Walboomers JM, Jacobs MV, Manos MM, Bosch FX, Kummer JA, Shah KV, et al. Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J Pathol. 1999;189(1):12–9.
Article
CAS
PubMed
Google Scholar
Holowaty P, Miller AB, Rohan T, To T. Natural history of dysplasia of the uterine cervix. J Natl Cancer Inst. 1999;91(3):252–8.
Article
CAS
PubMed
Google Scholar
Reich O, Pickel H, Tamussino K, Winter R. Microinvasive carcinoma of the cervix: site of first focus of invasion. Obstet Gynecol. 2001;97(6):890–2.
CAS
PubMed
Google Scholar
Gaiotto MAM, Focchi J, Ribalta JL, Stávale JN, Baracat EC, Lima GR, et al. Comparative study of MMP-2 (matrix metalloproteinase 2) immune expression in normal uterine cervix, intraepithelial neoplasias, and squamous cells cervical carcinoma. Am J Obstet Gynecol. 2004;190(5):1278–82.
Article
CAS
PubMed
Google Scholar
Krakhmal N, Zavyalova M, Denisov E, Vtorushin S, Perelmuter V. Cancer invasion: patterns and mechanisms. Acta Nat. 2015;7(2):17–28.
Article
CAS
Google Scholar
Theocharis AD, Skandalis SS, Gialeli C, Karamanos NK. Extracellular matrix structure. Adv Drug Deliv Rev. 2016;97:4–27.
Article
CAS
PubMed
Google Scholar
Egeblad M, Werb Z. New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer. 2002;2(3):161–74.
Article
CAS
PubMed
Google Scholar
Deryugina EI, Quigley JP. Matrix metalloproteinases and tumor metastasis. Cancer Metastasis Rev. 2006;25(1):9–34.
Article
CAS
PubMed
Google Scholar
Kessenbrock K, Plaks V, Werb Z. Matrix Metalloproteinases: regulators of the tumor microenvironment. Cell. 2010;141(1):52–67.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nair SA, Karunagaran D, Nair M, Sudhakaran P. Changes in matrix metalloproteinases and their endogenous inhibitors during tumor progression in the uterine cervix. J Cancer Res Clin Oncol. 2003;129(2):123–31.
Article
PubMed
CAS
Google Scholar
Wang X, Khalil RA. Matrix Metalloproteinases, vascular remodeling, and vascular disease. In: Khalil RA, editor. Vascular pharmacology: cytoskeleton and extracellular matrix. 81st ed. London: Academic Press; 2018. p. 241–330.
Chapter
Google Scholar
Branca M, Ciotti M, Giorgi C, Santini D, Di Bonito L, Costa S, et al. Matrix metalloproteinase-2 (MMP-2) and its tissue inhibitor (TIMP-2) are prognostic factors in cervical cancer, related to invasive disease but not to high-risk human papillomavirus (HPV) or virus persistence after treatment of CIN. Anticancer Res. 2006;26(2B):1543–6.
CAS
PubMed
Google Scholar
Davidson B, Goldberg I, Kopolovic J, Lerner-Geva L, Gotlieb WH, Weis B, et al. Expression of matrix metalloproteinase-9 in squamous cell carcinoma of the uterine cervix - Clinicopathologic study using immunohistochemistry and mRNA in situ hybridization. Gynecol Oncol. 1999;72(3):380–6.
Article
CAS
PubMed
Google Scholar
Snyman C, Niesler C. MMP-14 in skeletal muscle repair. J Muscle Res Cell Motil. 2015;36(3):215–25.
Article
CAS
PubMed
Google Scholar
Tarpgaard LS, Ørum-Madsen MS, Christensen IJ, Nordgaard C, Noer J, Guren TK, et al. TIMP-1 is under regulation of the EGF signaling axis and promotes an aggressive phenotype in KRAS-mutated colorectal cancer cells: a potential novel approach to the treatment of metastatic colorectal cancer. Oncotarget. 2016;7(37):59441–57.
