Rizvi S, Gores GJ. Pathogenesis, diagnosis, and management of cholangiocarcinoma. Gastroenterology. 2013;145(6):1215–29 https://doi.org/10.1053/j.gastro.2013.10.013.
CAS
PubMed
Google Scholar
DeOliveira ML, Cunningham SC, Cameron JL, Kamangar F, Winter JM, Lillemoe KD, et al. Cholangiocarcinoma: thirty-one-year experience with 564 patients at a single institution. Ann Surg. 2007;245(5):755. https://doi.org/10.1097/01.sla.0000251366.62632.d3–62.
PubMed
PubMed Central
Google Scholar
Saha SK, Zhu AX, Fuchs CS, Brooks GA. Forty-year trends in cholangiocarcinoma incidence in the US: intrahepatic disease on the rise. Oncologist. 2016;21(5):594. https://doi.org/10.1634/theoncologist.2015-0446–9.
PubMed
PubMed Central
Google Scholar
Buettner S, van Vugt JL, IJzermans JN, Koerkamp BG. Intrahepatic cholangiocarcinoma: current perspectives. OncoTargets. 2017;10:1131. https://doi.org/10.2147/OTT.S93629–42.
CAS
Google Scholar
Murakami Y, Uemura K, Sudo T, Hayashidani Y, Hashimoto Y, Nakamura H, et al. Adjuvant gemcitabine plus S-1 chemotherapy improves survival after aggressive surgical resection for advanced biliary carcinoma. Ann Surg. 2009;250(6):950–6 https://doi.org/10.1097/SLA.0b013e3181b0fc8b.
PubMed
Google Scholar
Mao Z-y, Guo X-c, Su D, Wang L-j, Zhang T-t, Bai L. Prognostic factors of cholangiocarcinoma after surgical resection: a retrospective study of 293 patients. Medical science monitor: international medical journal of experimental clinical research. 2015;21:2375 https://doi.org/10.12659/MSM.893586.
Google Scholar
Sotoudehmanesh R, Nejati N, Farsinejad M, Kolahdoozan S. Efficacy of endoscopic ultrasonography in evaluation of undetermined etiology of common bile duct dilatation on abdominal ultrasonography. Middle East journal of digestive diseases. 2016;8(4):267. https://doi.org/10.15171/mejdd.2016.35–72.
PubMed
PubMed Central
Google Scholar
Asayama Y, Nishie A, Ishigami K, Ushijima Y, Takayama Y, Okamoto D, et al. Prognostic significance of contrast-enhanced CT attenuation value in extrahepatic cholangiocarcinoma. Eur Radiol. 2017;27(6):2563–9 https://doi.org/10.1007/s00330-016-4621-y.
PubMed
Google Scholar
Ma KW, Cheung TT, She WH, Chok KSH, Chan ACY, Dai WC, et al. Diagnostic and prognostic role of 18-FDG PET/CT in the management of resectable biliary tract cancer. World J Surg. 2018;42(3):823–34 https://doi.org/10.1007/s00268-017-4192-3.
PubMed
Google Scholar
Jhaveri KS, Hosseini-Nik H. MRI of cholangiocarcinoma. J Magn Reson Imaging. 2015;42(5):1165–79 https://doi.org/10.1002/jmri.24810.
PubMed
Google Scholar
Suthar M, Purohit S, Bhargav V, Goyal P. Role of MRCP in differentiation of benign and malignant causes of biliary obstruction. JCDR. 2015;9(11):TC08 https://doi.org/10.7860/JCDR/2015/14174.6771.
PubMed
PubMed Central
Google Scholar
Voigtländer T, Lankisch TO. Endoscopic diagnosis of cholangiocarcinoma: from endoscopic retrograde cholangiography to bile proteomics. Best Pract Res Clin Gastroenterol. 2015;29(2):267–75 https://doi.org/10.1016/j.bpg.2015.02.005.
