Kawakami YOS, Sayem MA, Tsukamoto N, Yaguchi T. Immune-resistant mechanisms in cancer immunotherapy. Int J Clin Oncol. 2020;25(5):810–7. https://doi.org/10.1007/s10147-019-01611-x.
Article
CAS
PubMed
Google Scholar
Iivanainen S, Koivunen JP. Possibilities of improving the clinical value of immune checkpoint inhibitor therapies in cancer care by optimizing patient selection. Int J Mol Sci. 2020;21(2):1–17.
Fares CM, Van Allen EM, Drake CG, Allison JP, Hu-Lieskovan S. Mechanisms of resistance to immune checkpoint blockade: why does checkpoint inhibitor immunotherapy not work for all patients? Am Soc Clin Oncol Educ Book. 2019;39:147–64. https://doi.org/10.1200/EDBK_240837.
Article
PubMed
Google Scholar
Barrero MJ. Epigenetic strategies to boost cancer immunotherapies. Int J Mol Sci. 2017;18(6):1–12.
Morel D, Jeffery D, Aspeslagh S, Almouzni G, Postel-Vinay S. Combining epigenetic drugs with other therapies for solid tumours - past lessons and future promise. Nat Rev Clin Oncol. 2020;17(2):91–107. https://doi.org/10.1038/s41571-019-0267-4.
Article
CAS
PubMed
Google Scholar
Topper MJ, Vaz M, Marrone KA, Brahmer JR, Baylin SB. The emerging role of epigenetic therapeutics in immuno-oncology. Nat Rev Clin Oncol. 2020;17(2):75–90. https://doi.org/10.1038/s41571-019-0266-5.
Article
PubMed
Google Scholar
Banik D, Moufarrij S, Villagra A. Immunoepigenetics combination therapies: an overview of the role of HDACs in cancer immunotherapy. Int J Mol Sci. 2019;20(9):1–29.
Booth L, Roberts JL, Poklepovic A, Kirkwood J, Dent P. HDAC inhibitors enhance the immunotherapy response of melanoma cells. Oncotarget. 2017;8(47):83155–70. https://doi.org/10.18632/oncotarget.17950.
Article
PubMed
PubMed Central
Google Scholar
Conte M, De Palma R, Altucci L. HDAC inhibitors as epigenetic regulators for cancer immunotherapy. Int J Biochem Cell Biol. 2018;98:65–74. https://doi.org/10.1016/j.biocel.2018.03.004.
Article
CAS
PubMed
Google Scholar
McCaw TR, Randall TD, Forero A, Buchsbaum DJ. Modulation of antitumor immunity with histone deacetylase inhibitors. Immunotherapy. 2017;9(16):1359–72. https://doi.org/10.2217/imt-2017-0134.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yost KE, Satpathy AT, Wells DK, Qi Y, Wang C, Kageyama R, et al. Clonal replacement of tumor-specific T cells following PD-1 blockade. Nat Med. 2019;25(8):1251–9. https://doi.org/10.1038/s41591-019-0522-3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Garrido F, Aptsiauri N, Doorduijn EM, Garcia Lora AM, van Hall T. The urgent need to recover MHC class I in cancers for effective immunotherapy. Curr Opin Immunol. 2016;39:44–51. https://doi.org/10.1016/j.coi.2015.12.007.
Article
CAS
PubMed
PubMed Central
Google Scholar
Garrido F, Ruiz-Cabello F, Aptsiauri N. Rejection versus escape: the tumor MHC dilemma. Cancer Immunol Immunother. 2017;66(2):259–71. https://doi.org/10.1007/s00262-016-1947-x.
Article
CAS
PubMed
Google Scholar
Hicklin DJ, Marincola FM, Ferrone S. HLA class I antigen downregulation in human cancers: T-cell immunotherapy revives an old story. Mol Med Today. 1999;5(4):178–86. https://doi.org/10.1016/S1357-4310(99)01451-3.
Article
CAS
PubMed
Google Scholar
Hicklin DJ, Wang Z, Arienti F, Rivoltini L, Parmiani G, Ferrone S. beta2-microglobulin mutations, HLA class I antigen loss, and tumor progression in melanoma. J Clin Invest. 1998;101(12):2720–9. https://doi.org/10.1172/JCI498.