Article
PubMed
PubMed Central
Google Scholar
An HJ, Lee YJ, Hong SA, Kim JO, Lee KY, Kim YK, et al. The prognostic role of tissue and serum MMP-1 and TIMP-1 expression in patients with non-small cell lung cancer. Pathol Res Pract. 2016;212(5):357–64.
Article
CAS
PubMed
Google Scholar
Seo DW, Li H, Guedez L, Wingfield PT, Diaz T, Salloum R, et al. TIMP-2 mediated inhibition of angiogenesis: an MMP-independent mechanism. Cell. 2003;114(2):171–80.
Article
CAS
PubMed
Google Scholar
Rundhaug JE. Matrix metalloproteinases and angiogenesis. J Cell Mol Med. 2005;9(2):267–85.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tewari KS, Sill MW, Long HJ III, Penson RT, Huang H, Ramondetta LM, et al. Improved survival with bevacizumab in advanced cervical cancer. N Engl J Med. 2014;370(8):734–43.
Article
CAS
PubMed
PubMed Central
Google Scholar
Koh WJ, Abu-Rustum NR, Bean S, Bradley K, Campos SM, Cho KR, et al. Cervical Cancer, version 3.2019, NCCN clinical practice guidelines in oncology. J Natl Compr Cancer Netw. 2019;17(1):64–84.
Article
CAS
Google Scholar
Klopp AH, Eifel PJ. Biological predictors of cervical cancer response to radiation therapy. In: Semin Radiat Oncol. vol. 22. Elsevier; 2012. p. 143–150.
World Medical Association. WMA Declaration of Helsinki – Ethical Principles for Medical Research Involving Human Subjects. 2013. https://www.wma.net/policies-post/wma-declaration-of-helsinki-ethical-principles-for-medical-research-involving-human-subjects/. Accessed 22 Aug 2017.
Bermudez A, Bhatla N, Leung E. Cancer of the cervix uteri. Int J Gynaecol Obstet. 2015;131(S2):88–95.
Article
Google Scholar
Wiebe E, Denny L, Thomas G. Cancer of the cervix uteri. Int J Gynaecol Obstet. 2014;119(2):S100–9.
Google Scholar
Westin MCA, Rabelo-Santos SH, Angelo Andrade LAL, Derchain S, Pinto GA, Morais S, et al. Expression of MMP-2, MMP-9, MMP-14, TIMP-1, TIMP- 2 in intraepithelial and invasive cervical Neoplasia. J Cytol Histol. 2015;S3:19.
Google Scholar
Westin MCA, Rabelo-Santos SH, Angelo Andrade LAL, Derchain S, Pinto GA, Morais S, et al. Expression of VEGF-A in intraepithelial and invasive cervical Neoplasia. J Cytol Histol. 2015;S3:22.
Google Scholar
Paget S. The distribution of secondary growths in cancer of the breast. Lancet. 1889;133(3421):571–3.
Article
Google Scholar
Ribatti D, Mangialardi G, Vacca A. Stephen Paget and the ‘seed and soil’ theory of metastatic dissemination. Clin Exp Med. 2006;6(4):145–9.
Article
CAS
PubMed
Google Scholar
Jodele S, Blavier L, Yoon JM, DeClerck YA. Modifying the soil to affect the seed: role of stromal-derived matrix metalloproteinases in cancer progression. Cancer Metastasis Rev. 2006;25(1):35–43.
Article
CAS
PubMed
Google Scholar
Weber CE, Kuo PC. The tumor microenvironment. Surg Oncol. 2012;21(3):172–7.
Article
PubMed
Google Scholar
De Wever O, Mareel M. Role of tissue stroma in cancer cell invasion. J Pathol. 2003;200(4):429–47.
Article
PubMed
CAS
Google Scholar
Mbeunkui F, Johann DJ. Cancer and the tumor microenvironment: a review of an essential relationship. Cancer Chemother Pharmacol. 2009;63(4):571–82.
Article
PubMed
Google Scholar
Liotta LA, Kohn EC. The microenvironment of the tumour-host interface. Nature. 2001;411(6835):375–9.
