Cancer in Germany 2007/2008. 8th edition. Robert-Koch Institute (ed.) and the Association of Population-based Cancer Registries in Germany (ed.), Berlin, 2012.
Early Breast Cancer Trialists’ Collaborative Group. Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: an overview of the randomised trials. Lancet. 2005;365:1687–717.
Article
Google Scholar
Walshe JM, Denduluri N, Swain SM. Amenorrhea in premenopausal women after adjuvant chemotherapy for breast cancer. J Clin Oncol. 2006;24:5769–79.
Article
CAS
PubMed
Google Scholar
Swain SM, Jeong JH, Geyer Jr CE, Costantino JP, Pajon ER, Fehrenbacher L, et al. Longer therapy, iatrogenic amenorrhea, and survival in early breast cancer. N Engl J Med. 2010;362:2053–65.
Article
CAS
PubMed
PubMed Central
Google Scholar
Swain SM, Jeong JH, Wolmark N. Amenorrhea from breast cancer therapy – not a matter of dose. N Engl J Med. 2010;363:2268–70.
Article
CAS
PubMed
Google Scholar
Schover LR. Premature ovarian failure and its consequences: vasomotor symptoms, sexuality, and fertility. J Clin Oncol. 2008;26:753–8.
Article
PubMed
Google Scholar
Yoo C, Yun MR, Ahn JH, Jung KH, Kim HJ, Kim JE, et al. Chemotherapy-induced amenorrhea, menopause-specific quality of life, and endocrine profiles in premenopausal women with breast cancer who received adjuvant anthracycline-based chemotherapy: a prospective cohort study. Cancer Chemother Pharmacol. 2013;72:565–75.
Article
CAS
PubMed
Google Scholar
Abusief ME, Missmer SA, Ginsburg ES, Weeks JC, Partridge AH. Relationship between reproductive history, anthropometrics, lifestyle factors, and the likelihood of persistent chemotherapy-related amenorrhea in women with premenopausal breast cancer. Fertil Steril. 2012;97:154–9.
Article
PubMed
PubMed Central
Google Scholar
Anderson RA, Rosendahl M, Kelsey TW, Cameron DA. Pretreatment anti-Müllerian hormone predicts for loss of ovarian function after chemotherapy for early breast cancer. Eur J Cancer. 2013;49:3404–11.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bozza C, Puglisi F, Lambertini M, Osa EO, Manno M, Del Mastro L. Anti-Müllerian hormone: determination of ovarian reserve in early breast cancer patients. Endocr Relat Cancer. 2014;21:R51–65.
Article
CAS
PubMed
Google Scholar
Perry JR, Day F, Elks CE, Sulem P, Thompson DJ, Ferreira T, et al. Parent-of-origin-specific allelic associations among 106 genomic loci for age at menarche. Nature. 2014;514:92–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
De Bruin JP, Bovenhuis H, van Noord PAH, Pearson PL, van Arendonk JAM, te Velde ER, et al. The role of genetic factors in age at natural menopause. Hum Reprod. 2001;16:2014–8.
Article
PubMed
Google Scholar
Stearns V, Schneider B, Henry L, Hayes DF, Flockhart DA. Breast cancer treatment and ovarian failure: risk factors and emerging genetic determinants. Nat Rev Cancer. 2006;6:886–93.
Article
CAS
PubMed
Google Scholar
Colvin M, Padgett CA, Fenselau C. A biologically active metabolite of cyclophosphamide. Cancer Res. 1973;33:915–8.
CAS
PubMed
Google Scholar
Ngamjanyaporn P, Thakkinstian A, Verasertniyom O, Chatchaipun P, Vanichapuntu M, Nantiruj K, et al. Pharmacogenetics of cyclophosphamide and CYP2C19 polymorphism in Thai systemic lupus erythematosus. Rheumatol Int. 2011;31:1215–8.
Article
CAS
PubMed
Google Scholar
Singh G, Saxena N, Aggarwal A, Misra R. Cytochrome P450 polymorphism as a predictor of ovarian toxicity to pulse cyclophosphamide in systemic lupus erythematosus. J Rheumatol. 2007;34:731–3.
CAS
PubMed
Google Scholar
Takada K, Arefayene M, Desta Z, Yarboro CH, Boumpas DT, Balow JE, et al. Cytochrome P450 pharmacogenetics as a predictor of toxicity and clinical response to pulse cyclophosphamide in lupus nephritis. Arthritis Rheum. 2004;50:2202–10.
Article
CAS
PubMed
Google Scholar
Su HI, Sammel MD, Velders L, Horn M, Stankiewicz C, Matro J, et al. Association of cyclophosphamide drug-metabolizing enzyme polymorphisms and chemotherapy-related ovarian failure in breast cancer survivors. Fertil Steril. 2010;94:645–54.
Article
CAS
PubMed
Google Scholar
Wessels AM, Flockhart DA, Carpenter JS, Radovich M, Li L, Miller KD, et al. Cytochrome P450 polymorphisms and their relationship with premature ovarian failure in premenopausal women with breast cancer receiving doxorubicin and cyclophosphamide. Breast J. 2011;17:536–8.
Article
CAS
PubMed
Google Scholar
Joyce H, McCann A, Clynes M, Larkin A. Influence of multidrug resistence and drug transport proteins on chemotherapy drug metabolism. Expert Opin Drug Metab Toxicol. 2015;11:795–809.
Article
CAS
PubMed
Google Scholar
Liu T, Li Q. Organic anion-transporting polypeptides: a novel approach for cancer therapy. J Drug Target. 2014;22:14–22.
