Faict S, Muller J, De Veirman K, De Bruyne E, Maes K, Vrancken L, et al. Exosomes play a role in multiple myeloma bone disease and tumor development by targeting osteoclasts and osteoblasts. Blood Cancer J. 2018;8(11):105. https://doi.org/10.1038/s41408-018-0139-7.
Article
PubMed
PubMed Central
Google Scholar
Moloudizargari M, Abdollahi M, Asghari MH, Zimta AA, Neagoe IB, Nabavi SM. The emerging role of exosomes in multiple myeloma. Blood Rev. 2019;38:100595. https://doi.org/10.1016/j.blre.2019.100595.
Article
CAS
PubMed
Google Scholar
Chauhan D, Anderson KC. Mechanisms of cell death and survival in multiple myeloma (MM): therapeutic implications. Apoptosis. 2003;8(4):337–43. https://doi.org/10.1023/A:1024164700094.
Article
CAS
PubMed
Google Scholar
Vogl DT, Dingli D, Cornell RF, Huff CA, Jagannath S, Bhutani D, et al. Selective inhibition of nuclear export with Oral Selinexor for treatment of relapsed or refractory multiple myeloma. J Clin Oncol. 2018;36(9):859–66. https://doi.org/10.1200/JCO.2017.75.5207.
Article
CAS
PubMed
PubMed Central
Google Scholar
Moalli P, Pillay S, Weiner D, Leikin R, Rosen S. A mechanism of resistance to glucocorticoids in multiple myeloma: transient expression of a truncated glucocorticoid receptor mRNA. Blood. 1992;79(1):213–22. https://doi.org/10.1182/blood.V79.1.213.213.
Article
CAS
PubMed
Google Scholar
Hollenberg SM, Weinberger C, Ong ES, Cerelli G, Oro A, Lebo R, et al. Primary structure and expression of a functional human glucocorticoid receptor cDNA. Nature. 1985;318(6047):635–41. https://doi.org/10.1038/318635a0.
Article
CAS
PubMed
PubMed Central
Google Scholar
Leung DYM, Hamid Q, Vottero A, Szefler SJ, Surs W, Minshall E, et al. Association of Glucocorticoid Insensitivity with increased expression of glucocorticoid receptor β. J Exp Med. 1997;186(9):1567–74. https://doi.org/10.1084/jem.186.9.1567.
Article
CAS
PubMed
PubMed Central
Google Scholar
Oakley RH, Jewell CM, Yudt MR, Bofetiado DM, Cidlowski JA. The Dominant Negative Activity of the Human Glucocorticoid Receptor β Isoform. Specificity and mechanisms of action. J Biol Chem. 1999;274(39):27857–66. https://doi.org/10.1074/jbc.274.39.27857.
Article
CAS
PubMed
Google Scholar
Kirschke E, Goswami D, Southworth D, Griffin PR, Agard DA. Glucocorticoid receptor function regulated by coordinated action of the Hsp90 and Hsp70 chaperone cycles. Cell. 2014;157(7):1685–97. https://doi.org/10.1016/j.cell.2014.04.038.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kang KI, Meng X, Devin-Leclerc J, Bouhouche I, Chadli A, Cadepond F, et al. The molecular chaperone Hsp90 can negatively regulate the activity of a glucocorticosteroid-dependent promoter. Proc Natl Acad Sci U S A. 1999;96(4):1439–44.
Article
CAS
Google Scholar
Matysiak M, Makosa B, Walczak A, Selmaj K. Patients with multiple sclerosis resisted to glucocorticoid therapy: abnormal expression of heat-shock protein 90 in glucocorticoid receptor complex. Mult Scler. 2008;14(7):919–26. https://doi.org/10.1177/1352458508090666.
Article
CAS
PubMed
Google Scholar
Calon F, Cole G. Neuroprotective action of omega-3 polyunsaturated fatty acids against neurodegenerative diseases: evidence from animal studies. Prostaglandins Leukot Essent Fat Acids. 2007;77(5):287–93. https://doi.org/10.1016/j.plefa.2007.10.019.
Article
CAS
Google Scholar
Calviello G, Serini S, Piccioni E, Pessina G. Antineoplastic effects of N−3 polyunsaturated fatty acids in combination with drugs and radiotherapy: preventive and therapeutic strategies. Nutr Cancer. 2009;61(3):287–301. https://doi.org/10.1080/01635580802582777.
Article
CAS
PubMed
Google Scholar
Lu J, Borthwick F, Hassanali Z, Wang Y, Mangat R, Ruth M, et al. Chronic dietary n-3 PUFA intervention improves dyslipidaemia and subsequent cardiovascular complications in the JCR:LA-cp rat model of the metabolic syndrome. Br J Nutr. 2011;105(11):1572–82. https://doi.org/10.1017/S0007114510005453.
Article
CAS
PubMed
Google Scholar
Wall R, Ross RP, Fitzgerald GF, Stanton C. Fatty acids from fish: the anti-inflammatory potential of long-chain omega-3 fatty acids. Nutr Rev. 2010;68(5):280–9. https://doi.org/10.1111/j.1753-4887.2010.00287.x.
Article
PubMed
Google Scholar
Asghari MH, Ghobadi E, Moloudizargari M, Fallah M, Abdollahi M. Does the use of melatonin overcome drug resistance in cancer chemotherapy? Life Sci. 2018;196:143–55. https://doi.org/10.1016/j.lfs.2018.01.024.
