation for localized prostate cancer. N Engl J Med. 2012, 367 (3): 203-213. 10.1056/NEJMoa1113162.
Article
CAS
PubMed
PubMed Central
Google Scholar
Aizer AA, Paly JJ, Zietman AL, Nguyen PL, Beard CJ, Rao SK, Kaplan ID, Niemierko A, Hirsch MS, Wu CL, Olumi AF, Michaelson MD, D'Amico AV, Efstathiou JA: Multidisciplinary care and pursuit of active surveillance in low-risk prostate cancer. J Clin Oncol. 2012, 30 (25): 3071-3076. 10.1200/JCO.2012.42.8466.
Article
PubMed
Google Scholar
Stephenson RA, Dinney CP, Gohji K, Ordonez NG, Killion JJ, Fidler IJ: Metastatic model for human prostate cancer using orthotopic implantation in nude mice. J Natl Cancer Inst. 1992, 84 (12): 951-957. 10.1093/jnci/84.12.951.
Article
CAS
PubMed
Google Scholar
Perrotte PJR, Bielenberg DR, Eve BY, Dinney CPN: Organ-specific angiogenesis and metastasis of human bladder carcinoma growing in athymic mice. Mol Urol. 1997, 1 (4): 299-307.
Google Scholar
Bielenberg DR, Fidler IJ: Regulation of Angiogenesis by the Organ Microenvironment. Antiangiogenic Agents in Cancer Therapy. Edited by: Teicher BA. 1999, Totowa: Humana Press, 77-91. 6
Chapter
Google Scholar
Fidler IJ: The organ microenvironment and cancer metastasis. Differentiation. 2002, 70 (9–10): 498-505.
Article
PubMed
Google Scholar
Hanahan D, Weinberg RA: Hallmarks of cancer: the next generation. Cell. 2011, 144 (5): 646-674. 10.1016/j.cell.2011.02.013.
Article
CAS
PubMed
Google Scholar
Sottnik JL, Zhang J, Macoska JA, Keller ET: The PCa tumor microenvironment. Cancer Microenviron. 2011, 4 (3): 283-297. 10.1007/s12307-011-0073-8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pettaway CA, Pathak S, Greene G, Ramirez E, Wilson MR, Killion JJ, Fidler IJ: Selection of highly metastatic variants of different human prostatic carcinomas using orthotopic implantation in nude mice. Clin Cancer Res. 1996, 2 (9): 1627-1636.
CAS
PubMed
Google Scholar
Sobel RE, Sadar MD: Cell lines used in prostate cancer research: a compendium of old and new lines–part 1. J Urol. 2005, 173 (2): 342-359. 10.1097/01.ju.0000141580.30910.57.
Article
CAS
PubMed
Google Scholar
Stone KR, Mickey DD, Wunderli H, Mickey GH, Paulson DF: Isolation of a human prostate carcinoma cell line (DU 145). Int J Cancer. 1978, 21 (3): 274-281. 10.1002/ijc.2910210305.
Article
CAS
PubMed
Google Scholar
Banyard J, Chung I, Wilson AM, Vetter G, Le Béchec A, Bielenberg DR, Zetter BR: Regulation of epithelial plasticity by miR-424 and miR-200 in a new prostate cancer metastasis model. Sci Rep. 2013, 3: 3151-
Article
PubMed
PubMed Central
Google Scholar
Chunthapong J, Seftor EA, Khalkhali-Ellis Z, Seftor RE, Amir S, Lubaroff DM, Heidger PM, Hendrix MJ: Dual roles of E-cadherin in prostate cancer invasion. J Cell Biochem. 2004, 91 (4): 649-661. 10.1002/jcb.20032.
Article
CAS
PubMed
Google Scholar
Yilmaz M, Christofori G: Mechanisms of motility in metastasizing cells. Mol Cancer Res. 2010, 8 (5): 629-642. 10.1158/1541-7786.MCR-10-0139.
Article
CAS
PubMed
Google Scholar
Wong SY, Hynes RO: Lymphatic or hematogenous dissemination: how does a metastatic tumor cell decide?. Cell Cycle. 2006, 5 (8): 812-817. 10.4161/cc.5.8.2646.
Article
CAS
PubMed
PubMed Central
Google Scholar
Christiansen A, Detmar M: Lymphangiogenesis and cancer. Genes Cancer. 2011, 2 (12): 1146-1158. 10.1177/1947601911423028.
Article
PubMed
PubMed Central
Google Scholar
Datta K, Muders M, Zhang H, Tindall DJ: Mechanism of lymph node metastasis in prostate cancer. Future Oncol. 2010, 6 (5): 823-836. 10.2217/fon.10.33.
Article
PubMed
PubMed Central
Google Scholar
Yee DS, Shariat SF, Lowrance WT, Maschino AC, Savage CJ, Cronin AM, Scardino PT, Eastham JA: Prognostic significance of lymphovascular invasion in radical prostatectomy specimens. BJU Int. 2010, 108 (4): 502-507.