Article
PubMed
Google Scholar
König J, Seithel A, Gradhand U, Fromm MF. Pharmacogenomics of human OATP transporters. Naunyn-Schmiedeberg’s Arch Pharmacol. 2006;372:432–43.
Article
Google Scholar
Niemi M, Pasanen MK, Neuvonen PJ. Organic anion transporting polypeptide 1B1: a genetically polymorphic transporter of major importance for hepatic drug uptake. Pharmacol Rev. 2011;63:157–81.
Article
CAS
PubMed
Google Scholar
Gerber B, von Minckwitz G, Stehle H, Reimer T, Felberbaum R, Maass N, et al. Effect of luteinizing hormone-releasing hormone agonist on ovarian function after modern adjuvant breast cancer chemotherapy: the GBG 37 ZORO study. J Clin Oncol. 2011;29:2334–41.
Article
CAS
PubMed
Google Scholar
Faul F, Erdfelder E, Buchner A, Lang AG. Statistical power analyses using G*Power 3.1: tests for correlation and regression analyses. Behav Res Methods. 2009;41:1149–60.
Article
PubMed
Google Scholar
Evans WE, McLeod HL. Pharmacogenomics – drug disposition, drug targets, and side effects. N Engl J Med. 2003;348:538–49.
Article
CAS
PubMed
Google Scholar
Wang L, McLoad HL, Weinshilboum RM. Genomics and drug response. N Engl J Med. 2011;364:1144–53.
Article
CAS
PubMed
PubMed Central
Google Scholar
SEARCH Collaborative Group, Link E, Parish S, Armitage J, Heath S, Matsuda F, Gut I, et al. SLCO1B1 variants and statin-induced myopathy – a genomewide study. N Engl J Med. 2008;359:789–99.
Article
Google Scholar
Abe T, Kakyo M, Tokui T, Nakagomi R, Nishio T, Nakai D, et al. Identification of a novel gene family encoding human liver-specific organic anion transporter LST-1. J Biol Chem. 1999;274:17159–63.
Article
CAS
PubMed
Google Scholar
Treviño LR, Shimasaki N, Yang W, Panetta JC, Cheng C, Pei D, et al. Germline genetic variation in an organic anion transporter polypeptide associated with methotrexate pharmacokinetics and clinical effects. J Clin Oncol. 2009;27:5972–8.
Article
PubMed
PubMed Central
Google Scholar
van der Deure WM, Friesema EC, de Jong FJ, de Rijke YB, de Jong FH, Uitterlinden AG, et al. Organic anion transporter 1B1: an important factor in hepatic thyroid hormone and estrogen transport and metabolism. Endocrinology. 2008;149:4695–701.
Article
PubMed
Google Scholar
Lee E, Schumacher F, Lewinger JP, Neuhausen SL, Anton-Culver H, Horn-Ross PL, et al. The association of polymorphisms in hormone metabolic pathway genes, menopausal hormone therapy, and breast cancer risk: a nested case–control study in the California teachers study cohort. Breast Cancer Res. 2011;13:R37.
Article
PubMed
PubMed Central
Google Scholar
Nigam SK. What do drug transporters really do? Nat Rev Drug Discov. 2015;14:29–44.
Article
CAS
PubMed
Google Scholar
Lee S, Kil WJ, Chun M, Kang SY, Kang SH, Oh YT. Chemotherapy-related amenorrhea in premenopausal women with breast cancer. Menopause. 2009;16:98–103.
Article
PubMed
Google Scholar
Valentini A, Finch A, Lubinski J, Byrski T, Ghadirian P, Kim-Sing C, et al. Chemotherapy-induced amenorrhea in patients with breast cancer with a BRCA1 or BRCA2 mutation. J Clin Oncol. 2013;31:3914–9.
Article
PubMed
PubMed Central
Google Scholar
Wong M, O’Neill S, Walsh G, Smith IE. Goserelin with chemotherapy to preserve ovarian function in pre-menopausal women with early breast cancer: menstruation and pregnancy outcomes. Ann Oncol. 2013;24:133–8.
Article
CAS
PubMed
Google Scholar
Munster P, Moore AP, Ismail-Khan R, Cox CE, Lacevic M, Gross-King M, et al. Randomized trial using gonadotropin-releasing hormone agonists triptorelin for the preservation of varian function during (neo)adjuvant chemotherapy for breast cancer. J Clin Oncol. 2012;30:533–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Elgindy EA, El-Haieg DO, Khorshid OM, Ismail EI, Abdelgawad M, Sallam HN, et al. Gonadotrophin suppression to prevent chemotherapy-induced ovarian damage: a randomized controlled trial. Obstet Gynecol. 2013;121:78–86.
Article
CAS
PubMed
Google Scholar
Turner NH, Partridge A, Sanna G, Di Leo A, Biganzoli L. Utility of gonadotropin-releasing hormone agonists for fertility preservation in young breast cancer patients: the benefit remains uncertain. Ann Oncol. 2013;24:2224–35.
Article
CAS
PubMed
Google Scholar
Moore HCF, Unger JM, Philipps KA, Boyle F, Hitre E, Porter D, et al. Goserelin for ovarian protection during breast-cancer adjuvant chemotherapy. N Engl J Med. 2015;372:923–32.
Article
CAS
PubMed
PubMed Central
Google Scholar
Najafi S, Djavid GE, Mehrdad N, Rajaii E, Alavi N, Olfatbakhsh A, et al. Taxane-based regimens as a risk factor for chemotherapy-induced amenorrhea. Menopause. 2011;18:208–12.
PubMed
Google Scholar
Molina JR, Barton DL, Loprinzi CL. Chemotherapy-induced ovarian failure: manifestations and management. Drug Saf. 2005;28:401–16.
Article
CAS
PubMed
Google Scholar