Materials and grouping
The embolic agent PGEL, a thermosensitive Pickering gel emulsion with highly dispersive stability, was fabricated by adsorption of deformable PIB nanogels on the oil (lipiodol)-water interface at the National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology (Wuhan, China). We created the hPNA emulsion with 6.0 wt% hPNA as the water phase. The lipiodol content was 40% for better drug loading and a higher X-ray shielding ability, and we synthesized PGEL by two-step seed emulsion polymerization (an oil-in-water emulsion).
Adult New Zealand White rabbits of either gender (ca. 3.0 kg body weight) were provided by the Laboratory Animal Research Center. All animal experiments were approved by the Ethics Committee of Tongji Medical College, Huazhong University of Science and Technology (IACUC: 604). All experiments were performed in accordance with the relevant guidelines and regulations. The experiments also complied with the ARRIVE guidelines.
48 rabbits, including 24 normal rabbits for right renal artery embolization and the rest bearing VX2 tumors for hepatic artery embolization, were used to evaluate the injectability and blood-vessel-embolic and angiographic abilities of PGEL. PGEL, lipiodol, and PVA particles were used to embolize renal or hepatic arteries (n = 6 per group), and normal saline (NS) infusion served as the blank control group (n = 6).
24 rabbits were implanted with VX2 tumors in the left lobe of the liver following a previously described method [12]. Briefly, VX2 tumors were first extracted from carrier rabbits, sectioned into 1-mm3 slices under sterile conditions, and stored in physiological saline on ice. The left liver lobe of the recipient rabbit was then exposed via an abdominal midline incision, and a small fragment of the VX2 tumor was inoculated into the left lobe of the liver. A small piece of gelatin sponge was placed into the liver wound and the abdomen was closed in layers. The tumors were then allowed to grow for 14 days before TAE.
Transarterial embolization of the renal artery
24 normal rabbits were given general anesthesia with pentobarbital sodium solution (2 wt%, 30 mg/kg) via the auricular vein after 12-h of fasting and water deprivation. After 5–10 min, the rabbits were fixed in the supine position. The right groin skin was incised, the common femoral artery was surgically exposed, and a 4-F sheath (Terumo, Tokyo, Japan) was placed. Under fluoroscopic guidance, the right renal artery was catheterized with a 4-F Cobra catheter (Terumo, Tokyo, Japan), and arteriography was performed by injecting a contrast agent (Omnipaque, 300 mg I/mL) at a rate of 0.5 mL/s. Afterward, PGEL, lipiodol, or PVA (Ivalon, 280–350 μm) was injected at a rate of 0.4 mL/s. Saline was infused as a control. The X-ray visibility of PEGL was evaluated by renal artery imaging using a spiral CT scanner (Aquilion ONE, Toshiba, Japan) at specified time intervals, while the other three groups were used as references. 12 weeks after the intervention, the four groups of rabbits were euthanized. Vital organs, including the heart, liver, spleen, lungs, and left kidney, were analyzed by hematoxylin and eosin (H&E) staining.
After PGEL was injected into the renal artery, the rabbits were sacrificed immediately, and the embolized kidneys were removed for transmission electron microscope (TEM) staining. Targeted fresh renal tissues were selected to minimize mechanical damage, such as pulling, contusion, and extrusion. A sharp blade was used to cut and harvest fresh tissue blocks within 1–3 min. Before sampling, Petri dishes with a TEM fixative solution were prepared in advance. Small tissue blocks were removed from the animal body, immediately placed into Petri dishes, and then cut into small pieces (1 × 1 × 1 mm) in the fixative. The tissue blocks were processed and observed with TEM, and images were captured with a digital camera.
Transcatheter embolization of intrahepatic VX2 tumors
As with rabbit renal arteriography, catheterization of the celiac axis artery was achieved via a 4-F Cobra catheter (Terumo, Tokyo, Japan) and the VX2 tumor and its supplying artery were identified by angiography. The tumor donor artery was selectively catheterized with a 2.7-F microcatheter (Terumo, Tokyo, Japan) for embolization (PGEL or lipiodol or PVA) or perfusion (saline). The angiographic embolization endpoint was complete flow stasis, defined as no contrast delivery visible in the tumoral and peritumoral vessels while maintaining patency of the feeding hepatic artery.