PubMed
Google Scholar
Li S, Qian H, Peng Y, Jia H, Lin G. Differentiating peripheral cholangiocarcinoma in stages T1N0M0 and T2N0M0 from hepatic hypovascular nodules using dynamic contrast-enhanced MRI. Sci Rep. 2017;7(1):1–7 https://doi.org/10.1038/s41598-017-08634-2.
Google Scholar
Jiang F, Jiang Y, Zhi H, Dong Y, Li H, Ma S, et al. Artificial intelligence in healthcare: past, present and future. Stroke vascular neurology. 2017;2(4) https://doi.org/10.1136/svn-2017-000101.
Choi JY. Radiomics and deep learning in clinical imaging: what should we do? Nucl Med Mol Imaging. 2018;52(2):89–90 https://doi.org/10.1007/s13139-018-0514-0.
CAS
PubMed
PubMed Central
Google Scholar
Peeken JC, Nüsslin F, Combs SE. Radio-oncomics. Strahlenther Onkol. 2017;193(10):767–79 https://doi.org/10.1007/s00066-017-1175-0.
PubMed
Google Scholar
Vial A, Stirling D, Field M, Ros M, Ritz C, Carolan M, et al. The role of deep learning and radiomic feature extraction in cancer-specific predictive modelling: a review. Transl Cancer Res. 2018;7(3):803–16 https://doi.org/10.21037/tcr.2018.05.02.
Google Scholar
Wang Y, Liu W, Yu Y, Liu J-j, Xue H-d, Qi Y-f, et al. CT radiomics nomogram for the preoperative prediction of lymph node metastasis in gastric cancer. Eur Radiol. 2020;30(2):976–86 https://doi.org/10.1007/s00330-019-06398-z.
PubMed
Google Scholar
Y-q H, Liang C-h, He L, Tian J, Liang C-s, Chen X, et al. Development and validation of a radiomics nomogram for preoperative prediction of lymph node metastasis in colorectal cancer. J Clin Oncol. 2016;34(18):2157–64 https://doi.org/10.1200/JCO.2015.65.9128.
Google Scholar
Yang J, Wang T, Yang L, Wang Y, Li H, Zhou X, et al. Preoperative prediction of axillary lymph node metastasis in breast cancer using mammography-based radiomics method. Sci Rep. 2019;9(1):1–11 https://doi.org/10.1038/s41598-019-40831-z.
Google Scholar
Wu S, Zheng J, Li Y, Yu H, Shi S, Xie W, et al. A radiomics nomogram for the preoperative prediction of lymph node metastasis in bladder cancer. Clin Cancer Res. 2017;23(22):6904–11 https://doi.org/10.1158/1078-0432.CCR-17-1510.
CAS
PubMed
Google Scholar
Gu Y, She Y, Xie D, Dai C, Ren Y, Fan Z, et al. A texture analysis-based prediction model for lymph node metastasis in stage IA lung adenocarcinoma. Ann Thorac Surg. 2018;106(1):214–20 https://doi.org/10.1016/j.athoracsur.2018.02.026.
PubMed
Google Scholar
Ditmer A, Zhang B, Shujaat T, Pavlina A, Luibrand N, Gaskill-Shipley M, et al. Diagnostic accuracy of MRI texture analysis for grading gliomas. J Neurooncol. 2018;140(3):583–9 https://doi.org/10.1007/s11060-018-2984-4.
PubMed
Google Scholar
Wang H, Chen H, Duan S, Hao D, Liu J. Radiomics and machine learning with multiparametric preoperative MRI may accurately predict the histopathological grades of soft tissue sarcomas. J Magn Reson Imaging. 2020;51(3):791–7 https://doi.org/10.1002/jmri.26901.
PubMed
Google Scholar
Sadot E, Simpson AL, Do RK, Gonen M, Shia J, Allen PJ, et al. Cholangiocarcinoma: correlation between molecular profiling and imaging phenotypes. PLoS One. 2015;10(7):e0132953 https://doi.org/10.1371/journal.pone.0132953.
PubMed
PubMed Central
Google Scholar
Liang W, Xu L, Yang P, Zhang L, Wan D, Huang Q, et al. Novel nomogram for preoperative prediction of early recurrence in intrahepatic cholangiocarcinoma. Front Oncol. 2018;8:360 https://doi.org/10.3389/fonc.2018.00360.
