Kayser S, Schlenk RF, Platzbecker U. Management of patients with acute promyelocytic leukemia. Leukemia. 2018;32(6):1277–94. https://doi.org/10.1038/s41375-018-0139-4.
Article
PubMed
Google Scholar
de The H, Pandolfi PP, Chen Z. Acute Promyelocytic leukemia: a paradigm for Oncoprotein-targeted cure. Cancer Cell. 2017;32(5):552–60. https://doi.org/10.1016/j.ccell.2017.10.002.
Article
CAS
PubMed
Google Scholar
Pollyea DA, Bixby D, Perl A, Bhatt VR, Altman JK, Appelbaum FR, et al. NCCN Guidelines Insights: Acute Myeloid Leukemia, Version 2.2021. J Natl Compr Cancer Netw. 2021;19(1):16–27. https://doi.org/10.6004/jnccn.2021.0002.
Article
Google Scholar
Gabert J, Beillard E, van der Velden VH, Bi W, Grimwade D, Pallisgaard N, et al. Standardization and quality control studies of 'real-time' quantitative reverse transcriptase polymerase chain reaction of fusion gene transcripts for residual disease detection in leukemia - a Europe against Cancer program. Leukemia. 2003;17(12):2318–57. https://doi.org/10.1038/sj.leu.2403135.
Article
CAS
PubMed
Google Scholar
Ganzel C, Douer D, Tallman MS. Postconsolidation maintenance and monitoring in patients with acute promyelocytic leukemia. J Natl Compr Cancer Netw. 2013;11(12):1512–21. https://doi.org/10.6004/jnccn.2013.0178.
Article
CAS
Google Scholar
Tobal K, Moore H, Macheta M, Yin JA. Monitoring minimal residual disease and predicting relapse in APL by quantitating PML-RARalpha transcripts with a sensitive competitive RT-PCR method. Leukemia. 2001;15(7):1060–5. https://doi.org/10.1038/sj.leu.2402170.
Article
CAS
PubMed
Google Scholar
Juul-Dam KL, Ommen HB, Nyvold CG, Walter C, Valerhaugen H, Kairisto V, et al. Measurable residual disease assessment by qPCR in peripheral blood is an informative tool for disease surveillance in childhood acute myeloid leukaemia. Br J Haematol. 2020;190(2):198–208. https://doi.org/10.1111/bjh.16560.
Article
CAS
PubMed
Google Scholar
Fernandez-Mercado M, Manterola L, Larrea E, Goicoechea I, Arestin M, Armesto M, et al. The circulating transcriptome as a source of non-invasive cancer biomarkers: concepts and controversies of non-coding and coding RNA in body fluids. J Cell Mol Med. 2015;19(10):2307–23. https://doi.org/10.1111/jcmm.12625.
Article
CAS
PubMed
PubMed Central
Google Scholar
Plaks V, Koopman CD, Werb Z. Cancer. Circulating tumor cells. Science. 2013;341(6151):1186–8. https://doi.org/10.1126/science.1235226.
Article
CAS
PubMed
Google Scholar
Ko BS, Wang YF, Li JL, Li CC, Weng PF, Hsu SC, et al. Clinically validated machine learning algorithm for detecting residual diseases with multicolor flow cytometry analysis in acute myeloid leukemia and myelodysplastic syndrome. EBioMedicine. 2018;37:91–100. https://doi.org/10.1016/j.ebiom.2018.10.042.
Article
PubMed
PubMed Central
Google Scholar
Quinn JJ, Chang HY. Unique features of long non-coding RNA biogenesis and function. Nat Rev Genet. 2016;17(1):47–62. https://doi.org/10.1038/nrg.2015.10.
Article
CAS
PubMed
Google Scholar
Cao M, Zhao J, Hu G. Genome-wide methods for investigating long noncoding RNAs. Biomed Pharmacother. 2019;111:395–401. https://doi.org/10.1016/j.biopha.2018.12.078.
