Bellanger M, Zeinomar N, Tehranifar P, Terry MB. Are global breast cancer incidence and mortality patterns related to country-specific economic development and prevention strategies? J Glob Oncol. 2018;4:1–16.
PubMed
Google Scholar
Ozturk K, Dow M, Carlin DE, Bejar R, Carter H. The emerging potential for network analysis to inform precision cancer medicine. J Mol Biol. 2018;430:2875–99. https://doi.org/10.1016/j.jmb.2018.06.016.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rubovszky G, Horváth Z. Recent advances in the neoadjuvant treatment of breast cancer. J Breast Cancer. 2017;20:119–31. https://doi.org/10.4048/jbc.2017.20.2.119.
Article
PubMed
PubMed Central
Google Scholar
Dieci MV, Radosevic-Robin N, Fineberg S, van den Eynden G, Ternes N, Penault-Llorca F, et al. International Immuno-Oncology Biomarker Working Group on Breast Cancer. Update on tumor-infiltrating lymphocytes (TILs) in breast cancer, including recommendations to assess TILs in residual disease after neoadjuvant therapy and in carcinoma in situ: A report of the International Immuno-Oncology Biomarker Working Group on Breast Cancer. Semin Cancer Biol. 2017;52:16–25. https://doi.org/10.1016/j.semcancer.2017.10.003.
Article
PubMed
Google Scholar
Pathak M, Dwivedi SN, Deo SVS, Thakur B, Sreenivas V, Rath GK. Neoadjuvant chemotherapy regimens in treatment of breast cancer: a systematic review and network meta-analysis protocol. Syst Rev. 2018;7:89. https://doi.org/10.1186/s13643-018-0754-1.
Article
PubMed
PubMed Central
Google Scholar
Loibl S. Neoadjuvant treatment of breast cancer: maximizing pathologic complete response rates to improve prognosis. Curr Opin Obstet Gynecol. 2015;27:85–91. https://doi.org/10.1097/GCO.000000000000014.
Article
PubMed
Google Scholar
Dodiya HG, Brahmbhatt AP, Khatri PK, Kaushal AM, Vijay DG. Neoadjuvant chemotherapy in patients with locally advanced breast cancer: a pilot-observational study. J Cancer Res Ther. 2015;11:612–6. https://doi.org/10.4103/0973-1482.146056.
Article
CAS
PubMed
Google Scholar
Smith IC, Heys SD, Hutcheon AW, Miller ID, Payne S, Gilbert FJ, et al. Neoadjuvant chemotherapy in breast cancer: significantly enhanced response with docetaxel. J Clin Oncol. 2002;20:1456–66.
Article
CAS
Google Scholar
Redana S, Sharp A, Lote H, Mohammed K, Papadimitraki E, Capelan M, Ring A. Rates of major complications during neoadjuvant and adjuvant chemotherapy for early breast cancer: an off-study population. Breast. 2016;30:13–8. https://doi.org/10.1016/j.breast.2016.07.019.
Article
CAS
PubMed
Google Scholar
Nicolazzi MA, Carnicelli A, Fuorlo M, Scaldaferri A, Masetti R, Landolfi R, et al. Anthracycline and trastuzumab-induced cardiotoxicity in breast cancer. Eur Rev Med Pharmacol Sci. 2018;22:2175–85. https://doi.org/10.26355/eurrev_201804_14752.
Article
CAS
PubMed
Google Scholar
Houssami N, Macaskill P, von Minckwitz G, Marinovich ML, Mamounas E. Meta-analysis of the association of breast cancer subtype and pathologic complete response to neoadjuvant chemotherapy. Eur J Cancer. 2012;48:3342–54. https://doi.org/10.1016/j.ejca.2012.05.023.
Article
CAS
PubMed
Google Scholar
Cortazar P, Geyer CE Jr. Pathological complete response in neoadjuvant treatment of breast cancer. Ann Surg Oncol. 2015;22:1441–6. https://doi.org/10.1245/s10434-015-4404-8.
Article
PubMed
Google Scholar
Salaroglio IC, Panada E, Moiso E, Buondonno I, Provero P, Rubinstein M, et al. PERK induces resistance to cell death elicited by endoplasmic reticulum stress and chemotherapy. Mol Cancer. 2017;16:91–104. https://doi.org/10.1186/s12943-017-0657-0.
Article
CAS
PubMed
PubMed Central
Google Scholar
Panaretakis T, Kepp O, Brockmeier U, Tesniere A, Bjorklund AC, Chapman DC, et al. Mechanisms of pre-apoptotic calreticulin exposure in immunogenic cell death. EMBO J. 2009;28:578–90.
Article
CAS
Google Scholar
Mhaidat NM, Alali FQ, Matalqah SM, Matalka II, Jaradat SA, Al-Sawalha NA, et al. Inhibition of MEK sensitizes paclitaxel-induced apoptosis of human colorectal cancer cells by downregulation of GRP78. Anti-Cancer Drugs. 2009;20:601–6.
