The Novel Coronavirus Pneumonia Emergency Response Epidemiology T. The epidemiological characteristics of an outbreak of 2019 novel coronavirus diseases (COVID-19) - China, 2020. China CDC Wkly. 2020;2(8):113–22.
Google Scholar
Hopkins J. COVID-19 Dashboard by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University (JHU) 2022 [Available from: https://coronavirus.jhu.edu/map.html.
Faiza M, Neha N. 516. Evaluation of COVID-19 monoclonal antibody therapies for the treatment of non-hospitalized patients with COVID-19. Open Forum Infectious Diseases. 2021;8(Suppl 1):360.
Google Scholar
Hurt AC, Wheatley AK. Neutralizing antibody therapeutics for COVID-19. Viruses. 2021;13(4):628.
CAS
PubMed
PubMed Central
Google Scholar
Shohan M, Nashibi R, Mahmoudian-Sani MR, Abolnezhadian F, Ghafourian M, Alavi SM, et al. The therapeutic efficacy of quercetin in combination with antiviral drugs in hospitalized COVID-19 patients: a randomized controlled trial. Eur J Pharmacol. 2022;914:174615.
CAS
PubMed
Google Scholar
Liang W, Guan W, Chen R, Wang W, Li J, Xu K, et al. Cancer patients in SARS-CoV-2 infection: a nationwide analysis in China. Lancet Oncol. 2020;21(3):335–7.
CAS
PubMed
PubMed Central
Google Scholar
Dasanu CA, Sethi N, Ahmed N. Immune alterations and emerging immunotherapeutic approaches in lung cancer. Expert Opin Biol Ther. 2012;12(7):923–37.
CAS
PubMed
Google Scholar
Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–49.
PubMed
Google Scholar
Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA Cancer J Clin. 2020;70(1):7–30.
PubMed
Google Scholar
Myers DJ, Wallen JM. Lung Adenocarcinoma. [Updated 2021 Sep 10]. In: StatPearls [Internet]. Treasure Island: StatPearls Publishing; 2022. Available from: https://www.ncbi.nlm.nih.gov/books/NBK519578/.
Upcroft P, Upcroft JA. Drug targets and mechanisms of resistance in the anaerobic protozoa. Clin Microbiol Rev. 2001;14(1):150–64.
CAS
PubMed
PubMed Central
Google Scholar
Sun Q, Yogosawa S, Iizumi Y, Sakai T, Sowa Y. The alkaloid emetine sensitizes ovarian carcinoma cells to cisplatin through downregulation of bcl-xL. Int J Oncol. 2015;46(1):389–94.
CAS
PubMed
Google Scholar
Davidson VJ, Patel D, Flanigan R, Gupta GN, Foreman KE. Emetine reduces the effective dose of cisplatin or carboplatin required to inhibit bladder cancer cell proliferation. Bladder. 2017;4(4):e31.
Google Scholar
Wu TH, Chang SY, Shih YL, Huang TW, Chang H, Lin YW. Emetine synergizes with cisplatin to enhance anti-cancer efficacy against lung cancer cells. Int J Mol Sci. 2019;20(23):5914.
CAS
PubMed Central
Google Scholar
Sun Q, Fu Q, Li S, Li J, Liu S, Wang Z, et al. Emetine exhibits anticancer activity in breast cancer cells as an antagonist of Wnt/β-catenin signaling. Oncol Rep. 2019;42(5):1735–44.
PubMed
PubMed Central
Google Scholar
Yang S, Xu M, Lee EM, Gorshkov K, Shiryaev SA, He S, et al. Emetine inhibits Zika and Ebola virus infections through two molecular mechanisms: inhibiting viral replication and decreasing viral entry. Cell Discov. 2018;4:31.
PubMed
PubMed Central
Google Scholar
Sisakht M, Mahmoodzadeh A, Darabian M. Plant-derived chemicals as potential inhibitors of SARS-CoV-2 main protease (6LU7), a virtual screening study. Phytother Res. 2021;35(6):3262–74.
CAS
PubMed
PubMed Central
Google Scholar
Snoussi M, Redissi A, Mosbah A, De Feo V, Adnan M, Aouadi K, et al. Emetine, a potent alkaloid for the treatment of SARS-CoV-2 targeting papain-like protease and non-structural proteins: pharmacokinetics, molecular docking and dynamic studies. J Biomol Struct Dyn. 2021;13:1–14.