Article
CAS
PubMed
Google Scholar
Qi P, Zhou X, Du X. Circulating long non-coding RNAs in cancer: current status and future perspectives. Mol Cancer. 2016;15(1):39. https://doi.org/10.1186/s12943-016-0524-4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xie Y, Zhang Y, Du L, Jiang X, Yan S, Duan W, et al. Circulating long noncoding RNA act as potential novel biomarkers for diagnosis and prognosis of non-small cell lung cancer. Mol Oncol. 2018;12(5):648–58. https://doi.org/10.1002/1878-0261.12188.
Article
CAS
PubMed
PubMed Central
Google Scholar
He Z, Qin X, Zhang X, Yi J, Han J. Long noncoding RNA GIHCG is a potential diagnostic and prognostic biomarker and therapeutic target for renal cell carcinoma. Eur Rev Med Pharmacol Sci. 2018;22(1):46–54. https://doi.org/10.26355/eurrev_201801_14099.
Article
PubMed
Google Scholar
Zeng C, Xu Y, Xu L, Yu X, Cheng J, Yang L, et al. Inhibition of long non-coding RNA NEAT1 impairs myeloid differentiation in acute promyelocytic leukemia cells. BMC Cancer. 2014;14:693. https://doi.org/10.1186/1471-2407-14-693.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wei S, Zhao M, Wang X, Li Y, Wang K. PU.1 controls the expression of long noncoding RNA HOTAIRM1 during granulocytic differentiation. J Hematol Oncol. 2016;9(1):44. https://doi.org/10.1186/s13045-016-0274-1.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen ZH, Wang WT, Huang W, Fang K, Sun YM, Liu SR, et al. The lncRNA HOTAIRM1 regulates the degradation of PML-RARA oncoprotein and myeloid cell differentiation by enhancing the autophagy pathway. Cell Death Differ. 2017;24(2):212–24. https://doi.org/10.1038/cdd.2016.111.
Article
CAS
PubMed
Google Scholar
Yu J, Guo XL, Bai YY, Yang JJ, Zheng XQ, Ruan JC, et al. Genomewide profiling of lncRNA expression patterns in patients with acute promyelocytic leukemia with differentiation therapy. Oncol Rep. 2018;40(3):1601–13. https://doi.org/10.3892/or.2018.6521.
Article
CAS
PubMed
Google Scholar
Arber DA, Orazi A, Hasserjian R, Thiele J, Borowitz MJ, Le Beau MM, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016;127(20):2391–405. https://doi.org/10.1182/blood-2016-03-643544.
Article
CAS
PubMed
Google Scholar
DeAngelo DJ. Tailored approaches to induction therapy for acute Promyelocytic leukemia. J Clin Oncol. 2017;35(6):583–6. https://doi.org/10.1200/JCO.2016.68.4761.
Article
PubMed
Google Scholar
Rio DC, Ares M Jr, Hannon GJ, Nilsen TW. Purification of RNA using TRIzol (TRI reagent). Cold Spring Harb Protoc. 2010;2010(6):pdb prot5439. https://doi.org/10.1101/pdb.prot5439.
Article
PubMed
Google Scholar
Chen Z, Tong Y, Li Y, Gao Q, Wang Q, Fu C, et al. Development and validation of a 3-Plex RT-qPCR assay for the simultaneous detection and quantitation of the three PML-RARa fusion transcripts in acute promyelocytic leukemia. PLoS One. 2015;10(3):e0122530. https://doi.org/10.1371/journal.pone.0122530.
Article
CAS
PubMed
PubMed Central
Google Scholar
Beillard E, Pallisgaard N, van der Velden VH, Bi W, Dee R, van der Schoot E, et al. Evaluation of candidate control genes for diagnosis and residual disease detection in leukemic patients using 'real-time' quantitative reverse-transcriptase polymerase chain reaction (RQ-PCR) - a Europe against cancer program. Leukemia. 2003;17(12):2474–86. https://doi.org/10.1038/sj.leu.2403136.