Article
PubMed
PubMed Central
Google Scholar
Weidner N, Carroll PR, Flax J, Blumenfeld W, Folkman J: Tumor angiogenesis correlates with metastasis in invasive prostate carcinoma. Am J Pathol. 1993, 143 (2): 401-409.
CAS
PubMed
PubMed Central
Google Scholar
Mumprecht V, Detmar M: Lymphangiogenesis and cancer metastasis. J Cell Mol Med. 2009, 13 (8A): 1405-1416. 10.1111/j.1582-4934.2009.00834.x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Diamond E, Lee GY, Akhtar NH, Kirby BJ, Giannakakou P, Tagawa ST, Nanus DM: Isolation and characterization of circulating tumor cells in prostate cancer. Front Oncol. 2012, 2: 131-
Article
PubMed
PubMed Central
Google Scholar
Ni J, Cozzi PJ, Duan W, Shigdar S, Graham PH, John KH, Li Y: Role of the EpCAM (CD326) in prostate cancer metastasis and progression. Cancer Metastasis Rev. 2012, 31 (3–4): 779-791.
Article
CAS
PubMed
Google Scholar
Went P, Vasei M, Bubendorf L, Terracciano L, Tornillo L, Riede U, Kononen J, Simon R, Sauter G, Baeuerle PA: Frequent high-level expression of the immunotherapeutic target Ep-CAM in colon, stomach, prostate and lung cancers. Br J Cancer. 2006, 94 (1): 128-135. 10.1038/sj.bjc.6602924.
Article
CAS
PubMed
PubMed Central
Google Scholar
Poczatek RB, Myers RB, Manne U, Oelschlager DK, Weiss HL, Bostwick DG, Grizzle WE: Ep-Cam levels in prostatic adenocarcinoma and prostatic intraepithelial neoplasia. J Urol. 1999, 162 (4): 1462-1466. 10.1016/S0022-5347(05)68341-3.
Article
CAS
PubMed
Google Scholar
Zellweger T, Ninck C, Bloch M, Mirlacher M, Koivisto PA, Helin HJ, Mihatsch MJ, Gasser TC, Bubendorf L: Expression patterns of potential therapeutic targets in prostate cancer. Int J Cancer. 2005, 113 (4): 619-628. 10.1002/ijc.20615.
Article
CAS
PubMed
Google Scholar
Benko G, Spajic B, Kruslin B, Tomas D: Impact of the EpCAM expression on biochemical recurrence-free survival in clinically localized prostate cancer. Urol Oncol. 2013, 31 (4): 468-474. 10.1016/j.urolonc.2011.03.007.
Article
CAS
PubMed
Google Scholar
Denzel S, Maetzel D, Mack B, Eggert C, Barr G, Gires O: Initial activation of EpCAM cleavage via cell-to-cell contact. BMC Cancer. 2009, 9: 402-10.1186/1471-2407-9-402.
Article
PubMed
PubMed Central
Google Scholar
Thuma F, Zoller M: EpCAM-associated claudin-7 supports lymphatic spread and drug resistance in rat pancreatic cancer. Int J Cancer. 2013, 133 (4): 855-866. 10.1002/ijc.28085.
Article
CAS
PubMed
Google Scholar
Nubel T, Preobraschenski J, Tuncay H, Weiss T, Kuhn S, Ladwein M, Langbein L, Zoller M: Claudin-7 regulates EpCAM-mediated functions in tumor progression. Mol Cancer Res. 2009, 7 (3): 285-299. 10.1158/1541-7786.MCR-08-0200.
Article
PubMed
Google Scholar
Mercurio AM, Rabinovitz I, Shaw LM: The alpha 6 beta 4 integrin and epithelial cell migration. Curr Opin Cell Biol. 2001, 13 (5): 541-545. 10.1016/S0955-0674(00)00249-0.
Article
CAS
PubMed
Google Scholar
Giancotti FG: Targeting integrin beta4 for cancer and anti-angiogenic therapy. Trends Pharmacol Sci. 2007, 28 (10): 506-511. 10.1016/j.tips.2007.08.004.
Article
CAS
PubMed
Google Scholar
Yoshioka T, Otero J, Chen Y, Kim YM, Koutcher JA, Satagopan J, Reuter V, Carver B, de Stanchina E, Enomoto K, Greenberg NM, Scardino PT, Scher HI, Sawyers CL, Giancotti FG: Beta4 Integrin signaling induces expansion of prostate tumor progenitors. J Clin Invest. 2013, 123 (2): 682-699.
CAS
PubMed
PubMed Central
Google Scholar
Gerson KD, Maddula VS, Seligmann BE, Shearstone JR, Khan A, Mercurio AM: Effects of beta4 integrin expression on microRNA patterns in breast cancer. Biol Open. 2012, 1 (7): 658-666. 10.1242/bio.20121628.