Article
CAS
PubMed
PubMed Central
Google Scholar
Oronsky B, Oronsky N, Knox S, Fanger G, Scicinski J. Episensitization: therapeutic tumor resensitization by epigenetic agents: a review and reassessment. Anti Cancer Agents Med Chem. 2014;14(8):1121–7. https://doi.org/10.2174/1871520614666140418144610.
Article
CAS
Google Scholar
Gong K, Xie J, Yi H, Li W. CS055 (Chidamide/HBI-8000), a novel histone deacetylase inhibitor, induces G1 arrest, ROS-dependent apoptosis and differentiation in human leukaemia cells. Biochem J. 2012;443(3):735–46. https://doi.org/10.1042/BJ20111685.
Article
CAS
PubMed
Google Scholar
Hasegawa H, Bissonnette RP, Gillings M, Sasaki D, Taniguchi H, Kitanosono H, et al. Induction of apoptosis by HBI-8000 in adult T-cell leukemia/lymphoma is associated with activation of Bim and NLRP3. Cancer Sci. 2016;107(8):1124–33. https://doi.org/10.1111/cas.12971.
Article
CAS
PubMed
PubMed Central
Google Scholar
He M, Qiao Z, Wang Y, Kuai Q, Li C, Wang Y, et al. Chidamide inhibits aerobic metabolism to induce pancreatic cancer cell growth arrest by promoting Mcl-1 degradation. PLoS One. 2016;11(11):e0166896. https://doi.org/10.1371/journal.pone.0166896.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jiang T, Wang F, Hu L, Cheng X, Zheng Y, Liu T, et al. Chidamide and decitabine can synergistically induce apoptosis of Hodgkin lymphoma cells by up-regulating the expression of PU.1 and KLF4. Oncotarget. 2017;8(44):77586–94. https://doi.org/10.18632/oncotarget.20659.
Article
PubMed
PubMed Central
Google Scholar
Liu L, Chen B, Qin S, Li S, He X, Qiu S, et al. A novel histone deacetylase inhibitor Chidamide induces apoptosis of human colon cancer cells. Biochem Biophys Res Commun. 2010;392(2):190–5. https://doi.org/10.1016/j.bbrc.2010.01.011.
Article
CAS
PubMed
Google Scholar
Liu L, Qiu S, Liu Y, Liu Z, Zheng Y, Su X, et al. Chidamide and 5-flurouracil show a synergistic antitumor effect on human colon cancer xenografts in nude mice. Neoplasma. 2016;63(2):193–200. https://doi.org/10.4149/203_150422N214.
Article
CAS
PubMed
Google Scholar
Liu Z, Ding K, Li L, Liu H, Wang Y, Liu C, et al. A novel histone deacetylase inhibitor Chidamide induces G0/G1 arrest and apoptosis in myelodysplastic syndromes. Biomed Pharmacother. 2016;83:1032–7. https://doi.org/10.1016/j.biopha.2016.08.023.
Article
CAS
PubMed
Google Scholar
Luo S, Ma K, Zhu H, Wang S, Liu M, Zhang W, et al. Molecular, biological characterization and drug sensitivity of chidamide-resistant non-small cell lung cancer cells. Oncol Lett. 2017;14(6):6869–75. https://doi.org/10.3892/ol.2017.7060.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mao JLS, Zhao H, Zhu Y, Hong M, Zhu H, Qian S, et al. Am J Transl Res_Effects of chidamide and decitabine on proliferation and apoptosis of leukemia cell lines. Am J Transl Res. 2018;10(8):2567–78.
Ning ZQ, Li ZB, Newman MJ, Shan S, Wang XH, Pan DS, et al. Chidamide (CS055/HBI-8000): a new histone deacetylase inhibitor of the benzamide class with antitumor activity and the ability to enhance immune cell-mediated tumor cell cytotoxicity. Cancer Chemother Pharmacol. 2012;69(4):901–9. https://doi.org/10.1007/s00280-011-1766-x.
Article
CAS
PubMed
Google Scholar
Pan D-S, Yang Q-J, Fu X, Shan S, Zhu J-Z, Zhang K, et al. Discovery of an orally active subtype-selective HDAC inhibitor, chidamide, as an epigenetic modulator for cancer treatment. Med Chem Commun. 2014;5(12):1789–96. https://doi.org/10.1039/C4MD00350K.
