Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. Ca-Cancer J Clin. 2019;69(1):7–34. https://doi.org/10.3322/caac.21551.
Article
PubMed
Google Scholar
von Minckwitz G, Schneeweiss A, Loibl S, Salat C, Denkert C, Rezai M, Blohmer JU, Jackisch C, Paepke S, Gerber B, Zahm DM, Kummel S, Eidtmann H, Klare P, Huober J, Costa S, Tesch H, Hanusch C, Hilfrich J, Khandan F, Fasching PA, Sinn BV, Engels K, Mehta K, Nekljudova V, Untch M. Neoadjuvant carboplatin in patients with triple-negative and HER2-positive early breast cancer (GeparSixto; GBG 66): a randomised phase 2 trial. Lancet Oncol. 2014;15(7):747–56. https://doi.org/10.1016/S1470-2045(14)70160-3.
Article
CAS
Google Scholar
Sikov WM, Berry DA, Perou CM, Singh B, Cirrincione CT, Tolaney SM, Kuzma CS, Pluard TJ, Somlo G, Port ER, Golshan M, Bellon JR, Collyar D, Hahn OM, Carey LA, Hudis CA, Winer EP. Impact of the addition of carboplatin and/or bevacizumab to neoadjuvant once-per-week paclitaxel followed by dose-dense doxorubicin and cyclophosphamide on pathologic complete response rates in stage II to III triple-negative breast cancer: CALGB 40603 (Alliance). J Clin Oncol. 2015;33(1):13–21. https://doi.org/10.1200/JCO.2014.57.0572.
Article
CAS
PubMed
Google Scholar
Qi WX, Tang LN, He AN, Shen Z, Yao Y. Comparison between doublet agents versus single agent in metastatic breast cancer patients previously treated with an anthracycline and a taxane: a meta-analysis of four phase III trials. Breast. 2013;22(3):314–9. https://doi.org/10.1016/j.breast.2012.07.014.
Article
PubMed
Google Scholar
Nunes T, Hamdan D, Leboeuf C, El Bouchtaoui M, Gapihan G, Nguyen TT, Meles S, Angeli E, Ratajczak P, Lu H, Di Benedetto M, Bousquet G, Janin A. Targeting Cancer stem cells to overcome Chemoresistance. Int J Mol Sci. 2018;19(12). https://doi.org/10.3390/ijms19124036.
Chou TC. Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug-combination studies (vol 58, pg 621, 2006). Pharmacol Rev. 2007;59(1):124. https://doi.org/10.1124/pr.58.3.10.
Article
CAS
Google Scholar
Gupta PB, Onder TT, Jiang G, Tao K, Kuperwasser C, Weinberg RA, Lander ES. Identification of selective inhibitors of cancer stem cells by high-throughput screening. Cell. 2009;138(4):645–59. https://doi.org/10.1016/j.cell.2009.06.034.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huczynski A, Janczak J, Antoszczak M, Wietrzyk J, Maj E, Brzezinski B. Antiproliferative activity of salinomycin and its derivatives. Bioorg Med Chem Lett. 2012;22(23):7146–50. https://doi.org/10.1016/j.bmcl.2012.09.068.
Article
CAS
PubMed
Google Scholar
Huczynski A. Polyether ionophores-promising bioactive molecules for cancer therapy. Bioorg Med Chem Lett. 2012;22(23):7002–10. https://doi.org/10.1016/j.bmcl.2012.09.046.
Article
CAS
PubMed
Google Scholar
Verdoodt B, Vogt M, Schmitz I, Liffers ST, Tannapfel A, Mirmohammadsadegh A. Salinomycin induces autophagy in colon and breast cancer cells with concomitant generation of reactive oxygen species. PLoS One. 2012;7(9):e44132. https://doi.org/10.1371/journal.pone.0044132.
Article
CAS
PubMed
PubMed Central
Google Scholar
Takebe N, Miele L, Harris PJ, Jeong W, Bando H, Kahn M, Yang SX, Ivy SP. Targeting notch, hedgehog, and Wnt pathways in cancer stem cells: clinical update. Nat Rev Clin Oncol. 2015;12(8):445–64. https://doi.org/10.1038/nrclinonc.2015.61.
Article
CAS
PubMed
PubMed Central
Google Scholar
Galoczova M, Coates P, Vojtesek B. STAT3, stem cells, cancer stem cells and p63. Cell Mol Biol Lett. 2018;23:12. https://doi.org/10.1186/s11658-018-0078-0.