Article
CAS
PubMed
PubMed Central
Google Scholar
Andreasen PA, Kjoller L, Christensen L, Duffy MJ: The urokinase-type plasminogen activator system in cancer metastasis: a review. Int J Cancer. 1997, 72 (1): 1-22. 10.1002/(SICI)1097-0215(19970703)72:1<1::AID-IJC1>3.0.CO;2-Z.
Article
CAS
PubMed
Google Scholar
Hienert G, Kirchheimer JC, Pfluger H, Binder BR: Urokinase-type plasminogen activator as a marker for the formation of distant metastases in prostatic carcinomas. J Urol. 1988, 140 (6): 1466-1469.
CAS
PubMed
Google Scholar
Shariat SF, Roehrborn CG, McConnell JD, Park S, Alam N, Wheeler TM, Slawin KM: Association of the circulating levels of the urokinase system of plasminogen activation with the presence of prostate cancer and invasion, progression, and metastasis. J Clin Oncol. 2007, 25 (4): 349-355. 10.1200/JCO.2006.05.6853.
Article
CAS
PubMed
Google Scholar
Miyake H, Hara I, Yamanaka K, Gohji K, Arakawa S, Kamidono S: Elevation of serum levels of urokinase-type plasminogen activator and its receptor is associated with disease progression and prognosis in patients with prostate cancer. Prostate. 1999, 39 (2): 123-129. 10.1002/(SICI)1097-0045(19990501)39:2<123::AID-PROS7>3.0.CO;2-2.
Article
CAS
PubMed
Google Scholar
Pulukuri SM, Gondi CS, Lakka SS, Jutla A, Estes N, Gujrati M, Rao JS: RNA interference-directed knockdown of urokinase plasminogen activator and urokinase plasminogen activator receptor inhibits prostate cancer cell invasion, survival, and tumorigenicity in vivo. J Biol Chem. 2005, 280 (43): 36529-36540. 10.1074/jbc.M503111200.
Article
CAS
PubMed
Google Scholar
Conn EM, Botkjaer KA, Kupriyanova TA, Andreasen PA, Deryugina EI, Quigley JP: Comparative analysis of metastasis variants derived from human prostate carcinoma cells: roles in intravasation of VEGF-mediated angiogenesis and uPA-mediated invasion. Am J Pathol. 2009, 175 (4): 1638-1652. 10.2353/ajpath.2009.090384.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mamoune A, Kassis J, Kharait S, Kloeker S, Manos E, Jones DA, Wells A: DU145 human prostate carcinoma invasiveness is modulated by urokinase receptor (uPAR) downstream of epidermal growth factor receptor (EGFR) signaling. Exp Cell Res. 2004, 299 (1): 91-100. 10.1016/j.yexcr.2004.05.008.
Article
CAS
PubMed
Google Scholar
O’Halloran TV, Ahn R, Hankins P, Swindell E, Mazar AP: The many spaces of uPAR: delivery of theranostic agents and nanobins to multiple tumor compartments through a single target. Theranostics. 2013, 3 (7): 496-506. 10.7150/thno.4953.
Article
PubMed
PubMed Central
Google Scholar
Sanchez-Tillo E, de Barrios O, Siles L, Amendola PG, Darling DS, Cuatrecasas M, Castells A, Postigo A: ZEB1 Promotes invasiveness of colorectal carcinoma cells through the opposing regulation of uPA and PAI-1. Clin Cancer Res. 2013, 19 (5): 1071-1082. 10.1158/1078-0432.CCR-12-2675.
Article
CAS
PubMed
Google Scholar
Drake JM, Barnes JM, Madsen JM, Domann FE, Stipp CS, Henry MD: ZEB1 coordinately regulates laminin-332 and {beta}4 integrin expression altering the invasive phenotype of prostate cancer cells. J Biol Chem. 2010, 285 (44): 33940-33948. 10.1074/jbc.M110.136044.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gemmill RM, Roche J, Potiron VA, Nasarre P, Mitas M, Coldren CD, Helfrich BA, Garrett-Mayer E, Bunn PA, Drabkin HA: ZEB1-responsive genes in non-small cell lung cancer. Cancer Lett. 2010, 300 (1): 66-78.
Article
PubMed
PubMed Central
Google Scholar
Park SM, Gaur AB, Lengyel E, Peter ME: The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes Dev. 2008, 22 (7): 894-907. 10.1101/gad.1640608.
Article
CAS
PubMed
PubMed Central
Google Scholar
Korpal M, Lee ES, Hu G, Kang Y: The miR-200 family inhibits epithelial-mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2. J Biol Chem. 2008, 283 (22): 14910-14914. 10.1074/jbc.C800074200.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gregory PA, Bert AG, Paterson EL, Barry SC, Tsykin A, Farshid G, Vadas MA, Khew-Goodall Y, Goodall GJ: The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol. 2008, 10 (5): 593-601. 10.1038/ncb1722.
Article
CAS
PubMed
Google Scholar