Sauvat A, Ciccosanti F, Colavita F, Di Rienzo M, Castilletti C, Capobianchi MR, et al. On-target versus off-target effects of drugs inhibiting the replication of SARS-CoV-2. Cell Death Dis. 2020;11(8):656.
CAS
PubMed
PubMed Central
Google Scholar
Khalifa SAM, Yosri N, El-Mallah MF, Ghonaim R, Guo Z, Musharraf SG, et al. Screening for natural and derived bio-active compounds in preclinical and clinical studies: one of the frontlines of fighting the coronaviruses pandemic. Phytomedicine. 2021;85:153311.
CAS
PubMed
Google Scholar
Muhammed Y, Yusuf Nadabo A, Pius M, Sani B, Usman J, Anka Garba N, et al. SARS-CoV-2 spike protein and RNA dependent RNA polymerase as targets for drug and vaccine development: a review. Biosaf Health. 2021;3(5):249–63.
PubMed
PubMed Central
Google Scholar
Shin D, Mukherjee R, Grewe D, Bojkova D, Baek K, Bhattacharya A, et al. Papain-like protease regulates SARS-CoV-2 viral spread and innate immunity. Nature. 2020;587(7835):657–62.
CAS
PubMed
PubMed Central
Google Scholar
Zhang L, Lin D, Sun X, Curth U, Drosten C, Sauerhering L, et al. Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors. Science. 2020;368(6489):409–12.
CAS
PubMed
PubMed Central
Google Scholar
Institute NC. Genomic Data Commons Data Portal 2021 [Available from: https://portal.gdc.cancer.gov/repository.
Li R, Li Y, Liang X, Yang L, Su M, Lai KP. Network pharmacology and bioinformatics analyses identify intersection genes of niacin and COVID-19 as potential therapeutic targets. Brief Bioinform. 2021;22(2):1279–90.
CAS
PubMed
Google Scholar
Fisher LD, Lin DY. Time-dependent covariates in the Cox proportional-hazards regression model. Annu Rev Public Health. 1999;20:145–57.
CAS
PubMed
Google Scholar
Lamb J, Crawford ED, Peck D, Modell JW, Blat IC, Wrobel MJ, et al. The Connectivity Map: using gene-expression signatures to connect small molecules, genes, and disease. Science. 2006;313(5795):1929–35.
CAS
PubMed
Google Scholar
Zubair MS, Anam S, Khumaidi A, Susanto Y, Ridhay A. Molecular docking approach to identify potential anticancer compounds from Begonia (Begonia sp); 2016.
Google Scholar
Zubair MS, Maulana S, Widodo A, Mukaddas A, Pitopang R. Docking study on anti-HIV-1 activity of secondary metabolites from Zingiberaceae plants. J Pharm Bioallied Sci. 2020;12(Suppl 2):S763–s7.
CAS
PubMed
PubMed Central
Google Scholar
Kim S, Chen J, Cheng T, Gindulyte A, He J, He S, et al. PubChem in 2021: new data content and improved web interfaces. Nucleic Acids Res. 2021;49(D1):D1388–d95.
CAS
PubMed
Google Scholar
Burley SK, Berman HM, Kleywegt GJ, Markley JL, Nakamura H, Velankar S. Protein Data Bank (PDB): he single global macromolecular structure archive. Methods Mol Biol. 2017;1607:627–41.
CAS
PubMed
PubMed Central
Google Scholar
Dai W, Zhang B, Jiang XM, Su H, Li J, Zhao Y, et al. Structure-based design of antiviral drug candidates targeting the SARS-CoV-2 main protease. Science. 2020;368(6497):1331-1335 doi: 10.126/science.abb4489.
Zhang B, Zhang Y, Jing Z, Liu X, Yang H, Liu H, et al. The crystal structure of COVID-19 main protease in complex with an inhibitor 11a. 2020. https://doi.org/10.2210/pdb6lze/pdb.
Biftu T, Sinha-Roy R, Chen P, Qian X, Feng D, Kuethe JT, et al. Omarigliptin (MK-3102): a novel long-acting DPP-4 inhibitor for once-weekly treatment of type 2 diabetes. J Med Chem. 2014;57(8):3205–12. https://doi.org/10.1021/jm401992e.
Article
CAS
PubMed
Google Scholar
Scapin G, Yan Y. Human dipeptidyl peptidase IV/CD26 in complex with the long-acting inhibitor Omarigliptin (MK-3102). 2014. https://doi.org/10.2210/pdb4pnz/pdb.
Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, et al. AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem. 2009;30(16):2785–91.