PubMed
PubMed Central
Google Scholar
Zhao L, Ma X, Liang M, Li D, Ma P, Wang S, et al. Prediction for early recurrence of intrahepatic mass-forming cholangiocarcinoma: quantitative magnetic resonance imaging combined with prognostic immunohistochemical markers. Cancer Imaging. 2019;19(1):1–10 https://doi.org/10.1186/s40644-019-0234-4.
Google Scholar
Ji G-W, Zhang Y-D, Zhang H, Zhu F-P, Wang K, Xia Y-X, et al. Biliary tract cancer at CT: a radiomics-based model to predict lymph node metastasis and survival outcomes. Radiology. 2019;290(1):90–8 https://doi.org/10.1148/radiol.2018181408.
PubMed
Google Scholar
Xu L, Yang P, Liang W, Liu W, Wang W, Luo C, et al. A radiomics approach based on support vector machine using MR images for preoperative lymph node status evaluation in intrahepatic cholangiocarcinoma. Theranostics. 2019;9(18):5374. https://doi.org/10.7150/thno.34149–85.
PubMed
PubMed Central
Google Scholar
Ji G-W, Zhu F-P, Zhang Y-D, Liu X-S, Wu F-Y, Wang K, et al. A radiomics approach to predict lymph node metastasis and clinical outcome of intrahepatic cholangiocarcinoma. Eur Radiol. 2019;29(7):3725–35 https://doi.org/10.1007/s00330-019-06142-7.
PubMed
Google Scholar
Bennasar M, Hicks Y, Setchi R. Feature selection using joint mutual information maximisation. Expert Syst Appl. 2015;42(22):8520–32 https://doi.org/10.1016/j.eswa.2015.07.007.
Google Scholar
Peng H, Long F, Ding C. Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy. IEEE Transactions on pattern analysis machine intelligence. 2005;27(8):1226–38 https://doi.org/10.1109/TPAMI.2005.159.
PubMed
Google Scholar
St L, Wold S. Analysis of variance (ANOVA). Chemom Intel Lab Syst. 1989;6(4):259–72 https://doi.org/10.1016/0169-7439(89)80095-4.
Google Scholar
Wilcoxon F, Katti S, Wilcox RA. Critical values and probability levels for the Wilcoxon rank sum test and the Wilcoxon signed rank test. American Cyanamid Company Pearl River, NY. 1963:171–6.
Parmar C, Grossmann P, Bussink J, Lambin P, Aerts HJ. Machine learning methods for quantitative radiomic biomarkers. Sci Rep. 2015;5(1):1–11 https://doi.org/10.1038/srep13087.
Google Scholar
Sun W, Jiang M, Dang J, Chang P, Yin F-F. Effect of machine learning methods on predicting NSCLC overall survival time based on Radiomics analysis. Radiat Oncol. 2018;13(1):1–8 https://doi.org/10.1186/s13014-018-1140-9.
Google Scholar
Zhang Y, Zhang B, Liang F, Liang S, Zhang Y, Yan P, et al. Radiomics features on non-contrast-enhanced CT scan can precisely classify AVM-related hematomas from other spontaneous intraparenchymal hematoma types. Eur Radiol. 2019;29(4):2157–65 https://doi.org/10.1007/s00330-018-5747-x.
PubMed
Google Scholar
Cheng Z, Zhang J, He N, Li Y, Wen Y, Xu H, et al. Radiomic features of the nigrosome-1 region of the substantia nigra: using quantitative susceptibility mapping to assist the diagnosis of idiopathic Parkinson's disease. Front Aging Neurosci. 2019;11:167 https://doi.org/10.3389/fnagi.2019.00167.
PubMed
PubMed Central
Google Scholar
Chen C-H, Chang C-K, Tu C-Y, Liao W-C, Wu B-R, Chou K-T, et al. Radiomic features analysis in computed tomography images of lung nodule classification. PLoS One. 2018;13(2):e0192002 https://doi.org/10.1371/journal.pone.0192002.