Article
CAS
PubMed
PubMed Central
Google Scholar
Koo KH, Kim H, Bae YK, Kim K, Park BK, Lee CH, Kim YN. Salinomycin induces cell death via inactivation of Stat3 and downregulation of Skp2. Cell Death Dis. 2013;4:e693. https://doi.org/10.1038/cddis.2013.223.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mao J, Fan S, Ma W, Fan P, Wang B, Zhang J, Wang H, Tang B, Zhang Q, Yu X, Wang L, Song B, Li L. Roles of Wnt/beta-catenin signaling in the gastric cancer stem cells proliferation and salinomycin treatment. Cell Death Dis. 2014;5:e1039. https://doi.org/10.1038/cddis.2013.515.
Article
CAS
PubMed
PubMed Central
Google Scholar
Klose J, Eissele J, Volz C, Schmitt S, Ritter A, Ying S, Schmidt T, Heger U, Schneider M, Ulrich A. Salinomycin inhibits metastatic colorectal cancer growth and interferes with Wnt/beta-catenin signaling in CD133(+) human colorectal cancer cells. BMC Cancer. 2016;16(1):896. https://doi.org/10.1186/s12885-016-2879-8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fu YZ, Yan YY, He M, Xiao QH, Yao WF, Zhao L, Wu HZ, Yu ZJ, Zhou MY, Lv MT, Zhang SS, Chen JJ, Wei MJ. Salinomycin induces selective cytotoxicity to MCF-7 mammosphere cells through targeting the hedgehog signaling pathway. Oncology Rep. 2016;35(2):912–22. https://doi.org/10.3892/or.2015.4434.
Article
CAS
Google Scholar
An H, Kim JY, Oh E, Lee N, Cho Y, Seo JH. Salinomycin promotes Anoikis and decreases the CD44+/CD24- stem-like population via inhibition of STAT3 activation in MDA-MB-231 cells. PLoS One. 2015;10(11):e0141919. https://doi.org/10.1371/journal.pone.0141919.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chung SS, Adekoya D, Enenmoh I, Clarke O, Wang P, Sarkyssian M, Wu Y, Vadgama JV. Salinomycin abolished STAT3 and STAT1 interactions and reduced telomerase activity in colorectal Cancer cells. Anticancer Res. 2017;37(2):445–53. https://doi.org/10.21873/anticanres.11336.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim JH, Chae M, Kim WK, Kim YJ, Kang HS, Kim HS, Yoon S. Salinomycin sensitizes cancer cells to the effects of doxorubicin and etoposide treatment by increasing DNA damage and reducing p21 protein. Br J Pharmacol. 2011;162(3):773–84. https://doi.org/10.1111/j.1476-5381.2010.01089.x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim WK, Kim JH, Yoon K, Kim S, Ro J, Kang HS, Yoon S. Salinomycin, a p-glycoprotein inhibitor, sensitizes radiation-treated cancer cells by increasing DNA damage and inducing G2 arrest. Investig New Drugs. 2012;30(4):1311–8. https://doi.org/10.1007/s10637-011-9685-6.
Article
CAS
Google Scholar
Kim JH, Yoo HI, Kang HS, Ro J, Yoon S. Salinomycin sensitizes antimitotic drugs-treated cancer cells by increasing apoptosis via the prevention of G2 arrest. Biochem Biophys Res Comm. 2012;418(1):98–103. https://doi.org/10.1016/j.bbrc.2011.12.141.
Article
CAS
PubMed
Google Scholar
Scher KS, Somlo G. Dasatinib : a novel therapy for breast cancer? Expert Opin Investig Drugs. 2013;22(6):795–801. https://doi.org/10.1517/13543784.2013.793308.
Article
CAS
PubMed
Google Scholar
Nautiyal J, Majumder P, Patel BB, Lee FY, Majumdar AP. Src inhibitor dasatinib inhibits growth of breast cancer cells by modulating EGFR signaling. Cancer Lett. 2009;283(2):143–51. https://doi.org/10.1016/j.canlet.2009.03.035.
Article
CAS
PubMed
Google Scholar
Mayer EL, Krop IE. Advances in targeting SRC in the treatment of breast cancer and other solid malignancies. Clin Cancer Res. 2010;16(14):3526–32. https://doi.org/10.1158/1078-0432.CCR-09-1834.