Article
CAS
Google Scholar
Qiao Z, Ren S, Li W, Wang X, He M, Guo Y, et al. Chidamide, a novel histone deacetylase inhibitor, synergistically enhances gemcitabine cytotoxicity in pancreatic cancer cells. Biochem Biophys Res Commun. 2013;434(1):95–101. https://doi.org/10.1016/j.bbrc.2013.03.059.
Article
CAS
PubMed
Google Scholar
Zhao B, He T. Chidamide, a histone deacetylase inhibitor, functions as a tumor inhibitor by modulating the ratio of Bax/Bcl-2 and P21 in pancreatic cancer. Oncol Rep. 2015;33(1):304–10. https://doi.org/10.3892/or.2014.3595.
Article
CAS
PubMed
Google Scholar
Zhao S, Guo J, Zhao Y, Fei C, Zheng Q, Li X, et al. Chidamide inhibits the viability of MDS and AML cells by suppressing JAK2-STAT3 signaling. Am J Transl Res. 2016;8(7):3169.
CAS
PubMed
PubMed Central
Google Scholar
Zhou J, Zhang C, Sui X, Cao S, Tang F, Sun S, et al. Histone deacetylase inhibitor chidamide induces growth inhibition and apoptosis in NK/T lymphoma cells through ATM-Chk2-p53-p21 signalling pathway. Investig New Drugs. 2018;36(4):571–80. https://doi.org/10.1007/s10637-017-0552-y.
Article
CAS
Google Scholar
Zhou Y, Pan DS, Shan S, Zhu JZ, Zhang K, Yue XP, et al. Non-toxic dose chidamide synergistically enhances platinum-induced DNA damage responses and apoptosis in non-small-cell lung cancer cells. Biomed Pharmacother. 2014;68(4):483–91. https://doi.org/10.1016/j.biopha.2014.03.011.
Article
CAS
PubMed
Google Scholar
West AC, Mattarollo SR, Shortt J, Cluse LA, Christiansen AJ, Smyth MJ, et al. An intact immune system is required for the anticancer activities of histone deacetylase inhibitors. Cancer Res. 2013;73(24):7265–76. https://doi.org/10.1158/0008-5472.CAN-13-0890.
Article
CAS
PubMed
Google Scholar
West AC, Smyth MJ, Johnstone RW. The anticancer effects of HDAC inhibitors require the immune system. Oncoimmunology. 2014;3(1):e27414. https://doi.org/10.4161/onci.27414.
Article
PubMed
PubMed Central
Google Scholar
Bissonnette RP, Rolland A, Goodeneow B, Gillings M. Abstract B108: the HDAC inhibitor HBI-8000 enhances immunotherapy with either PD-1 or PD-L1 blockade in the MC38 model of colon cancer. In: Mechanistic merging of treatment modalities; 2016. p. B108.
Chapter
Google Scholar
Briere D, Sudhakar N, Woods DM, Hallin J, Engstrom LD, Aranda R, et al. The class I/IV HDAC inhibitor mocetinostat increases tumor antigen presentation, decreases immune suppressive cell types and augments checkpoint inhibitor therapy. Cancer Immunol Immunother. 2018;67(3):381–92. https://doi.org/10.1007/s00262-017-2091-y.
Article
CAS
PubMed
Google Scholar
Christmas BJ, Rafie CI, Hopkins AC, Scott BA, Ma HS, Cruz KA, et al. Entinostat converts immune-resistant breast and pancreatic cancers into checkpoint-responsive tumors by reprogramming tumor-infiltrating MDSCs. Cancer Immunol Res. 2018;6(12):1561–77. https://doi.org/10.1158/2326-6066.CIR-18-0070.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bretz AC, Parnitzke U, Kronthaler K, Dreker T, Bartz R, Hermann F, et al. Domatinostat favors the immunotherapy response by modulating the tumor immune microenvironment (TIME). J Immunother Cancer. 2019;7(1):294. https://doi.org/10.1186/s40425-019-0745-3.