Follow-up CT angiography and histopathology
Pretreatment and 1, 3, and 7 days post-treatment contrast-enhanced CT were performed to assess the embolization effect. The rabbits were scanned by a 320-row spiral CT scanner (Aquilion ONE, Toshiba, Japan) with intravenous contrast agents using the following parameters: 80 kV, 60 mA, 1-mm slice thickness, field of view (78.92 × 78.92 mm), and effective pixel size 50 μm. Approximately 3.0 mL of the contrast agent iohexol (Omnipaque, 300 mg I/mL) and 10 mL of NS were injected for multiphase CT enhancement scans using a high-pressure syringe (Stellant Meorao) at a rate of 0.5 mL/s after tumor localization via a CT plain scan. The CT data were analyzed using Amira (4.1.2) software. The tumor growth ratio (GR) was calculated using the following equation: GR = a2b22/a1b12, where a1 and a2 are the maximum diameter of the tumor before and after TAE, respectively, and b1 and b2 are the minimal diameter of the tumor before and after TAE, respectively [15].
The rabbits were euthanized under deep anesthesia 7 days after TAE and saline infusion. Tumor and peritumoral normal tissue samples were harvested and fixed in 4% paraformaldehyde in phosphate-buffered saline, embedded in paraffin, and sectioned into 5-mm sections for subsequent histopathological staining preparations: (a) H&E staining was used to identify tumor histopathological changes and calculate the tumor necrosis ratio (TNR); (b) tumor apoptosis was determined by the terminal deoxynucleotidyl transferase biotin-dUTP nick end labeling (TUNEL) assay using an Apoptosis detection kit (R&D Systems, Minneapolis, MN, USA) according to manufacturer’s protocol; (c) different primary antibodies, including anti-Ki67 (dilution, 1:200; Abcam, USA), anti-VEGF (dilution, 1:150; Millipore, Billerica, MA), anti-CD31 (dilution, 1:50; Dako, Copenhagen, Denmark), and anti-HIF-1α (dilution, 1:100; Thermo, IL, USA) proteins for immunohistochemical (IHC) staining were used to identify angiogenesis and hypoxia signaling pathways within the tumor microenvironment.
Whole-section digital histological scans were acquired with a Pannoramic MIDI II scanner (3DHISTECH; Budapest, Hungary) yielding high-resolution image acquisition. TNR was calculated based on the percentage of the necrotic area to the total tumor area, which was calculated from the H&E staining sections as follows: TNR = N/(N + T), where N and T represent necrotic and non-necrotic areas of the tumor, respectively [16, 17]. The relative signal intensity was quantified by densitometry using Image-Pro Plus 6.0 software (Media Cybernetics; Silver Spring, MD) and the integrated optical density (IOD) was used to quantify the relative expression levels of TUNEL, Ki67, CD31, VEGF, and HIF-1α. The IOD of the fluorescence or number of positive cells per 100 µm2 was evaluated throughout the area from six fields of each sample slice.
Liver and kidney functions were evaluated using a biochemical autoanalyzer (Model DXC 8000; Beckman Coulter Diagnostics, Brea, CA, USA). After TAE and saline infusion, 2 mL of peripheral blood was collected at 1, 3, and 7 days. Plasma alanine aminotransferase (ALT), aspartate aminotransferase (AST), blood urea nitrogen (BUN), and serum creatinine (CRE) were determined. In addition, rabbit hearts, livers, spleens, lungs, and kidneys were harvested 7 days after TAE and saline infusion and then fixed in 4% paraformaldehyde in phosphate-buffered saline, embedded in paraffin, and sectioned into 5-mm sections for H&E staining.
Statistical analysis
All data are expressed as the mean ± standard deviation (SD). Statistical analysis was performed using Prism 5.0 (GraphPad Software; La Jolla, CA). Differences between treatment groups were compared with independent-samples t-test, and P < 0.05 was considered statistically significant.