Article
CAS
PubMed
Google Scholar
Hiscox S, Nicholson RI. Src inhibitors in breast cancer therapy. Expert Opin Ther Targets. 2008;12(6):757–67. https://doi.org/10.1517/14728222.12.6.757.
Article
CAS
PubMed
Google Scholar
Kurebayashi J, Kanomata N, Moriya T, Kozuka Y, Watanabe M, Sonoo H. Preferential antitumor effect of the Src inhibitor dasatinib associated with a decreased proportion of aldehyde dehydrogenase 1-positive cells in breast cancer cells of the basal B subtype. BMC Cancer. 2010;10:568. https://doi.org/10.1186/1471-2407-10-568.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tzeng YT, Liu PF, Li JY, Liu LF, Kuo SY, Hsieh CW, Lee CH, Wu CH, Hsiao M, Chang HT, Shu CW. Kinome-wide siRNA screening identifies Src-enhanced resistance of chemotherapeutic drugs in triple-negative breast Cancer cells. Front Pharmacol. 2018;9:1285. https://doi.org/10.3389/fphar.2018.01285.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ivascu A, Kubbies M. Rapid generation of single-tumor spheroids for high-throughput cell function and toxicity analysis. J Biomol Screen. 2006;11(8):922–32. https://doi.org/10.1177/1087057106292763.
Article
CAS
PubMed
Google Scholar
Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29(1):15–21. https://doi.org/10.1093/bioinformatics/bts635.
Article
CAS
PubMed
Google Scholar
Trapnell C, Hendrickson DG, Sauvageau M, Goff L, Rinn JL, Pachter L. Differential analysis of gene regulation at transcript resolution with RNA-seq. Nature Biotech. 2013;31(1):46. https://doi.org/10.1038/nbt.2450.
Article
CAS
Google Scholar
Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15 (12). Doi: ARTN 550. https://doi.org/10.1186/s13059-014-0550-8.
Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc. 2008;3(6):1101–8. https://doi.org/10.1186/s13059-014-0550-8.
Article
CAS
PubMed
Google Scholar
Chou TC. Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. Pharmacol Rev. 2006;58(3):621–81. https://doi.org/10.1124/pr.58.3.10.
Article
CAS
PubMed
Google Scholar
Finn RS, Dering J, Ginther C, Wilson CA, Glaspy P, Tchekmedyian N, Slamon DJ. Dasatinib, an orally active small molecule inhibitor of both the src and abl kinases, selectively inhibits growth of basal-type/"triple-negative" breast cancer cell lines growing in vitro. Breast Cancer Res Treat. 2007;105(3):319–26. https://doi.org/10.1007/s10549-006-9463-x.
Article
CAS
PubMed
Google Scholar
Tardi PG, Dos Santos N, Harasym TO, Johnstone SA, Zisman N, Tsang AW, Bermudes DG, Mayer LD. Drug ratio-dependent antitumor activity of irinotecan and cisplatin combinations in vitro and in vivo. Mol Cancer Ther. 2009;8(8):2266–75. https://doi.org/10.1158/1535-7163.MCT-09-0243.
Article
CAS
PubMed
Google Scholar
Tsakalozou E, Eckman AM, Bae Y. Combination effects of docetaxel and doxorubicin in hormone-refractory prostate cancer cells. Biochem Res Int. 2012;2012:832059. https://doi.org/10.1155/2012/832059.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fonseca NA, Gomes-da-Silva LC, Moura V, Simoes S, Moreira JN. Simultaneous active intracellular delivery of doxorubicin and C6-ceramide shifts the additive/antagonistic drug interaction of non-encapsulated combination. J Control Release. 2014;196:122–31. https://doi.org/10.1016/j.jconrel.2014.09.024.
Article
CAS
PubMed
Google Scholar
Howes AL, Richardson RD, Finlay D, Vuori K. 3-dimensional culture systems for anti-cancer compound profiling and high-throughput screening reveal increases in EGFR inhibitor-mediated cytotoxicity compared to monolayer culture systems. PLoS One. 2014;9(9):e108283. https://doi.org/10.1371/journal.pone.0108283.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mehta G, Hsiao AY, Ingram M, Luker GD, Takayama S. Opportunities and challenges for use of tumor spheroids as models to test drug delivery and efficacy. J Control Release. 2012;164(2):192–204. https://doi.org/10.1016/j.jconrel.2012.04.045.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bryce NS, Zhang JZ, Whan RM, Yamamoto N, Hambley TW. Accumulation of an anthraquinone and its platinum complexes in cancer cell spheroids: the effect of charge on drug distribution in solid tumour models. Chem Commun (Camb). 2009;19:2673–5. https://doi.org/10.1039/b902415h.