Article
CAS
PubMed
Google Scholar
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods. 2001;25(4):402–8. https://doi.org/10.1006/meth.2001.1262.
Article
CAS
PubMed
Google Scholar
Spinelli O, Rambaldi A, Rigo F, Zanghì P, D'Agostini E, Amicarelli G, et al. Simple, rapid and accurate molecular diagnosis of acute promyelocytic leukemia by loop mediated amplification technology. Oncoscience. 2015;2(1):50–8. https://doi.org/10.18632/oncoscience.114.
Article
PubMed
Google Scholar
Fu Y, Zhang Y, Khoo BL. Liquid biopsy technologies for hematological diseases. Med Res Rev. 2021;41(1):246–74. https://doi.org/10.1002/med.21731.
Article
CAS
PubMed
Google Scholar
Pantel K, Alix-Panabieres C. Liquid biopsy and minimal residual disease - latest advances and implications for cure. Nat Rev Clin Oncol. 2019;16(7):409–24. https://doi.org/10.1038/s41571-019-0187-3.
Article
CAS
PubMed
Google Scholar
Jiang S, Cheng SJ, Ren LC, Wang Q, Kang YJ, Ding Y, et al. An expanded landscape of human long noncoding RNA. Nucleic Acids Res. 2019;47(15):7842–56. https://doi.org/10.1093/nar/gkz621.
Article
CAS
PubMed
PubMed Central
Google Scholar
Saus E, Brunet-Vega A, Iraola-Guzman S, Pegueroles C, Gabaldon T, Pericay C. Long non-coding RNAs as potential novel prognostic biomarkers in colorectal Cancer. Front Genet. 2016;7:54. https://doi.org/10.3389/fgene.2016.00054.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shang C, Guo Y, Zhang H, Xue YX. Long noncoding RNA HOTAIR is a prognostic biomarker and inhibits chemosensitivity to doxorubicin in bladder transitional cell carcinoma. Cancer Chemother Pharmacol. 2016;77(3):507–13. https://doi.org/10.1007/s00280-016-2964-3.
Article
CAS
PubMed
Google Scholar
Heid C, Stevens J, Livak K, Williams P. Real time quantitative PCR. Genome Res. 1996;6(10):986–94. https://doi.org/10.1101/gr.6.10.986.
Article
CAS
PubMed
Google Scholar
Mousavi-Nasab SD, Azhdar Z, Ghaderi M. Optimization of RT-qPCR for detection of Aichi virus in sewage and river water samples in Karaj, Iran. Arch Iran Med. 2019;55(5):242–6.
Google Scholar
Grimwade D, Jovanovic JV, Hills RK, Nugent EA, Patel Y, Flora R, et al. Prospective minimal residual disease monitoring to predict relapse of acute promyelocytic leukemia and to direct pre-emptive arsenic trioxide therapy. J Clin Oncol. 2009;27(22):3650–8. https://doi.org/10.1200/JCO.2008.20.1533.
Article
CAS
PubMed
Google Scholar
Sanz MA, Fenaux P, Tallman MS, Estey EH, Lowenberg B, Naoe T, et al. Management of acute promyelocytic leukemia: updated recommendations from an expert panel of the European LeukemiaNet. Blood. 2019;133(15):1630–43. https://doi.org/10.1182/blood-2019-01-894980.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bai Y, Chen C, Guo X, Ding T, Yang X, Yu J, et al. miR-638 in circulating leukaemia cells as a non-invasive biomarker in diagnosis, treatment response and MRD surveillance of acute promyelocytic leukaemia. Cancer Biomark. 2020;29(1):125–37. https://doi.org/10.3233/CBM-190899.
Article
CAS
PubMed
Google Scholar
Wang H, Peng R, Wang J, Qin Z, Xue L. Circulating microRNAs as potential cancer biomarkers: the advantage and disadvantage. Clin Epigenetics. 2018;10:59. https://doi.org/10.1186/s13148-018-0492-1.
Article
CAS
PubMed
PubMed Central
Google Scholar