Article
CAS
PubMed
Google Scholar
Asghari MH, Moloudizargari M, Ghobadi E, Fallah M, Abdollahi M. Melatonin as a multifunctional anti-cancer molecule: implications in gastric cancer. Life Sci. 2017;185:38–45. https://doi.org/10.1016/j.lfs.2017.07.020.
Article
CAS
PubMed
Google Scholar
Moloudizargari M, Asghari MH, Abdollahi M. Modifying exosome release in cancer therapy: how can it help? Pharmacol Res. 2018;134:246–56. https://doi.org/10.1016/j.phrs.2018.07.001.
Article
CAS
PubMed
Google Scholar
Siddiqui RA, Harvey KA, Xu Z, Bammerlin EM, Walker C, Altenburg JD. Docosahexaenoic acid: A natural powerful adjuvant that improves efficacy for anticancer treatment with no adverse effects. Biofactors. 2011;37(6):399–412. https://doi.org/10.1002/biof.181.
Article
CAS
PubMed
Google Scholar
Chiu LCM, Wong EYL, Ooi VEC. Docosahexaenoic acid modulates different genes in cell cycle and apoptosis to control growth of human leukemia HL-60 cells. Int J Oncol. 2004;25(3):737–44. https://doi.org/10.3892/ijo.25.3.737.
Article
CAS
PubMed
Google Scholar
Shirota T, Haji S, Yamasaki M, Iwasaki T, Hidaka T, Takeyama Y, et al. Apoptosis in human pancreatic cancer cells induced by eicosapentaenoic acid. Nutrition. 2005;21(10):1010–7. https://doi.org/10.1016/j.nut.2004.12.013.
Article
CAS
PubMed
Google Scholar
Colas S, Mahéo K, Denis F, Goupille C, Hoinard C, Champeroux P, et al. Sensitization by Dietary Docosahexaenoic Acid of Rat Mammary Carcinoma to Anthracycline: A Role for Tumor Vascularization. Clin Cancer Res. 2006;12(19):5879–86. https://doi.org/10.1158/1078-0432.CCR-06-0386.
Article
CAS
PubMed
Google Scholar
Sturlan S, Baumgartner M, Roth E, Bachleitner-Hofmann T. Docosahexaenoic acid enhances arsenic trioxide–mediated apoptosis in arsenic trioxide–resistant HL-60 cells. Blood. 2003;101(12):4990–7. https://doi.org/10.1182/blood-2002-08-2391.
Article
CAS
PubMed
Google Scholar
Vibet S, Mahéo K, Goré J, Dubois P, Bougnoux P, Chourpa I. Differential Subcellular Distribution of Mitoxantrone in Relation to Chemosensitization in Two Human Breast Cancer Cell Lines. Drug Metab Dispos. 2007;35(5):822–8. https://doi.org/10.1124/dmd.106.013474.
Article
CAS
PubMed
Google Scholar
Daak AA, Elderdery AY, Elbashir LM, Mariniello K, Mills J, Scarlett G, et al. Omega 3 (n−3) fatty acids down-regulate nuclear factor-kappa B (NF-κB) gene and blood cell adhesion molecule expression in patients with homozygous sickle cell disease. Blood Cell Mol Dis. 2015;55(1):48–55. https://doi.org/10.1016/j.bcmd.2015.03.014.
Article
CAS
Google Scholar
Lee JY, Zhao L, Youn HS, Weatherill AR, Tapping R, Feng L, et al. Saturated fatty acid activates but polyunsaturated fatty acid inhibits toll-like receptor 2 dimerized with toll-like receptor 6 or 1. J Biol Chem. 2004;279(17):16971–9. https://doi.org/10.1074/jbc.M312990200.
Article
CAS
PubMed
Google Scholar
Schley PD, Jijon HB, Robinson LE, Field CJ. Mechanisms of omega-3 fatty acid-induced growth inhibition in MDA-MB-231 human breast cancer cells. Breast Cancer Res Treat. 2005;92(2):187–95. https://doi.org/10.1007/s10549-005-2415-z.
Article
CAS
PubMed
Google Scholar
Wang Y, Lin QW, Zheng PP, Zhang JS, Huang FR. DHA inhibits protein degradation more efficiently than EPA by regulating the PPARγ/NFκB pathway in C2C12 Myotubes. Biomed Res Int. 2013;2013:318981–9. https://doi.org/10.1155/2013/318981.
Article
CAS
PubMed
PubMed Central
Google Scholar
Picou F, Debeissat C, Bourgeais J, Gallay N, Ferrié E, Foucault A, et al. n-3 polyunsaturated fatty acids induce acute myeloid leukemia cell death associated with mitochondrial glycolytic switch and Nrf2 pathway activation. Pharmacol Res. 2018;136:45–55. https://doi.org/10.1016/j.phrs.2018.08.015.
Article
CAS
PubMed
Google Scholar
Rajapandi T, Greene LE, Eisenberg E. The molecular chaperones Hsp90 and Hsc70 are both necessary and sufficient to activate hormone binding by glucocorticoid receptor. J Biol Chem. 2000;275(29):22597–604. https://doi.org/10.1074/jbc.M002035200.
Article
CAS
PubMed
Google Scholar
Tissing WJE, Meijerink JPP, den Boer ML, Brinkhof B, Pieters R. mRNA expression levels of (co) chaperone molecules of the glucocorticoid receptor are not involved in glucocorticoid resistance in pediatric ALL. Leukemia. 2005;19(5):727–33. https://doi.org/10.1038/sj.leu.2403681.
Article
CAS
PubMed
Google Scholar