Article
CAS
Google Scholar
Bellat V, Ting R, Southard TL, Vahdat L, Molina H, Fernandez J, Aras O, Stokol T, Law B. Functional peptide Nanofibers with unique tumor targeting and enzyme-induced local retention properties. Adv Funct Mater. 2018;28(44). https://doi.org/10.1002/adfm.201803969.
Yu SN, Kim SH, Kim KY, Ji JH, Seo YK, Yu HS, Ahn SC. Salinomycin induces endoplasmic reticulum stressmediated autophagy and apoptosis through generation of reactive oxygen species in human glioma U87MG cells. Oncol Rep. 2017;37(6):3321–8. https://doi.org/10.3892/or.2017.5615.
Article
CAS
PubMed
Google Scholar
Kim KY, Park KI, Kim SH, Yu SN, Lee D, Kim YW, Noh KT, Ma JY, Seo YK, Ahn SC. Salinomycin induces reactive oxygen species and apoptosis in aggressive breast Cancer cells as mediated with regulation of autophagy. Anticancer Res. 2017;37(4):1747–58. https://doi.org/10.21873/anticanres.11507.
Article
CAS
PubMed
Google Scholar
Kim KY, Park KI, Kim SH, Yu SN, Park SG, Kim YW, Seo YK, Ma JY, Ahn SC. Inhibition of autophagy promotes Salinomycin-induced apoptosis via reactive oxygen species-mediated PI3K/AKT/mTOR and ERK/p38 MAPK-dependent signaling in human prostate Cancer cells. Int J Mol Sci. 2017;18(5). https://doi.org/10.3390/ijms18051088.
Wu Y, Zhang D, Wu B, Quan Y, Liu D, Li Y, Zhang X. Synergistic activity of an antimetabolite drug and tyrosine kinase inhibitors against breast Cancer cells. Chem Pharm Bull (Tokyo). 2017;65(8):768–75. https://doi.org/10.1248/cpb.c17-00261.
Article
CAS
Google Scholar
Lu D, Choi MY, Yu J, Castro JE, Kipps TJ, Carson DA. Salinomycin inhibits Wnt signaling and selectively induces apoptosis in chronic lymphocytic leukemia cells. Proc Natl Acad Sci U S A. 2011;108(32):13253–7. https://doi.org/10.1073/pnas.1110431108.
Article
PubMed
PubMed Central
Google Scholar
Zhou S, Wang F, Zhang Y, Johnson MR, Qian S, Wu M, Wu E. Salinomycin suppresses PDGFRbeta, MYC, and notch signaling in human Medulloblastoma. Aust J Pharmacol Ther. 2014;2(3):1020. Pmcid: PMC4251667..
Zhao SJ, Wang XJ, Wu QJ, Liu C, Li DW, Fu XT, Zhang HF, Shao LR, Sun JY, Sun BL, Zhai J, Fan CD. Induction of G1 cell cycle arrest in human Glioma cells by Salinomycin through triggering ROS-mediated DNA damage in vitro and in vivo. Neurochem Res. 2017;42(4):997–1005. https://doi.org/10.1007/s11064-016-2132-5.
Article
CAS
PubMed
Google Scholar
Mukhopadhyay UK, Oturkar CC, Adams C, Wickramasekera N, Bansal S, Medisetty R, Miller A, Swetzig WM, Silwal-Pandit L, Borresen-Dale AL, Creighton CJ, Park JH, Konduri SD, Mukhopadhyay A, Caradori A, Omilian A, Bshara W, Kaipparettu BA, Das GM. TP53 status as a determinant of pro- versus anti-tumorigenic effects of estrogen receptor-beta in breast Cancer. J Natl Cancer Inst. 2019. https://doi.org/10.1093/jnci/djz051.
