Schiffman M, Wentzensen N. Human papillomavirus infection and the multistage carcinogenesis of cervical cancer. Cancer Epidemiol Biomark Prev. 2013;22(4):553–60.
Article
Google Scholar
Sasagawa T, Takagi H, Makinoda S. Immune responses against human papillomavirus (HPV) infection and evasion of host defense in cervical cancer. J Infect Chemother. 2012;18(6):807–15.
Article
CAS
PubMed
Google Scholar
zur Hausen H. Papillomaviruses and cancer: from basic studies to clinical application. Nat Rev Cancer. 2002;2(5):342–50.
Article
PubMed
CAS
Google Scholar
Koeneman MM, Ovestad IT, Janssen EAM, Ummelen M, Kruitwagen RFPM, Hopman AH, et al. Gain of chromosomal region 3q26 as a prognostic biomarker for high-grade cervical intraepithelial Neoplasia: literature overview and pilot study. Pathol Oncol Res. 2018;25:549–57.
Steenbergen RD, Snijders PJ, Heideman DA, Meijer CJ. Clinical implications of (epi) genetic changes in HPV-induced cervical precancerous lesions. Nat Rev Cancer. 2014;14(6):395–405.
Article
CAS
PubMed
Google Scholar
Torres-Poveda K, Bahena-Román M, Delgado-Romero K, Madrid-Marina V. A prospective cohort study to evaluate immunosuppressive cytokines as predictors of viral persistence and progression to pre-malignant lesion in the cervix in women infected with HR-HPV: study protocol. BMC Infect Dis. 2018;18(1):582.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bahrami A, Hasanzadeh M, Shahidsales S, Farazestanian M, Hassanian SM, Moetamani Ahmadi M, et al. Genetic susceptibility in cervical cancer: from bench to bedside. J Cell Physiol. 2018;233(3):1929–39.
Article
CAS
PubMed
Google Scholar
Castellsagué X, Muñoz N. Chapter 3: cofactors in human papillomavirus carcinogenesis--role of parity, oral contraceptives, and tobacco smoking. J Natl Cancer Inst Monogr. 2003;31:20–8.
Fang DH, Ji Q, Fan CH, An Q, Li J. Methionine synthase reductase A66G polymorphism and leukemia risk: evidence from published studies. Leuk Lymphoma. 2014;55(8):1910–4.
Article
CAS
PubMed
Google Scholar
Szalmás A, Kónya J. Epigenetic alterations in cervical carcinogenesis. Semin Cancer Biol. 2009;19(3):144–52.
Article
PubMed
CAS
Google Scholar
Zhu J, Wu L, Kohlmeier M, Ye F, Cai W. Association between MTHFR C677T, MTHFR A1298C and MS A2756G polymorphisms and risk of cervical intraepithelial neoplasia II/III and cervical cancer: a meta-analysis. Mol Med Rep. 2013;8(3):919–27.
Article
CAS
PubMed
Google Scholar
Tong SY, Kim MK, Lee JK, Lee JM, Choi SW, Friso S, et al. Common polymorphisms in methylenetetrahydrofolate reductase gene are associated with risks of cervical intraepithelial neoplasia and cervical cancer in women with low serum folate and vitamin B12. Cancer Causes Control. 2011;22(1):63–72.
Article
PubMed
Google Scholar
Tomita LY, D'Almeida V, Villa LL, Franco EL, Cardoso MA, Group BS. Polymorphisms in genes involved in folate metabolism modify the association of dietary and circulating folate and vitamin B-6 with cervical neoplasia. J Nutr. 2013;143(12):2007–14.
Article
CAS
PubMed
Google Scholar
Frosst P, Blom HJ, Milos R, Goyette P, Sheppard CA, Matthews RG, et al. A candidate genetic risk factor for vascular disease: a common mutation in methylenetetrahydrofolate reductase. Nat Genet. 1995;10(1):111–3.
Article
CAS
PubMed
Google Scholar
Trimmer EE. Methylenetetrahydrofolate reductase: biochemical characterization and medical significance. Curr Pharm Des. 2013;19(14):2574–93.
Article
CAS
PubMed
Google Scholar
Henao OL, Piyathilake CJ, Waterbor JW, Funkhouser E, Johanning GL, Heimburger DC, et al. Women with polymorphisms of methylenetetrahydrofolate reductase (MTHFR) and methionine synthase (MS) are less likely to have cervical intraepithelial neoplasia (CIN) 2 or 3. Int J Cancer. 2005;113(6):991–7.
Article
CAS
PubMed
Google Scholar
Sharp L, Little J. Polymorphisms in genes involved in folate metabolism and colorectal neoplasia: a HuGE review. Am J Epidemiol. 2004;159(5):423–43.
Article
PubMed
Google Scholar
Fowler B. The folate cycle and disease in humans. Kidney Int Suppl. 2001;78:S221–9.