Article
PubMed
PubMed Central
Google Scholar
Carter CA, Oronsky BT, Roswarski J, Oronsky AL, Oronsky N, Scicinski J, et al. No patient left behind: the promise of immune priming with epigenetic agents. Oncoimmunology. 2017;6(10):e1315486. https://doi.org/10.1080/2162402X.2017.1315486.
Article
PubMed
PubMed Central
Google Scholar
Hicks KC, Fantini M, Donahue RN, Schwab A, Knudson KM, Tritsch SR, et al. Epigenetic priming of both tumor and NK cells augments antibody-dependent cellular cytotoxicity elicited by the anti-PD-L1 antibody avelumab against multiple carcinoma cell types. Oncoimmunology. 2018;7(11):e1466018. https://doi.org/10.1080/2162402X.2018.1466018.
Article
PubMed
PubMed Central
Google Scholar
Ayers M, Lunceford J, Nebozhyn M, Murphy E, Loboda A, Kaufman DR, et al. IFN-gamma-related mRNA profile predicts clinical response to PD-1 blockade. J Clin Invest. 2017;127(8):2930–40. https://doi.org/10.1172/JCI91190.
Article
PubMed
PubMed Central
Google Scholar
Herbst RS, Soria JC, Kowanetz M, Fine GD, Hamid O, Gordon MS, et al. Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature. 2014;515(7528):563–7. https://doi.org/10.1038/nature14011.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rooney MS, Shukla SA, Wu CJ, Getz G, Hacohen N. Molecular and genetic properties of tumors associated with local immune cytolytic activity. Cell. 2015;160(1–2):48–61. https://doi.org/10.1016/j.cell.2014.12.033.
Article
CAS
PubMed
PubMed Central
Google Scholar
Spranger S, Bao R, Gajewski TF. Melanoma-intrinsic beta-catenin signalling prevents anti-tumour immunity. Nature. 2015;523(7559):231–5. https://doi.org/10.1038/nature14404.
Article
CAS
PubMed
Google Scholar
Trujillo JA, Sweis RF, Bao R, Luke JJ. T cell-inflamed versus non-T cell-inflamed tumors: a conceptual framework for cancer immunotherapy drug development and combination therapy selection. Cancer Immunol Res. 2018;6(9):990–1000. https://doi.org/10.1158/2326-6066.CIR-18-0277.
Article
CAS
PubMed
PubMed Central
Google Scholar
Danaher P, Warren S, Lu R, Samayoa J, Sullivan A, Pekker I, et al. Pan-cancer adaptive immune resistance as defined by the tumor inflammation signature (TIS): results from the cancer genome atlas (TCGA). J Immunother Cancer. 2018;6(1):63. https://doi.org/10.1186/s40425-018-0367-1.
Article
PubMed
PubMed Central
Google Scholar
Givechian KB, Wnuk K, Garner C, Benz S, Garban H, Rabizadeh S, et al. Identification of an immune gene expression signature associated with favorable clinical features in Treg-enriched patient tumor samples. NPJ Genom Med. 2018;3(1):14. https://doi.org/10.1038/s41525-018-0054-7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Best JA, Blair DA, Knell J, Yang E, Mayya V, Doedens A, et al. Transcriptional insights into the CD8(+) T cell response to infection and memory T cell formation. Nat Immunol. 2013;14(4):404–12. https://doi.org/10.1038/ni.2536.
Article
CAS
PubMed
PubMed Central
Google Scholar
Alspach E, Lussier DM, Miceli AP, Kizhvatov I, DuPage M, Luoma AM, et al. MHC-II neoantigens shape tumour immunity and response to immunotherapy. Nature. 2019;574(7780):696–701. https://doi.org/10.1038/s41586-019-1671-8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim K, Skora AD, Li Z, Liu Q, Tam AJ, Blosser RL, et al. Eradication of metastatic mouse cancers resistant to immune checkpoint blockade by suppression of myeloid-derived cells. Proc Natl Acad Sci U S A. 2014;111(32):11774–9. https://doi.org/10.1073/pnas.1410626111.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sullivan RJSJM, Johnson ML, Opyrchal M, Ordentlich P, Brouwer S, Sankoh S, et al. Efficacy and safety of entinostat (ENT) and pembrolizumab (PEMBRO) in patients with melanoma previously treated with anti-PD-1 therapy. Cancer Res. 2019;79(13):CT072.