Lue HW, Cole B, Rao SA, Podolak J, Van Gaest A, King C, Eide CA, Wilmot B, Xue C, Spellman PT, Heiser LM, Tyner JW, Thomas GV. Src and STAT3 inhibitors synergize to promote tumor inhibition in renal cell carcinoma. Oncotarget. 2015;6(42):44675–87. https://doi.org/10.18632/oncotarget.5971.
Article
PubMed
PubMed Central
Google Scholar
Chien W, Sudo M, Ding LW, Sun QY, Wuensche P, Lee KL, Hattori N, Garg M, Xu L, Zheng Y, Gery S, Wongphayak S, Yang H, Baloglu E, Shacham S, Kauffman M, Mori S, Koeffler HP. Functional genome-wide screening identifies targets and pathways sensitizing pancreatic Cancer cells to Dasatinib. J Cancer. 2018;9(24):4762–73. https://doi.org/10.7150/jca.25138.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cousins EM, Goldfarb D, Yan F, Roques J, Darr D, Johnson GL, Major MB. Competitive kinase enrichment proteomics reveals that Abemaciclib inhibits GSK3beta and Activates WNT signaling. Mol Cancer Res: MCR. 2018;16(2):333–44. https://doi.org/10.1158/1541-7786.MCR-17-0468.
Article
CAS
PubMed
Google Scholar
Niwa AM, Marques LA, Semprebon SC, Sartori D, Ribeiro LR, Mantovani MS. Salinomycin efficiency assessment in non-tumor (HB4a) and tumor (MCF-7) human breast cells. Naunyn Schmiedeberg's Arch Pharmacol. 2016;389(6):557–71. https://doi.org/10.1007/s00210-016-1225-7.
Article
CAS
Google Scholar
Attwooll C, Lazzerini Denchi E, Helin K. The E2F family: specific functions and overlapping interests. EMBO J. 2004;23(24):4709–16. https://doi.org/10.1038/sj.emboj.7600481.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen HZ, Tsai SY, Leone G. Emerging roles of E2Fs in cancer: an exit from cell cycle control. Nat Rev Cancer. 2009;9(11):785–97. https://doi.org/10.1038/nrc2696.
Article
CAS
PubMed
PubMed Central
Google Scholar
Thwaites MJ, Cecchini MJ, Passos DT, Welch I, Dick FA. Interchangeable roles for E2F transcriptional repression by the retinoblastoma protein and p27KIP1-Cyclin-dependent kinase regulation in cell cycle control and tumor suppression. Mol Cell Biol. 2017;37(2). https://doi.org/10.1128/MCB.00561-16.
Austin D, Hamilton N, Elshimali Y, Pietras R, Wu Y, Vadgama J. Estrogen receptor-beta is a potential target for triple negative breast cancer treatment. Oncotarget. 2018;9(74):33912–30. https://doi.org/10.18632/oncotarget.26089.
Article
PubMed
PubMed Central
Google Scholar
Novelli F, Milella M, Melucci E, Di Benedetto A, Sperduti I, Perrone-Donnorso R, Perracchio L, Venturo I, Nistico C, Fabi A, Buglioni S, Natali PG, Mottolese M. A divergent role for estrogen receptor-beta in node-positive and node-negative breast cancer classified according to molecular subtypes: an observational prospective study. Breast Cancer Res. 2008;10(5):R74. https://doi.org/10.1186/bcr2139.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lazennec G, Bresson D, Lucas A, Chauveau C, Vignon F. ER beta inhibits proliferation and invasion of breast cancer cells. Endocrinology. 2001;142(9):4120–30. https://doi.org/10.1210/endo.142.9.8395.
Article
CAS
PubMed
Google Scholar
Schuler-Toprak S, Haring J, Inwald EC, Moehle C, Ortmann O, Treeck O. Agonists and knockdown of estrogen receptor beta differentially affect invasion of triple-negative breast cancer cells in vitro. BMC Cancer. 2016;16(1):951. https://doi.org/10.1186/s12885-016-2973-y.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bado I, Nikolos F, Rajapaksa G, Gustafsson JA, Thomas C. ERbeta decreases the invasiveness of triple-negative breast cancer cells by regulating mutant p53 oncogenic function. Oncotarget. 2016;7(12):13599–611. https://doi.org/10.18632/oncotarget.7300.