Article
CAS
PubMed
Google Scholar
van der Put NM, van der Molen EF, Kluijtmans LA, Heil SG, Trijbels JM, Eskes TK, et al. Sequence analysis of the coding region of human methionine synthase: relevance to hyperhomocysteinaemia in neural-tube defects and vascular disease. QJM. 1997;90(8):511–7.
Article
PubMed
Google Scholar
Chen LH, Liu ML, Hwang HY, Chen LS, Korenberg J, Shane B. Human methionine synthase. cDNA cloning, gene localization, and expression. J Biol Chem. 1997;272(6):3628–34.
Article
CAS
PubMed
Google Scholar
Paz MF, Avila S, Fraga MF, Pollan M, Capella G, Peinado MA, et al. Germ-line variants in methyl-group metabolism genes and susceptibility to DNA methylation in normal tissues and human primary tumors. Cancer Res. 2002;62(15):4519–24.
CAS
PubMed
Google Scholar
Weiner AS, Beresina OV, Voronina EN, Voropaeva EN, Boyarskih UA, Pospelova TI, et al. Polymorphisms in folate-metabolizing genes and risk of non-Hodgkin's lymphoma. Leuk Res. 2011;35(4):508–15.
Article
CAS
PubMed
Google Scholar
Wang P, Li S, Wang M, He J, Xi S. Association of MTRR A66G polymorphism with cancer susceptibility: evidence from 85 studies. J Cancer. 2017;8(2):266–77.
Article
CAS
PubMed
PubMed Central
Google Scholar
Leclerc D, Wilson A, Dumas R, Gafuik C, Song D, Watkins D, et al. Cloning and mapping of a cDNA for methionine synthase reductase, a flavoprotein defective in patients with homocystinuria. Proc Natl Acad Sci U S A. 1998;95(6):3059–64.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gaughan DJ, Kluijtmans LA, Barbaux S, McMaster D, Young IS, Yarnell JW, et al. The methionine synthase reductase (MTRR) A66G polymorphism is a novel genetic determinant of plasma homocysteine concentrations. Atherosclerosis. 2001;157(2):451–6.
Article
CAS
PubMed
Google Scholar
Choi SW, Mason JB. Folate and carcinogenesis: an integrated scheme. J Nutr. 2000;130(2):129–32.
Article
CAS
PubMed
Google Scholar
Voeller D, Rahman L, Zajac-Kaye M. Elevated levels of thymidylate synthase linked to neoplastic transformation of mammalian cells. Cell Cycle. 2004;3(8):1005–7.
Article
CAS
PubMed
Google Scholar
Zhou JY, Shi R, Yu HL, Zeng Y, Zheng WL, Ma WL. The association between two polymorphisms in the TS gene and risk of cancer: a systematic review and pooled analysis. Int J Cancer. 2012;131(9):2103–16.
Article
CAS
PubMed
Google Scholar
Iida M, Banno K, Yanokura M, Nakamura K, Adachi M, Nogami Y, et al. Candidate biomarkers for cervical cancer treatment: potential for clinical practice (review). Mol Clin Oncol. 2014;2(5):647–55.
Article
PubMed
PubMed Central
Google Scholar
Duthie SJ. Folate and cancer: how DNA damage, repair and methylation impact on colon carcinogenesis. J Inherit Metab Dis. 2011;34(1):101–9.
Article
CAS
PubMed
Google Scholar
Anderson OS, Sant KE, Dolinoy DC. Nutrition and epigenetics: an interplay of dietary methyl donors, one-carbon metabolism and DNA methylation. J Nutr Biochem. 2012;23(8):853–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Miranda PM, Silva NN, Pitol BC, Silva ID, Lima-Filho JL, Carvalho RF, et al. Persistence or clearance of human papillomavirus infections in women in Ouro Preto, Brazil. Biomed Res Int. 2013;2013:578276.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jacobs MV, Snijders PJ, van den Brule AJ, Helmerhorst TJ, Meijer CJ, Walboomers JM. A general primer GP5+/GP6(+)-mediated PCR-enzyme immunoassay method for rapid detection of 14 high-risk and 6 low-risk human papillomavirus genotypes in cervical scrapings. J Clin Microbiol. 1997;35(3):791–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shekari M, Sobti RC, Kordi Tamandani DM, Suri V. Impact of methylenetetrahydrofolate reductase (MTHFR) codon (677) and methionine synthase (MS) codon (2756) on risk of cervical carcinogenesis in north Indian population. Arch Gynecol Obstet. 2008;278(6):517–24.
Article
CAS
PubMed
Google Scholar
Wilson A, Platt R, Wu Q, Leclerc D, Christensen B, Yang H, et al. A common variant in methionine synthase reductase combined with low cobalamin (vitamin B12) increases risk for spina bifida. Mol Genet Metab. 1999;67(4):317–23.