Article
CAS
PubMed
Google Scholar
Kalluri R, Zeisberg M. Fibroblasts in cancer. Nat Rev Cancer. 2006;6(5):392.
Article
CAS
PubMed
Google Scholar
Tlsty T, Hein P. Know thy neighbor: stromal cells can contribute oncogenic signals. Curr Opin Genet Dev. 2001;11(1):54–9.
Article
CAS
PubMed
Google Scholar
Sato T, Sakaia T, Noguchi Y, Hirakawa MTS, Ito A. Tumor-stromal cell contact promotes invasion of human uterine cervical carcinoma cells by augmenting the expression and activation of stromal matrix metalloproteinases. Gynecol Oncol. 2004;92(1):47–56.
Article
CAS
PubMed
Google Scholar
van Pelt G, Kjær-Frifeldt S, van Krieken J, Al Dieri R, Morreau H, Tollenaar R, et al. Scoring the tumor-stroma ratio in colon cancer: procedure and recommendations. Virchows Arch. 2018;473(4):405–12.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ahn B, Chae YS, Kim CH, Lee Y, Lee JH, Kim JY. Tumor microenvironmental factors have prognostic significances in advanced gastric cancer. APMIS. 2018;126(10):814–21.
Article
CAS
PubMed
Google Scholar
Kemi N, Eskuri M, Herva A, Leppänen J, Huhta H, Helminen O, et al. Tumour-stroma ratio and prognosis in gastric adenocarcinoma. Br J Cancer. 2018;119(4):435–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kramer CJH, Vangangelt KMH, van Pelt GW, Dekker TJA, Tollenaar RAEM, Mesker WE. The prognostic value of tumour-stroma ratio in primary breast cancer with special attention to triple-negative tumours: a review. Breast Cancer Res Treat. 2018;173(1):55–64.
Article
PubMed
PubMed Central
Google Scholar
Wang HL, Zhou PY, Zhang Y, Liu P. Relationships between abnormal MMP2 expression and prognosis in gastric cancer: a meta-analysis of cohort studies. Cancer Biother Radiopharm. 2014;29(4):166–72. 42.
Lu X, Duan L, Xie H, Lu X, Lu D, Lu D, et al. Evaluation of MMP-9 and MMP-2 and their suppressor TIMP-1 and TIMP-2 in adenocarcinoma of esophagogastric junction. Onco Targets Ther. 2016;9.
Liu C, Li Y, Hu S, Chen Y, Gao L, Liu D, et al. Clinical significance of matrix metalloproteinase-2 in endometrial cancer: A systematic review and meta-analysis. Medicine. 2018;97(29).
Talvensaari-Mattila A, Pääkkö P, Turpeenniemi-Hujanen T. Matrix metalloproteinase-2 (MMP-2) is associated with survival in breast carcinoma. Br J Cancer. 2003;89(7):1270–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fernandes R, Morais S, Pinto G, Chagas C, Maria-Engler S, Zeferino LC. Stromal cells play a role in cervical cancer progression mediated by MMP–2 protein. Eur J Gynaec Oncol. 2008;29(4):341–4.
CAS
Google Scholar
Mitra A, Chakrabarti J, Banerji A, Chatterjee A. Cell membrane-associated MT1-MMP dependent activation of MMP-2 in SiHa (human cervical Cancer) cells. J Environ Pathol Toxicol Oncol. 2006;25(4):655–66.
Article
CAS
PubMed
Google Scholar
Yosef G, Arkadash V, Papo N. Targeting the MMP-14/MMP-2/integrin αvβ3 axis with multispecific N-TIMP2-based antagonists for cancer therapy. J Biol Chem. 2018;293(34):13310–26.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lubowicka E, Zbucka-Kretowska M, Sidorkiewicz I, Zajkowska M, Gacuta E, Puchnarewicz A, et al. Diagnostic power of cytokine M-CSF, metalloproteinase 2 (MMP-2) and tissue Inhibitor-2 (TIMP-2) in cervical Cancer patients based on ROC analysis. Pathol Oncol Res. 2019;p. 1–10.