CAS
PubMed
PubMed Central
Google Scholar
Lokhande KB, Nagar S, Swamy KV. Molecular interaction studies of Deguelin and its derivatives with cyclin D1 and cyclin E in cancer cell signaling pathway: the computational approach. Sci Rep. 2019;9(1):1778.
PubMed
PubMed Central
Google Scholar
Khaerunnisa S, Kurniawan H, Awaluddin R, Suhartati S, Soetjipto S. Potential inhibitor of COVID-19 main protease (Mpro) from several medicinal plant compounds by molecular docking study; 2020.
Google Scholar
Lokhande KB, Doiphode S, Vyas R, Swamy KV. Molecular docking and simulation studies on SARS-CoV-2 M (pro) reveals mitoxantrone, leucovorin, birinapant, and dynasore as potent drugs against COVID-19. J Biomol Struct Dyn. 2021;39(18):7294–305.
CAS
PubMed
Google Scholar
Patil RB, Barbosa EG, Sangshetti JN, Zambre VP, Sawant SD. Structural insights of dipeptidyl peptidase-IV inhibitors through molecular dynamics-guided receptor-dependent 4D-QSAR studies. Mol Divers. 2018;22(3):575–83.
CAS
PubMed
Google Scholar
Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2010;31(2):455–61.
CAS
PubMed
PubMed Central
Google Scholar
Delano WL. PyMOL: an open-source molecular graphics tool; 2002.
Google Scholar
Elebeedy D, Badawy I, Elmaaty AA, Saleh MM, Kandeil A, Ghanem A, et al. In vitro and computational insights revealing the potential inhibitory effect of Tanshinone IIA against influenza A virus. Comput Biol Med. 2022;141:105149.
CAS
PubMed
Google Scholar
Mja A, Tm D, Rsb C, Sp A, Jcsb C, Bh A, et al. GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers - ScienceDirect. SoftwareX. 2015;1–2:19–25.
Google Scholar
Winter A. QtGrace, native Grace for Windows, Linux and Mac OS X based on Qt [updated 2017.02.05. Available from: https://sourceforge.net/projects/qtgrace/.
He X, Man VH, Yang W, Lee TS, Wang J. A fast and high-quality charge model for the next generation general AMBER force field. J Chem Phys. 2020;153(11):114502.
CAS
PubMed
PubMed Central
Google Scholar
Lokhande KB, Pawar SV, Madkaiker S, Nawani N, Venkateswara SK, Ghosh P. High throughput virtual screening and molecular dynamics simulation analysis of phytomolecules against BfmR of Acinetobacter baumannii: anti-virulent drug development campaign. J Biomol Struct Dyn. 2022;14:1–15.
Lokhande KB, Ghosh P, Nagar S, Venkateswara SK. Novel B, C-ring truncated deguelin derivatives reveals as potential inhibitors of cyclin D1 and cyclin E using molecular docking and molecular dynamic simulation. Mol Divers. 2021. https://doi.org/10.1007/s11030-021-10334-z.
Lokhande KB, Ballav S, Yadav RS, Swamy KV, Basu S. Probing intermolecular interactions and binding stability of kaempferol, quercetin and resveratrol derivatives with PPAR-γ: docking, molecular dynamics and MM/GBSA approach to reveal potent PPAR-γ agonist against cancer. J Biomol Struct Dyn. 2022;40(3):971–81.
CAS
PubMed
Google Scholar
Muralidharan N, Sakthivel R, Velmurugan D, Gromiha MM. Computational studies of drug repurposing and synergism of lopinavir, oseltamivir and ritonavir binding with SARS-CoV-2 protease against COVID-19. J Biomol Struct Dyn. 2021;39(7):2673–8.
CAS
PubMed
Google Scholar
Wang X, Kleerekoper Q, Revtovich AV, Kang D, Kirienko NV. Identification and validation of a novel anti-virulent that binds to pyoverdine and inhibits its function. Virulence. 2020;11(1):1293–309.
CAS
PubMed
PubMed Central
Google Scholar
Kanehisa M, Goto S. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 2000;28(1):27–30.
CAS
PubMed
PubMed Central
Google Scholar
Kanehisa M. Toward understanding the origin and evolution of cellular organisms. Protein Sci. 2019;28(11):1947–51.
CAS
PubMed
PubMed Central
Google Scholar
Kanehisa M, Furumichi M, Sato Y, Ishiguro-Watanabe M, Tanabe M. KEGG: integrating viruses and cellular organisms. Nucleic Acids Res. 2021;49(D1):D545–d51.