Google Scholar
Agresta L, Hoebe KHN, Janssen EM. The emerging role of CD244 signaling in immune cells of the tumor microenvironment. Front Immunol. 2018;9:2809. https://doi.org/10.3389/fimmu.2018.02809.
Article
CAS
PubMed
PubMed Central
Google Scholar
Azimi F, Scolyer RA, Rumcheva P, Moncrieff M, Murali R, McCarthy SW, et al. Tumor-infiltrating lymphocyte grade is an independent predictor of sentinel lymph node status and survival in patients with cutaneous melanoma. J Clin Oncol. 2012;30(21):2678–83. https://doi.org/10.1200/JCO.2011.37.8539.
Article
PubMed
Google Scholar
Eroglu Z, Zaretsky JM, Hu-Lieskovan S, Kim DW, Algazi A, Johnson DB, et al. High response rate to PD-1 blockade in desmoplastic melanomas. Nature. 2018;553(7688):347–50. https://doi.org/10.1038/nature25187.
Article
CAS
PubMed
PubMed Central
Google Scholar
Galon J, Costes A, Sanchez-Cabo F, Kirilovsky A, Mlecnik B, Lagorce-Pages C, et al. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science. 2006;313(5795):1960–4. https://doi.org/10.1126/science.1129139.
Article
CAS
PubMed
Google Scholar
Pages F, Berger A, Camus M, Sanchez-Cabo F, Costes A, Molidor R, et al. Effector memory T cells, early metastasis, and survival in colorectal cancer. N Engl J Med. 2005;353(25):2654–66. https://doi.org/10.1056/NEJMoa051424.
Article
CAS
PubMed
Google Scholar
Peranzoni E, Lemoine J, Vimeux L, Feuillet V, Barrin S, Kantari-Mimoun C, et al. Macrophages impede CD8 T cells from reaching tumor cells and limit the efficacy of anti-PD-1 treatment. Proc Natl Acad Sci U S A. 2018;115(17):E4041–50. https://doi.org/10.1073/pnas.1720948115.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tumeh PC, Harview CL, Yearley JH, Shintaku IP, Taylor EJ, Robert L, et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature. 2014;515(7528):568–71. https://doi.org/10.1038/nature13954.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jansen CS, Prokhnevska N, Master VA, Sanda MG, Carlisle JW, Bilen MA, et al. An intra-tumoral niche maintains and differentiates stem-like CD8 T cells. Nature. 2019;576(7787):465–70. https://doi.org/10.1038/s41586-019-1836-5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Poeta V, Massara M, Capucetti A, Bonecchi R. Chemokines and chemokine receptors: new targets for cancer immunotherapy. Front Immunol. 2019;10:379. https://doi.org/10.3389/fimmu.2019.00379.
Article
CAS
Google Scholar
de Charette M, Houot R. Hide or defend, the two strategies of lymphoma immune evasion: potential implications for immunotherapy. Haematologica. 2018;103(8):1256–68. https://doi.org/10.3324/haematol.2017.184192.
Article
CAS
PubMed
PubMed Central
Google Scholar
Igney FH, Krammer P. Immune escape of tumors: apoptosis resistance and tumor counterattack. Leukocyte Biol. 2002;71:907–20.
CAS
Google Scholar
Li Y, Wang Y, Zhou Y, Li J, Chen K, Zhang L, et al. Cooperative effect of chidamide and chemotherapeutic drugs induce apoptosis by DNA damage accumulation and repair defects in acute myeloid leukemia stem and progenitor cells. Clin Epigenetics. 2017;9(1):83. https://doi.org/10.1186/s13148-017-0377-8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lin SH, Wang BY, Lin CH, Chien PJ, Wu YF, Ko JL, et al. Chidamide alleviates TGF-beta-induced epithelial-mesenchymal transition in lung cancer cell lines. Mol Biol Rep. 2016;43(7):687–95. https://doi.org/10.1007/s11033-016-4005-z.
Article
CAS
PubMed
Google Scholar
Wang H, Guo Y, Fu M, Liang X, Zhang X, Wang R, et al. Antitumor activity of Chidamide in hepatocellular carcinoma cell lines. Mol Med Rep. 2012;5(6):1503–8. https://doi.org/10.3892/mmr.2012.858.