Curran S, Dundas SR, Buxton J, Leeman MF, Ramsay R, Murray GI. Matrix metalloproteinase/tissue inhibitors of matrix metalloproteinase phenotype identifies poor prognosis colorectal cancers. Clin Cancer Res. 2004;10(24):8229–34.
Article
CAS
PubMed
Google Scholar
Halón A, Nowak-Markwitz E, Donizy P, Matkowski R, Maciejczyk A, Gansukh T, et al. Enhanced immunoreactivity of TIMP-2 in the stromal compartment of tumor as a marker of favorable prognosis in ovarian cancer patients. J Histochem Cytochem. 2012;60(7):491–501.
Article
PubMed
PubMed Central
CAS
Google Scholar
Honkavuori-Toivola M, Santala M, Soini Y, Turpeenniemi-Hujanen T, Talvensaari-Mattila A. Combination of strong MMP-2 and weak TIMP-2 immunostainings is a significant prognostic factor in endometrial carcinoma. Dis Markers. 2013;35(4):261–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhu L, Yu H, Liu SY, Xiao XS, Dong WH, Chen YN, et al. Prognostic value of tissue inhibitor of metalloproteinase-2 expression in patients with non-small cell lung cancer: a systematic review and meta-analysis. PloS one. 2015;10(4).
Kanjanapradit K, Thongsuksai P, Phukaoloun M, Geater SL. Prognostic significance of tissue inhibitor of matrix metalloproteinase-2 [TIMP-2] expression in non-small cell carcinoma of lung. J Med Assoc Thail. 2018;101(10):1311–7.
Google Scholar
Wang W, Zhang Y, Liu M, Wang Y, Yang T, Li D, et al. TIMP2 is a poor prognostic factor and predicts metastatic biological behavior in gastric Cancer. Sci Rep. 2018;8(1):962–9.
Article
CAS
Google Scholar
Têtu B, Brisson J, Wang CS, Lapointe H, Beaudry G, Blanchette C, et al. The influence of MMP-14, TIMP-2 and MMP-2 expression on breast cancer prognosis. Breast Cancer Res. 2006;8(3):R28.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wang H, Zhang X, Huang L, Li J, Qu S, Pan F. Matrix metalloproteinase–14 expression and its prognostic value in cervical carcinoma. Cell Biochem Biophys. 2014;70(2):729–34.
Article
CAS
PubMed
Google Scholar
Chenard M, Lutz Y, Mechine-Neuville A, Stoll I, Bellocq J, Rio M, et al. Presence of high levels of MT1-MMP protein in fibroblastic cells of human invasive carcinomas. Int J Cancer. 1999;82(2):208–12.
Article
CAS
PubMed
Google Scholar
Björklund M, Koivunen E. Gelatinase-mediated migration and invasion of cancer cells. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer. 2005;1755(1):37–69.
Nilsson UW, Dabrosin C. Estradiol and tamoxifen regulate endostatin generation via matrix metalloproteinase activity in breast cancer in vivo. Cancer Res. 2006;66(9):4789–94.
Article
CAS
PubMed
Google Scholar
Bendrik C, Robertson J, Gauldie J, Dabrosin C. Gene transfer of matrix metalloproteinase-9 induces tumor regression of breast cancer in vivo. Cancer Res. 2008;68(9):3405–12.
Article
CAS
PubMed
Google Scholar
Bendrik C, Karlsson L, Dabrosin C. Increased endostatin generation and decreased angiogenesis via MMP-9 by tamoxifen in hormone dependent ovarian cancer. Cancer Lett. 2010;292(1):32–40.
Article
CAS
PubMed
Google Scholar
Leifler KS, Svensson S, Abrahamsson A, Bendrik C, Robertson J, Gauldie J, et al. Inflammation induced by MMP-9 enhances tumor regression of experimental breast cancer. J Immunol. 2013;190(8):4420–30.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ferrara N, Hillan KJ, Gerber HP, Novotny W. Discovery and development of bevacizumab, an anti–VEGF antibody for treating cancer. Nat Rev Drug Discov. 2004;3(5):391–400.
Article
CAS
PubMed
Google Scholar