Banales JM, Marin JJG, Lamarca A, Rodrigues PM, Khan SA, Roberts LR, et al. Cholangiocarcinoma 2020: the next horizon in mechanisms and management. Nat Rev Gastroenterol Hepatol. 2020;17(9):557–88. https://doi.org/10.1038/s41575-020-0310-z.
Article
PubMed
PubMed Central
Google Scholar
Zhang H, Yang T, Wu M, Shen F. Intrahepatic cholangiocarcinoma: epidemiology, risk factors, diagnosis and surgical management. Cancer Lett. 2016;379(2):198–205. https://doi.org/10.1016/j.canlet.2015.09.008.
Article
CAS
PubMed
Google Scholar
Razumilava N, Gores GJ. Cholangiocarcinoma. Lancet. 2014;383(9935):2168–79. https://doi.org/10.1016/S0140-6736(13)61903-0.
Article
PubMed
PubMed Central
Google Scholar
Kelley RK, Bridgewater J, Gores GJ, Zhu AX. Systemic therapies for intrahepatic cholangiocarcinoma. J Hepatol. 2020;72(2):353–63. https://doi.org/10.1016/j.jhep.2019.10.009.
Article
CAS
PubMed
Google Scholar
Lamarca A, Barriuso J, McNamara MG, Valle JW. Molecular targeted therapies: ready for “prime time” in biliary tract cancer. J Hepatol. 2020;73(1):170–85. https://doi.org/10.1016/j.jhep.2020.03.007.
Article
CAS
PubMed
Google Scholar
Chandra Gupta S, Nandan Tripathi Y. Potential of long non-coding RNAs in cancer patients: From biomarkers to therapeutic targets. Int J Cancer. 2017;140(9):1955–67. https://doi.org/10.1002/ijc.30546.
Article
CAS
PubMed
Google Scholar
Wu P, Mo Y, Peng M, Tang T, Zhong Y, Deng X, et al. Emerging role of tumor-related functional peptides encoded by lncRNA and circRNA. Mol Cancer. 2020;19(1):22. https://doi.org/10.1186/s12943-020-1147-3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Goodall GJ, Wickramasinghe VO. RNA in cancer. Nat Rev Cancer. 2021;21(1):22-36. https://doi.org/10.1038/s41568-020-00306-0.
Chi Y, et al. Long Non-Coding RNA in the Pathogenesis of Cancers. Cells. 2019;8(9):1015. https://doi.org/10.3390/cells8091015.
Fang Y, Fullwood MJ. Roles, functions, and mechanisms of long non-coding RNAs in cancer. Genomics Proteomics Bioinformatics. 2016;14(1):42–54. https://doi.org/10.1016/j.gpb.2015.09.006.
Article
PubMed
PubMed Central
Google Scholar
Shen S, Wang J, Zheng B, Tao Y, Li M, Wang Y, et al. LINC01714 enhances gemcitabine sensitivity by modulating FOXO3 phosphorylation in cholangiocarcinoma. Mol Ther Nucleic Acids. 2020;19:446–57. https://doi.org/10.1016/j.omtn.2019.11.028.
Article
CAS
PubMed
Google Scholar
Wan T, Wang H, Gou M, Si H, Wang Z, Yan H, et al. LncRNA HEIH promotes cell proliferation, migration and invasion in cholangiocarcinoma by modulating miR-98-5p/HECTD4. Biomed Pharmacother. 2020;125:109916. https://doi.org/10.1016/j.biopha.2020.109916.
Article
CAS
PubMed
Google Scholar
Li Z, Jiang X, Huang L, Li J, Ji D, Xu Y, et al. Up-regulation of ZFAS1 indicates dismal prognosis for cholangiocarcinoma and promotes proliferation and metastasis by modulating USF1 via miR-296-5p. J Cell Mol Med. 2019;23(12):8258–68. https://doi.org/10.1111/jcmm.14698.
Article
CAS
PubMed
PubMed Central
Google Scholar
Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26(1):139–40. https://doi.org/10.1093/bioinformatics/btp616.
Article
CAS
PubMed
Google Scholar
Chen H, Boutros PC. VennDiagram: a package for the generation of highly-customizable Venn and Euler diagrams in R. BMC Bioinformatics. 2011;12(1):35. https://doi.org/10.1186/1471-2105-12-35.
Article
PubMed
PubMed Central
Google Scholar
Yu G, Wang LG, Han Y, He QY. clusterProfiler: an R package for comparing biological themes among gene clusters. Omics. 2012;16(5):284–7. https://doi.org/10.1089/omi.2011.0118.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wardell CP, Fujita M, Yamada T, Simbolo M, Fassan M, Karlic R, et al. Genomic characterization of biliary tract cancers identifies driver genes and predisposing mutations. J Hepatol. 2018;68(5):959–69. https://doi.org/10.1016/j.jhep.2018.01.009.
Article
CAS
PubMed
Google Scholar
Xue R, et al. Genomic and transcriptomic profiling of combined hepatocellular and intrahepatic cholangiocarcinoma reveals distinct molecular subtypes. Cancer Cell. 2019;35(6):932–947.e8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tay Y, Rinn J, Pandolfi PP. The multilayered complexity of ceRNA crosstalk and competition. Nature. 2014;505(7483):344–52. https://doi.org/10.1038/nature12986.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xu W, Yu S, Xiong J, Long J, Zheng Y, Sang X. CeRNA regulatory network-based analysis to study the roles of noncoding RNAs in the pathogenesis of intrahepatic cholangiocellular carcinoma. Aging (Albany NY). 2020;12(2):1047–86. https://doi.org/10.18632/aging.102634.