PubMed
PubMed Central
Google Scholar
Huang J, Ling CXJITok. Engineering D: Using AUC and accuracy in evaluating learning algorithms 2005;17(3):299–310. https://doi.org/10.1109/TKDE.2005.50.
DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics. 1988;44(3):837–45 https://doi.org/10.2307/2531595.
CAS
PubMed
Google Scholar
Chen SC-C, Lo C-M, Wang S-H, Su EC-Y. RNA editing-based classification of diffuse gliomas: predicting isocitrate dehydrogenase mutation and chromosome 1p/19q codeletion. BMC bioinformatics. 2019;20(19):1–11 https://doi.org/10.1186/s12859-019-3236-0.
Google Scholar
Du D, Feng H, Lv W, Ashrafinia S, Yuan Q, Wang Q, et al. Machine learning methods for optimal radiomics-based differentiation between recurrence and inflammation: application to nasopharyngeal carcinoma post-therapy PET/CT images. Mol Imaging. 2020;22(3):730–8 https://doi.org/10.1007/s11307-019-01411-9.
CAS
Google Scholar
Gu Q, Feng Z, Liang Q, Li M, Deng J, Ma M, et al. Machine learning-based radiomics strategy for prediction of cell proliferation in non-small cell lung cancer. Eur J Radiol. 2019;118:32–7 https://doi.org/10.1016/j.ejrad.2019.06.025.
PubMed
Google Scholar
Hu J, Zhao Y, Li M, Liu J, Wang F, Weng Q, et al. Machine learning-based radiomics analysis in predicting the meningioma grade using multiparametric MRI. Eur J Radiol. 2020;131:109251 https://doi.org/10.1016/j.ejrad.2020.109251.
PubMed
Google Scholar
Liang M, Cai Z, Zhang H, Huang C, Meng Y, Zhao L, et al. Machine learning-based analysis of rectal Cancer MRI Radiomics for prediction of Metachronous liver metastasis. Acad Radiol. 2019;26(11):1495–504 https://doi.org/10.1016/j.acra.2018.12.019.
PubMed
Google Scholar
Ning Z, Luo J, Xiao Q, Cai L, Chen Y, Yu X, et al. Multi-modal magnetic resonance imaging-based grading analysis for gliomas by integrating radiomics and deep features. Ann Transl Med. 2021;9(4):298–8 https://doi.org/10.21037/atm-20-4076.
Park YW, Choi YS, Kim SE, Choi D, Han K, Kim H, et al. Radiomics features of hippocampal regions in magnetic resonance imaging can differentiate medial temporal lobe epilepsy patients from healthy controls. Sci Rep. 2020;10(1):1–8 https://doi.org/10.1038/s41598-020-76283-z.
CAS
Google Scholar
Zhang R, Zhu L, Cai Z, Jiang W, Li J, Yang C, et al. Potential feature exploration and model development based on 18F-FDG PET/CT images for differentiating benign and malignant lung lesions. Eur J Radiol. 2019;121:108735 https://doi.org/10.1016/j.ejrad.2019.108735.
PubMed
Google Scholar
Wang Z, Lan X, Xiao Y, Liu J, Ji J. Correlation between TNM staging of primary cholangiocarcinoma and the maximum standard uptake value of (18) F-2-deoxy-D-glucose positron emission tomography with computerized tomography. Zhonghua Yi Xue Za Zhi. 2017;97(39):3104–7 https://doi.org/10.3760/cma.j.issn.0376-2491.2017.39.013.
CAS
PubMed
Google Scholar
Ciresa M, De Gaetano AM, Pompili M, Saviano A, Infante A, Montagna M, et al. Enhancement patterns of intrahepatic mass-forming cholangiocarcinoma at multiphasic computed tomography and magnetic resonance imaging and correlation with clinicopathologic features. Eur Rev Med Pharmacol Sci. 2015;19(15):2786–97.