CAS
PubMed
Google Scholar
Kocarnik JM, Compton K, Dean FE, Fu W, Gaw BL, Harvey JD, et al. Cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life years for 29 cancer groups from 2010 to 2019: a systematic analysis for the Global Burden of Disease Study 2019. JAMA Oncol. 2022;8(3):420-44.
Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin. 2019;69(1):7–34.
PubMed
Google Scholar
Sun J, Zheng Q, Madhira V, Olex AL, Anzalone AJ, Vinson A, et al. Association between immune dysfunction and COVID-19 breakthrough infection after SARS-CoV-2 vaccination in the US. JAMA. Intern Med. 2022;182(2):153-62.
Kim JH, Cho EB, Lee J, Jung O, Ryu BJ, Kim SH, et al. Emetine inhibits migration and invasion of human non-small-cell lung cancer cells via regulation of ERK and p38 signaling pathways. Chem Biol Interact. 2015;242:25–33.
CAS
PubMed
Google Scholar
Mukhopadhyay R, Roy S, Venkatadri R, Su YP, Ye W, Barnaeva E, et al. Efficacy and mechanism of action of low dose emetine against human cytomegalovirus. PLoS Pathog. 2016;12(6):e1005717.
PubMed
PubMed Central
Google Scholar
Choy KT, Wong AY, Kaewpreedee P, Sia SF, Chen D, Hui KPY, et al. Remdesivir, lopinavir, emetine, and homoharringtonine inhibit SARS-CoV-2 replication in vitro. Antiviral Res. 2020;178:104786.
CAS
PubMed
PubMed Central
Google Scholar
Zeng J, Liu G, Tang Y, Jiang H. 3D-QSAR studies on fluoropyrrolidine amides as dipeptidyl peptidase IV inhibitors by CoMFA and CoMSIA. J Mol Model. 2007;13(9):993–1000.
CAS
PubMed
Google Scholar
Mulvihill EE, Drucker DJ. Pharmacology, physiology, and mechanisms of action of dipeptidyl peptidase-4 inhibitors. Endocr Rev. 2014;35(6):992–1019.
CAS
PubMed
Google Scholar
Kang R, Kroemer G, Tang D. The tumor suppressor protein p53 and the ferroptosis network. Free Radic Biol Med. 2019;133:162–8.
CAS
PubMed
Google Scholar
Barreira da Silva R, Laird ME, Yatim N, Fiette L, Ingersoll MA, Albert ML. Dipeptidylpeptidase 4 inhibition enhances lymphocyte trafficking, improving both naturally occurring tumor immunity and immunotherapy. Nat Immunol. 2015;16(8):850–8.
CAS
PubMed
Google Scholar
Lu G, Hu Y, Wang Q, Qi J, Gao F, Li Y, et al. Molecular basis of binding between novel human coronavirus MERS-CoV and its receptor CD26. Nature. 2013;500(7461):227–31.
CAS
PubMed
PubMed Central
Google Scholar
Li Y, Zhang Z, Yang L, Lian X, Xie Y, Li S, et al. The MERS-CoV receptor DPP4 as a candidate binding target of the SARS-CoV-2 Spike. iScience. 2020;23(8):101400.
CAS
PubMed
PubMed Central
Google Scholar
Cao F, Xiao Z, Chen S, Zhao C, Chen D, Haisma HJ, et al. HDAC/MIF dual inhibitor inhibits NSCLC cell survival and proliferation by blocking the AKT pathway. Bioorg Chem. 2021;117:105396.
CAS
PubMed
Google Scholar
Xiao Z, Song S, Chen D, van Merkerk R, van der Wouden PE, Cool RH, et al. Proteolysis targeting chimera (PROTAC) for macrophage migration inhibitory factor (MIF) has anti-proliferative activity in lung cancer cells. Angew Chem Int Ed Engl. 2021;60(32):17514–21.
CAS
PubMed
PubMed Central
Google Scholar
Khaddaj-Mallat R, Aldib N, Bernard M, Paquette AS, Ferreira A, Lecordier S, et al. SARS-CoV-2 deregulates the vascular and immune functions of brain pericytes via Spike protein. Neurobiol Dis. 2021;161:105561.
CAS
PubMed
PubMed Central
Google Scholar
Dheir H, Yaylaci S, Sipahi S, Genc AC, Cekic D, Tuncer FB, et al. Does macrophage migration inhibitory factor predict the prognosis of COVID-19 disease? J Infect Dev Ctries. 2021;15(3):398–403.
CAS
PubMed
Google Scholar