Article
CAS
Google Scholar
Huang F, Chen W, Peng J, Li Y, Zhuang Y, Zhu Z, et al. LncRNA PVT1 triggers Cyto-protective autophagy and promotes pancreatic ductal adenocarcinoma development via the miR-20a-5p/ULK1 Axis. Mol Cancer. 2018;17(1):98. https://doi.org/10.1186/s12943-018-0845-6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li Y, Jiang T, Zhou W, Li J, Li X, Wang Q, et al. Pan-cancer characterization of immune-related lncRNAs identifies potential oncogenic biomarkers. Nat Commun. 2020;11(1):1000. https://doi.org/10.1038/s41467-020-14802-2.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sun J, et al. Identification of tumor immune infiltration-associated lncRNAs for improving prognosis and immunotherapy response of patients with non-small cell lung cancer. J Immunother Cancer. 2020;8(1):e000110. https://doi.org/10.1136/jitc-2019-000110.
Meng X, Feng C, Fang E, Feng J, Zhao X. Combined analysis of RNA-sequence and microarray data reveals effective metabolism-based prognostic signature for neuroblastoma. J Cell Mol Med. 2020;24(18):10367–81. https://doi.org/10.1111/jcmm.15650.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kong W, Wang X, Zuo X, Mao Z, Cheng Y, Chen W. Development and validation of an immune-related lncRNA signature for predicting the prognosis of hepatocellular carcinoma. Front Genet. 2020;11:1037. https://doi.org/10.3389/fgene.2020.01037.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li W, Chen QF, Huang T, Wu P, Shen L, Huang ZL. Identification and validation of a prognostic lncRNA signature for hepatocellular carcinoma. Front Oncol. 2020;10:780. https://doi.org/10.3389/fonc.2020.00780.
Article
PubMed
PubMed Central
Google Scholar
Liu Y, Wang L, Liu H, Li C, He J. The prognostic significance of metabolic syndrome and a related six-lncRNA signature in esophageal squamous cell carcinoma. Front Oncol. 2020;10:61. https://doi.org/10.3389/fonc.2020.00061.
Article
PubMed
PubMed Central
Google Scholar
Zhang M, Cheng L, Zhang Y. Characterization of dysregulated lncRNA-associated ceRNA network reveals novel lncRNAs with ceRNA activity as epigenetic diagnostic biomarkers for osteoporosis risk. Front Cell Dev Biol. 2020;8:184. https://doi.org/10.3389/fcell.2020.00184.
Article
PubMed
PubMed Central
Google Scholar
Huang G, Huang Q, Xie Z, Zhou H, Cao J, Shi L, et al. A nine-long non-coding RNA signature for prognosis prediction of patients with lung squamous cell carcinoma. Cancer Biomark. 2019;26(3):239–47. https://doi.org/10.3233/CBM-182275.
Article
CAS
PubMed
Google Scholar
Hong S, Yan Z, Song YM, Bi MM, Li S. LncRNA AGAP2-AS1 augments cell viability and mobility, and confers gemcitabine resistance by inhibiting miR-497 in colorectal cancer. Aging (Albany NY). 2020;12(6):5183–94. https://doi.org/10.18632/aging.102940.
Article
CAS
Google Scholar
Hui B, Ji H, Xu Y, Wang J, Ma Z, Zhang C, et al. RREB1-induced upregulation of the lncRNA AGAP2-AS1 regulates the proliferation and migration of pancreatic cancer partly through suppressing ANKRD1 and ANGPTL4. Cell Death Dis. 2019;10(3):207. https://doi.org/10.1038/s41419-019-1384-9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Han J, et al. MSC-induced lncRNA AGAP2-AS1 promotes stemness and trastuzumab resistance through regulating CPT1 expression and fatty acid oxidation in breast cancer. Oncogene. 2021;40(4):833-47. https://doi.org/10.1038/s41388-020-01574-8.
Qi G, Kong W, Mou X, Wang S. A new method for excavating feature lncRNA in lung adenocarcinoma based on pathway crosstalk analysis. J Cell Biochem. 2019;120(6):9034–46. https://doi.org/10.1002/jcb.28177.
Article
CAS
PubMed
Google Scholar
Jia X, Lu S, Zeng Z, Liu Q, Dong Z, Chen Y, et al. Characterization of gut microbiota, bile acid metabolism, and cytokines in intrahepatic cholangiocarcinoma. Hepatology. 2020;71(3):893–906. https://doi.org/10.1002/hep.30852.
Article
CAS
PubMed
Google Scholar
Chaisaingmongkol J, et al. Common molecular subtypes among asian hepatocellular carcinoma and cholangiocarcinoma. Cancer Cell. 2017;32(1):57–70.e3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nie J, Zhang J, Wang L, Lu L, Yuan Q, An F, et al. Adipocytes promote cholangiocarcinoma metastasis through fatty acid binding protein 4. J Exp Clin Cancer Res. 2017;36(1):183. https://doi.org/10.1186/s13046-017-0641-y.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang B, Zhou BH, Xiao M, Li H, Guo L, Wang MX, et al. KDM5C represses FASN-mediated lipid metabolism to exert tumor suppressor activity in intrahepatic cholangiocarcinoma. Front Oncol. 2020;10:1025. https://doi.org/10.3389/fonc.2020.01025.
Article
PubMed
PubMed Central
Google Scholar