CAS
PubMed
Google Scholar
Holzapfel K, Gaa J, Schubert EC, Eiber M, Kleeff J, Rummeny EJ, et al. Value of diffusion-weighted MR imaging in the diagnosis of lymph node metastases in patients with cholangiocarcinoma. Abdominal radiology. 2016;41(10):1937–41 https://doi.org/10.1007/s00261-016-0791-y.
PubMed
Google Scholar
Cui X-Y, Chen H-W, Cai S, Fang XM Bao J, Tang Q-F, Wu L-Y, Diffusion-weighted MR imaging for detection of extrahepatic cholangiocarcinoma. Eur J Radiol 2012;81(11):2961–2965. https://doi.org/10.1016/j.ejrad.2011.12.040.
Jiang L, Tan H, Panje CM, Yu H, Xiu Y, Shi H. Role of 18F-FDG PET/CT imaging in intrahepatic cholangiocarcinoma. Clin Nucl Med. 2016;41(1):1–7 https://doi.org/10.1097/RLU.0000000000000998.
PubMed
Google Scholar
Limkin E, Sun R, Dercle L, Zacharaki E, Robert C, Reuzé S, et al. Promises and challenges for the implementation of computational medical imaging (radiomics) in oncology. Ann Oncol. 2017;28(6):1191–206 https://doi.org/10.1093/annonc/mdx034.
CAS
PubMed
Google Scholar
Lambin P, Leijenaar RT, Deist TM, Peerlings J, De Jong EE, Van Timmeren J, et al. Radiomics: the bridge between medical imaging and personalized medicine. Nat Rev Clin Oncol. 2017;14(12):749–62 https://doi.org/10.1038/nrclinonc.2017.141.
PubMed
Google Scholar
Ning P, Gao F, Hai J, Wu M, Chen J, Zhu S, et al. Application of CT radiomics in prediction of early recurrence in hepatocellular carcinoma. Abdominal Radiology. 2020;45(1):64–72 https://doi.org/10.1007/s00261-017-1094-7.
PubMed
Google Scholar
Taghavi M, Trebeschi S, Simões R, Meek DB, Beckers RC, Lambregts DM, et al. Machine learning-based analysis of CT radiomics model for prediction of colorectal metachronous liver metastases. Abdominal Radiology. 2021;46(1):249–56 https://doi.org/10.1007/s00261-020-02624-1.
PubMed
Google Scholar
Wang X-H, Long L-H, Cui Y, Jia AY, Zhu X-G, Wang H-Z, et al. Mri-based radiomics model for preoperative prediction of 5-year survival in patients with hepatocellular carcinoma. Br J Cancer. 2020;122(7):978–85 https://doi.org/10.1038/s41416-019-0706-0.
CAS
PubMed
PubMed Central
Google Scholar
Zhao Y, Wu J, Zhang Q, Hua Z, Qi W, Wang N, et al. Radiomics analysis based on multiparametric MRI for predicting early recurrence in hepatocellular carcinoma after partial hepatectomy. J Magn Reson Imaging. 2021;53(4):1066–79 https://doi.org/10.1002/jmri.27424.
PubMed
Google Scholar
Tagliaferri L, Budrukkar A, Lenkowicz J, Cambeiro M, Bussu F, Guinot JL, et al. ENT COBRA ONTOLOGY: the covariates classification system proposed by the Head & Neck and skin GEC-ESTRO working group for interdisciplinary standardized data collection in head and neck patient cohorts treated with interventional radiotherapy (brachytherapy). Journal of contemporary brachytherapy. 2018;10(3):260. https://doi.org/10.5114/jcb.2018.76982–6.
PubMed
PubMed Central
Google Scholar
Lancellotta V, Guinot JL, Fionda B, Rembielak A, Di Stefani A, Gentileschi S, et al. SKIN-COBRA (consortium for brachytherapy data analysis) ontology: the first step towards interdisciplinary standardized data collection for personalized oncology in skin cancer. Journal of contemporary brachytherapy. 2020;12(2):105. https://doi.org/10.5114/jcb.2020.94579–10.
PubMed
PubMed Central
Google Scholar