Article
CAS
Google Scholar
Mandic A, Hansson J, Linder S, Shoshan MC. Cisplatin induces endoplasmic reticulum stress and nucleus-independent apoptotic signaling. J Biol Chem. 2003;278:9100–6.
Article
CAS
Google Scholar
Yadunandam AK, Yoon JS, Seong YA, Oh CW, Kim GD. Prospective impact of 5-FU in the induction of endoplasmic reticulum stress, modulation of GRP78 expression and autophagy in Sk-Hep1 cells. Int J Oncol. 2012;41:1036–42.
Article
CAS
Google Scholar
Pujari R, Jose J, Bhavnani V, Kumar N, Shastry P, Pal JK. Tamoxifen-induced cytotoxicity in breast cancer cells is mediated by glucose-regulated protein 78 (GRP78) via AKT (Thr308) regulation. Int J Biochem Cell Biol. 2016;77:57–67. https://doi.org/10.1016/j.biocel.2016.05.021.
Article
CAS
PubMed
Google Scholar
Almanza A, Carlesso A, Chintha C, Creedican S, Doultsinos D, Leuzzi B, et al. Endoplasmic reticulum stress signalling - from basic mechanisms to clinical applications. FEBS J. 2019;286(2):241–78. https://doi.org/10.1111/febs.14608.
Article
CAS
PubMed
Google Scholar
Li J, Lee AS. Stress induction of GRP78/BiP and its role in cancer. Curr Mol Med. 2006;6:45–54.
Article
CAS
Google Scholar
Sato M, Yao VJ, Arap W, Pasqualini R. GRP78 signaling hub a receptor for targeted tumor therapy. Adv Genet. 2010;69:97–114. https://doi.org/10.1016/S0065-2660(10)69006.
Article
CAS
PubMed
Google Scholar
Kulasingam V, Prassas I, Diamandis EP. Towards personalized tumor markers. NPJ Precis Oncol. 2017;1:17–31. https://doi.org/10.1038/s41698-017-0021-2.
Article
PubMed
PubMed Central
Google Scholar
Diamandis EP. The failure of protein cancer biomarkers to reach the clinic: why, and what can be done to address the problem? BMC Med. 2012;10:87–92.
Article
Google Scholar
Mueller C, Haymond A, Davis JB, Williams A, Espina V. Protein biomarkers for subtyping breast cancer and implications for future research. Expert Rev Proteomics. 2018;15:131–52. https://doi.org/10.1080/14789450.2018.1421071.
Article
CAS
PubMed
PubMed Central
Google Scholar
Grootjans J, Kaser A, Kaufman RJ, Blumberg RS. The unfolded protein response in immunity and inflammation. Nat Rev Immunol. 2016;16(8):469–84. https://doi.org/10.1038/nri.2016.62.
Article
CAS
PubMed
PubMed Central
Google Scholar
Raiter A, Yerushalmi R, Hardy B. Pharmacological induction of cell surface GRP78 contributes to apoptosis in triple negative breast cancer cells. Oncotarget. 2014;5:11452–63.
Article
Google Scholar
Yerushalmi R, Raiter A, Nalbandyan K, Hardy B. Cell surface GRP78: a potential marker of good prognosis and response to chemotherapy in breast cancer. Oncol Lett. 2015;10:2149–55.
Article
CAS
Google Scholar
Lee JH, Yoon YM, Lee SH. Hypoxic preconditioning promotes the bioactivities of mesenchymal stem cells via the HIF-1α-GRP78-Akt axis. Int J Mol Sci. 2017;18:1320.
Article
Google Scholar
Lu MC, Lai NS, Yin WY, Yu HC, Huang HB, Tung CH, et al. Anti-citrullinated protein antibodies activated ERK1/2 and JNK mitogen-activated protein kinases via binding to surface-expressed citrullinated GRP78 on mononuclear cells. J Clin Immunol. 2013;33:558–66. https://doi.org/10.1007/s10875-012-9841-6.
Article
CAS
PubMed
Google Scholar
Oida T, Weiner HL. Overexpression of TGF-ß 1 gene induces cell surface localized glucose-regulated protein 78-associated latency-associated peptide/TGF-ß. J Immunol. 2010;185:352935. https://doi.org/10.4049/jimmunol.0904121.
Article
CAS
Google Scholar
Yao X, Liu H, Zhang X, Zhang L, Wang C, Sun S. Cell surface GRP78 accelerated breast cancer cell proliferation and migration by activating STAT3. PLoS One. 2015;10:1–17.
Serrano-Negrón JE, Zhang Z, Rivera-Ruiz AP, Banerjee A, Romero-Nutz EC, Sánchez-Torres N, et al. Tunicamycin-induced ER stress in breast cancer cells neither expresses GRP78 on the surface nor secretes it into the media. Glycobiology 2018; 28: 61–8. https://doi.org/10.1093/glycob/cwx098.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bidard FC, Michiels S, Riethdorf S, Mueller V, Esserman LJ, Lucci A, et al. Circulating tumor cells in breast cancer patients treated by neoadjuvant chemotherapy: a meta-analysis. J Natl Cancer Inst. 2018;110:560–7. https://doi.org/10.1093/jnci/djy018.