Article
CAS
PubMed
Google Scholar
Ulrich CM, Bigler J, Velicer CM, Greene EA, Farin FM, Potter JD. Searching expressed sequence tag databases: discovery and confirmation of a common polymorphism in the thymidylate synthase gene. Cancer Epidemiol Biomark Prev. 2000;9(12):1381–5.
CAS
Google Scholar
Villafranca E, Okruzhnov Y, Dominguez MA, García-Foncillas J, Azinovic I, Martínez E, et al. Polymorphisms of the repeated sequences in the enhancer region of the thymidylate synthase gene promoter may predict downstaging after preoperative chemoradiation in rectal cancer. J Clin Oncol. 2001;19(6):1779–86.
Article
CAS
PubMed
Google Scholar
Rousset F. genepop'007: a complete re-implementation of the genepop software for windows and Linux. Mol Ecol Resour. 2008;8(1):103–6.
Article
PubMed
Google Scholar
Rodriguez S, Gaunt TR, Day IN. Hardy-Weinberg equilibrium testing of biological ascertainment for Mendelian randomization studies. Am J Epidemiol. 2009;169(4):505–14.
Article
PubMed
PubMed Central
Google Scholar
Fang J, Zhang H, Jin S. Epigenetics and cervical cancer: from pathogenesis to therapy. Tumour Biol. 2014;35(6):5083–93.
Article
CAS
PubMed
Google Scholar
Cardoso MFS, Castelletti CHM, Lima-Filho JL, Martins DBG, Teixeira JAC. Putative biomarkers for cervical cancer: SNVs, methylation and expression profiles. Mutat Res. 2017;773:161–73.
Article
CAS
Google Scholar
Nogueira Junior JS, FAdL M, Bertuzzo CS. Thymidylate synthase gene (TYMS) polymorphisms in sporadic and hereditary breast cancer. BioMed Cent Res J. 2012;5:676–81.
Bezerra AM, Sant'Ana TA, Gomes AV, de Lacerda Vidal AK, Muniz MT. Tyms double (2R) and triple repeat (3R) confers risk for human oral squamous cell carcinoma. Mol Biol Rep. 2014;41(12):7737–42.
Article
CAS
PubMed
Google Scholar
Mandola MV, Stoehlmacher J, Zhang W, Groshen S, Yu MC, Iqbal S, et al. A 6 bp polymorphism in the thymidylate synthase gene causes message instability and is associated with decreased intratumoral TS mRNA levels. Pharmacogenetics. 2004;14(5):319–27.
Article
CAS
PubMed
Google Scholar
Peter M, Stransky N, Couturier J, Hupé P, Barillot E, de Cremoux P, et al. Frequent genomic structural alterations at HPV insertion sites in cervical carcinoma. J Pathol. 2010;221(3):320–30.
Article
CAS
PubMed
Google Scholar
Burd EM. Human papillomavirus and cervical cancer. Clin Microbiol Rev. 2003;16(1):1–17.
Article
CAS
PubMed
PubMed Central
Google Scholar
de Villiers EM, Fauquet C, Broker TR, Bernard HU, zur Hausen H. Classification of papillomaviruses. Virology. 2004;324(1):17–27.
Article
PubMed
CAS
Google Scholar
Tang J, Wang PP, Zhuang YY, Chen WJ, Huang FT, Zhang SN. Thymidylate synthase genetic polymorphisms and cancer risk: a meta-analysis of 37 case-control studies. Chin Med J. 2012;125(14):2582–8.
CAS
PubMed
Google Scholar
Wang J, Wang B, Bi J, Di J. The association between two polymorphisms in the TYMS gene and breast cancer risk: a meta-analysis. Breast Cancer Res Treat. 2011;128(1):203–9.
Article
PubMed
Google Scholar
Guan X, Liu H, Ju J, Li Y, Li P, Wang LE, et al. Genetic variant rs16430 6bp > 0bp at the microRNA-binding site in TYMS and risk of sporadic breast cancer risk in non-Hispanic white women aged ≤ 55 years. Mol Carcinog. 2015;54(4):281–90.
Article
CAS
PubMed
Google Scholar
Gao CM, Takezaki T, Wu JZ, Liu YT, Ding JH, Li SP, et al. Polymorphisms in thymidylate synthase and methylenetetrahydrofolate reductase genes and the susceptibility to esophageal and stomach cancer with smoking. Asian Pac J Cancer Prev. 2004;5(2):133–8.
CAS
PubMed
Google Scholar
Mo A, Zhao Y, Shi Y, Qian F, Hao Y, Chen J, et al. Association between polymorphisms of thymidylate synthase gene 5′- and 3′-UTR and gastric cancer risk: meta-analysis. Biosci Rep. 2016;36(6):e00429.