Article
PubMed
PubMed Central
Google Scholar
Hamilton N, Marquez-Garban D, Mah V, Fernando G, Elshimali Y, Garban H, Elashoff D, Vadgama J, Goodglick L, Pietras R. Biologic roles of estrogen receptor-beta and insulin-like growth factor-2 in triple-negative breast cancer. Biomed Res Int. 2015;2015:925703. https://doi.org/10.1155/2015/925703.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jensen EV, Cheng G, Palmieri C, Saji S, Makela S, Van Noorden S, Wahlstrom T, Warner M, Coombes RC, Gustafsson JA. Estrogen receptors and proliferation markers in primary and recurrent breast cancer. Proc Natl Acad Sci U S A. 2001;98(26):15197–202. https://doi.org/10.1073/pnas.211556298.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hopp TA, Weiss HL, Parra IS, Cui Y, Osborne CK, Fuqua SA. Low levels of estrogen receptor beta protein predict resistance to tamoxifen therapy in breast cancer. Clin Cancer Res. 2004;10(22):7490–9. https://doi.org/10.1158/1078-0432.CCR-04-1114.
Article
CAS
PubMed
Google Scholar
Esslimani-Sahla M, Simony-Lafontaine J, Kramar A, Lavaill R, Mollevi C, Warner M, Gustafsson JA, Rochefort H. Estrogen receptor beta (ER beta) level but not its ER beta cx variant helps to predict tamoxifen resistance in breast cancer. Clin Cancer Res. 2004;10(17):5769–76. https://doi.org/10.1158/1078-0432.CCR-04-0389.
Article
CAS
PubMed
Google Scholar
Espinal-Enriquez J, Fresno C, Anda-Jauregui G, Hernandez-Lemus E. RNA-Seq based genome-wide analysis reveals loss of inter-chromosomal regulation in breast cancer. Sci Rep. 2017;7(1):1760. https://doi.org/10.1038/s41598-017-01314-1.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shin SY, Kim CG, Lee YH. Egr-1 regulates the transcription of the BRCA1 gene by etoposide. BMB Rep. 2013;46(2):92–6. https://doi.org/10.5483/bmbrep.2013.46.2.202.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang B. BRCA1 tumor suppressor network: focusing on its tail. Cell Biosci. 2012;2(1):6. https://doi.org/10.1186/2045-3701-2-6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wu LC, Wang ZW, Tsan JT, Spillman MA, Phung A, Xu XL, Yang MC, Hwang LY, Bowcock AM, Baer R. Identification of a RING protein that can interact in vivo with the BRCA1 gene product. Nat Genet. 1996;14(4):430–40. https://doi.org/10.1038/ng1296-430.
Article
CAS
PubMed
Google Scholar
Wang FF, Zhou S, Qi D, Xiang SH, Wong ET, Wang XJ, Fonkem E, Hsieh TC, Yang JH, Kirmani B, Shabb JB, Wu JM, Wu M, Huang JSH, Yu WH, Wu EX. Nucleolin is a functional binding protein for Salinomycin in neuroblastoma stem cells. J Amer Chem Soc. 2019;141(8):3613–22. https://doi.org/10.1021/jacs.8b12872.
Article
CAS
Google Scholar
Guerin M, Goncalves A, Toiron Y, Baudelet E, Audebert S, Boyer JB, Borg JP, Camoin L. How may targeted proteomics complement genomic data in breast cancer? Expert Rev Proteomic. 2017;14(1):43–54. https://doi.org/10.1080/14789450.2017.1256776.
Article
CAS
Google Scholar
Abdel-Fatah TMA, Agarwal D, Liu DX, Russell R, Rueda OM, Liu K, Xu B, Moseley PM, Green AR, Pockley AG, Rees RC, Caldas C, Ellis IO, Ball GR, Chan SYT. SPAG5 as a prognostic biomarker and chemotherapy sensitivity predictor in breast cancer: a retrospective, integrated genomic, transcriptomic, and protein analysis. Lancet Oncol. 2016;17(7):1004–18. https://doi.org/10.1016/S1470-2045(16)00174-1.
Article
CAS
PubMed
Google Scholar
Cheng FX, Zhao JF, Hanker AB, Brewer MR, Arteaga CL, Zhao ZM. Transcriptome- and proteome-oriented identification of dysregulated eIF4G, STAT3, and hippo pathways altered by PIK3CA (H1047R) in HER2/ER-positive breast cancer. Breast Cancer Res Tr. 2016;160(3):457–74. https://doi.org/10.1007/s10549-016-4011-9.
Article
CAS
Google Scholar