Seidl M, Bader M, Vaihinger A, Wellner UF, Todorova R, Herde B, et al. Morphology of immunomodulation in breast cancer tumor draining lymph nodes depends on stage and intrinsic subtype. Sci Rep. 2018;8:5321. https://doi.org/10.1038/s41598-018-23629-3.
Cho HY, Thomas S, Golden EB, Gaffney KJ, Hofman FM, Chen TC, et al. Enhanced killing of chemo-resistant breast cancer cells via controlled aggravation of ER stress. Cancer Lett. 2009 Sep 8;282:87–97. https://doi.org/10.1016/j.canlet.2009.03.007.
Article
CAS
PubMed
Google Scholar
Thaxton JE, Wallace C, Riesenberg B, Zhang Y, Paulos CM, Beeson CC, et al. Modulation of endoplasmic reticulum stress controls CD4+ T-cell activation and antitumor function. Cancer Immunol Res. 2017;5:666–75. https://doi.org/10.1158/2326-6066.CIR-17-0081.
Article
CAS
PubMed
PubMed Central
Google Scholar
Brinkman CC, Peske JD, Engelhard VH. Peripheral tissue homing receptor control of naïve, effector, and memory CD8 T cell localization in lymphoid and non-lymphoid tissues. Front Immunol. 2013;4:241. https://doi.org/10.3389/fimmu.2013.00241.
Article
CAS
PubMed
PubMed Central
Google Scholar
Appay V, Dunbar PR, Callan M, Klenerman P, Gillespie GM, Papagno L, et al. Memory CD81 T cells vary in differentiation phenotype in different persistent virus infections. Nat Med. 2002;8:379–85.
Article
CAS
Google Scholar
Månsson Kvarnhammar A, Uddman R, Björnsson S, Riesbeck K, Cardell LO. The activation pattern of blood leukocytes in head and neck squamous cell carcinoma is correlated to survival. PLoS One. 2012;7:e51120. https://doi.org/10.1371/journal.pone.0051120.
Article
CAS
PubMed
PubMed Central
Google Scholar
Seyfizadeh N, Muthuswamy R, Mitchell DA, Nierkens S, Seyfizadeh N. Migration of dendritic cells to the lymph nodes and its enhancement to drive anti-tumor responses. Crit Rev Oncol Hematol. 2016;107:100–10.
Article
Google Scholar
Muraro E, Comaro E, Talamini R, Turchet E, Miolo G, Scalone S, et al. Improved natural killer cell activity and retained anti-tumor CD8(+) T cell responses contribute to the induction of a pathological complete response in Her2-positive breast cancer patients undergoing neoadjuvant chemotherapy. J Transl Med. 2015;13:204. https://doi.org/10.1186/s12967-015-0567-0.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vig S, Buitinga M, Rondas D, Crèvecoeur I, van Zandvoort M, Waelkens E, et al. Cytokine-induced translocation of GRP78 to the plasma membrane triggers a pro-apoptotic feedback loop in pancreatic beta cells. Cell Death and Disease. 2019;10:309. https://doi.org/10.1038/s41419-019-1518-0.
Article
CAS
PubMed
Google Scholar
Smith JA. Regulation of cytokine production by the unfolded protein response; Implications for Infection and Autoimmunity. Front Immunol. 2018;9:422. https://doi.org/10.3389/fimmu.2018.00422.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zaidi MR. The interferon-gamma paradox in Cancer. J Interf Cytokine Res. 2019;39(1):1. https://doi.org/10.1089/jir.2018.0087.
Article
CAS
Google Scholar
Galluzzi L, Zitvogel L, Kroemer G. Immunological mechanisms underneath the efficacy of Cancer therapy. Cancer Immunol Res. 2016;4(11):895. https://doi.org/10.1158/2326-6066.CIR-16-0197.
Article
CAS
PubMed
Google Scholar
Ma Y, Ren Y, Dai ZJ, Wu CJ, Ji YH, Xu J. IL-6, IL-8 and TNF-α levels correlate with disease stage in breast cancer patients. Adv Clin Exp Med. 2017;26:421–6.
Article
Google Scholar
Jin K, Pandey NB, Popel AS. Simultaneous blockade of IL-6 and CCL5 signaling for synergistic inhibition of triple-negative breast cancer growth and metastasis. Breast Cancer Res. 2018;14(20):54. https://doi.org/10.1186/s13058-018-0981-3.
Article
CAS
Google Scholar
Garg AD, Kaczmarek A, Krysko O, Vandenabeele P, Krysko DV, Agostinis P. ER stress-induced inflammation: does it aid or impede disease progression? Trends Mol Med. 2012;18:589–98.
Article
CAS
Google Scholar