Article
CAS
PubMed
Google Scholar
Zheng H, Zhao W, Yan C, Watson CC, Massengill M, Xie M, et al. HDAC inhibitors enhance T-cell chemokine expression and augment response to PD-1 immunotherapy in lung adenocarcinoma. Clin Cancer Res. 2016;22(16):4119–32. https://doi.org/10.1158/1078-0432.CCR-15-2584.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cruickshank B, Giacomantonio M, Marcato P, McFarland S, Pol J, Gujar S. Dying to be noticed: epigenetic regulation of immunogenic cell death for cancer immunotherapy. Front Immunol. 2018;9:654. https://doi.org/10.3389/fimmu.2018.00654.
Article
CAS
PubMed
PubMed Central
Google Scholar
West AC, Christiansen AJ, Smyth MJ, Johnstone RW. The combination of histone deacetylase inhibitors with immune-stimulating antibodies has potent anti-cancer effects. Oncoimmunology. 2012;1(3):377–9. https://doi.org/10.4161/onci.18804.
Article
PubMed
PubMed Central
Google Scholar
Christiansen AJ, West A, Banks KM, Haynes NM, Teng MW, Smyth MJ, et al. Eradication of solid tumors using histone deacetylase inhibitors combined with immune-stimulating antibodies. Proc Natl Acad Sci U S A. 2011;108(10):4141–6. https://doi.org/10.1073/pnas.1011037108.
Article
PubMed
PubMed Central
Google Scholar
Kepp O, Galluzzi L, Kroemer G. Immune effectors required for the therapeutic activity of vorinostat. Oncoimmunology. 2013;2(11):e27157. https://doi.org/10.4161/onci.27157.
Article
PubMed
PubMed Central
Google Scholar
Arakawa A, Vollmer S, Tietze J, Galinski A, Heppt MV, Burdek M, et al. Clonality of CD4(+) blood T cells predicts longer survival with CTLA4 or PD-1 checkpoint inhibition in advanced melanoma. Front Immunol. 2019;10:1336. https://doi.org/10.3389/fimmu.2019.01336.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ikeda Y, Kiyotani K, Yew PY, Sato S, Imai Y, Yamaguchi R, et al. Clinical significance of T cell clonality and expression levels of immune-related genes in endometrial cancer. Oncol Rep. 2017;37(5):2603–10. https://doi.org/10.3892/or.2017.5536.
Article
CAS
PubMed
PubMed Central
Google Scholar
Khunger ARJ, Yusko EC, Tarhini AA. Clonal expansion of tumor infiltrating lymphocytes (TILs) in the peripheral blood of metastatic melanoma patients is significantly associated with response to CTLA4 blockade-based immunotherapy. J Clin Oncol. 2019;37. Abstract.
Miller BC, Sen DR, Al Abosy R, Bi K, Virkud YV, LaFleur MW, et al. Subsets of exhausted CD8(+) T cells differentially mediate tumor control and respond to checkpoint blockade. Nat Immunol. 2019;20(3):326–36. https://doi.org/10.1038/s41590-019-0312-6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sen DR, Kaminski J, Barnitz RA, Kurachi M, Gerdemann U, Yates KB, et al. The epigenetic landscape of T cell exhaustion. Science. 2016;354(6316):1165–9. https://doi.org/10.1126/science.aae0491.
Article
CAS
PubMed
PubMed Central
Google Scholar
Guram K, Kim SS, Wu V, Sanders PD, Patel S, Schoenberger SP, et al. A threshold model for T-cell activation in the era of checkpoint blockade immunotherapy. Front Immunol. 2019;10:491.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dahiya SWL, Beier UH, Hancock RW. HDAC10 targeting regulates Foxp3 promoter, enhances T-regulatory (Treg) function and suppresses autoimmune colitis. J Immunol. 2018. 200 (1 Supplement) 54.11.
Hellmann MD, Janne PA, Opyrchal M, Hafez N, Raez LE, Gabrilovich DI, et al. Entinostat plus Pembrolizumab in patients with metastatic NSCLC previously treated with anti-PD-(L)1 therapy. Clin Cancer Res. 2021;27(4):1019–28. https://doi.org/10.1158/1078-0432.CCR-20-3305.
Article
CAS
PubMed
Google Scholar