el-Rehim DMA, Pinder SE, Paish CE, Bell J, Blamey RW, Robertson JFR, Nicholson RI, Ellis IO: Expression of luminal and basal cytokeratins in human breast carcinoma. J Pathol. 2004, 203: 661-671. 10.1002/path.1559.
Article
Google Scholar
Ottewell PD, Coleman RE, Holen I: From genetic abnormality to metastases: murine models of breast cancer and their use in the development of anticancer therapies. Breast Cancer Res Treat. 2006, 96 (2): 101-113. 10.1007/s10549-005-9067-x.
Article
CAS
PubMed
Google Scholar
Kesse-Adu R, Shousha S: Myoepithelial markers are expressed in at least 29% of oestrogen receptor negative invasive breast carcinoma. Modern Pathology. 2004, 17: 646-652. 10.1038/modpathol.3800103.
Article
CAS
PubMed
Google Scholar
Deugnier MA, Teuliere J, Faraldo MM, Thiery JP, Glukhova MA: The importance of being a myoepithelial cell. Breast Cancer Res. 2002, 4 (6): 224-230. 10.1186/bcr459.
Article
CAS
PubMed
PubMed Central
Google Scholar
Perou CM, Sorlie T, Eisen MB, Rijn van de M, Jeffrey SS, Rees CA, Pollack JR, Ross DT, Johnsen H, Akslen LA, Fluge O, Pergamenschikov A, Williams C, Zhu SX, Lonning PE, Borresen-Dale AL, Brown PO, Botstein D: Molecular portraits of human breast tumours. Nature. 2000, 406 (6797): 747-752. 10.1038/35021093.
Article
CAS
PubMed
Google Scholar
Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, Hastie T, Eisen MB, Rijn van de M, Jeffrey SS, Thorsen T, Quist H, Matese JC, Brown PO, Botstein D, Eystein Lonning P, Borresen-Dale AL: Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA. 2001, 98 (19): 10869-10874. 10.1073/pnas.191367098.
Article
CAS
PubMed
PubMed Central
Google Scholar
Livasy CA, Karaca G, Nanda R, Tretiakova MS, Olopade OI, Moore DT, Perou CM: Phenotypic evaluation of the basal-like subtype of invasive breast carcinoma. Modern Pathology. 2005, 19 (2): 264-71. 10.1038/modpathol.3800528.
Article
Google Scholar
Nielsen TO, Hsu FD, Jensen K, Cheang M, Karaca G, Hu Z, Hernandez-Boussard T, Livasy C, Cowan D, Dressler L, Akslen LA, Ragaz J, Gown AM, Gilks CB, Rijn van de M, Perou CM: Immunohistochemical and clinical characterization of the basal-like subtype of invasive breast carcinoma. Clin Cancer Res. 2004, 10: 5367-5374. 10.1158/1078-0432.CCR-04-0220.
Article
CAS
PubMed
Google Scholar
Sorlie T, Tibshirani R, Parker J, Hastie T, Marron JS, Nobel A, Deng S, Johnson H, Pesich R, Geisler S, Demeter J, Perou CM, Lonning PE, Brown PO, Borresen-Dale A, Botstein D: Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci USA. 2003, 100: 8418-8423. 10.1073/pnas.0932692100.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bocker W, Moll R, Poremba C, Holland R, Van Diest PJ, Dervan P, Burger H, Wai D, Ina Diallo R, Brandt B, Herbst H, Schmidt A, Lerch MM, Buchwallow IB: Common adult stem cells in the human breast give rise to glandular and myoepithelial cell lineages: a new cell biological concept. Lab Invest. 2002, 82 (6): 737-746.
Article
PubMed
Google Scholar
Gudjonsson T, Villadsen R, Nielsen HL, Ronnov-Jessen L, Bissell MJ, Petersen OW: Isolation, immortalization, and characterization of a human breast epithelial cell line with stem cell properties. Genes Dev. 2002, 16 (6): 693-706. 10.1101/gad.952602.
Article
CAS
PubMed
PubMed Central
Google Scholar
Visvader JE, Lindeman GJ: Mammary stem cells and mammopoiesis. Cancer Res. 2006, 66 (20): 9798-9801. 10.1158/0008-5472.CAN-06-2254.
Article
CAS
PubMed
Google Scholar
Lakhani SR, Chaggar R, Davies S, Jones C, Collins N, Odel C, Stratton MR, O'Hare MJ: Genetic alterations in 'normal' luminal and myoepithelial cells of the breast. J Pathol. 1999, 189 (4): 496-503. 10.1002/(SICI)1096-9896(199912)189:4<496::AID-PATH485>3.0.CO;2-D.
Article
CAS
PubMed
Google Scholar
Li Y, Welm B, Podsypanina K, Huang S, Chamorro M, Zhang X, Rowlands T, Egeblad M, Cowin P, Werb Z, Tan LK, Rosen JM, Varmus HE: Evidence that transgenes encoding components of the Wnt signaling pathway preferentially induce mammary cancers from progenitor cells. Proc Natl Acad Sci USA. 2003, 100 (26): 15853-15858. 10.1073/pnas.2136825100.
Article
CAS
PubMed
PubMed Central
Google Scholar
Woodward WA, Chen MS, Behbod F, Rosen JM: On mammary stem cells. J Cell Sci. 2005, 118 (Pt 16): 3585-3594. 10.1242/jcs.02532.
Article
CAS
PubMed
Google Scholar
Stingl J, Eaves CJ, Zandieh I, Emerman JT: Characterization of bipotent mammary epithelial progenitor cells in normal adult human breast tissue. Breast Cancer Res Treat. 2001, 67 (2): 93-109. 10.1023/A:1010615124301.
Article
CAS
PubMed
Google Scholar
Teuliere J, Faraldo MM, Deugnier MA, Shtutman M, Ben-Ze'ev A, Thiery JP, Glukhova MA: Targeted activation of beta-catenin signaling in basal mammary epithelial cells affects mammary development and leads to hyperplasia. Development. 2005, 132 (2): 267-277. 10.1242/dev.01583.
Article
CAS
PubMed
Google Scholar
Jonkers J, Meuwissen R, Gulden van der H, Peterse H, Valk van der M, Berns A: Synergistic tumor suppressor activity of BRCA2 and p53 in a conditional mouse model for breast cancer. Nat Genet. 2001, 29 (4): 418-425. 10.1038/ng747.
Article
CAS
PubMed
Google Scholar
Wang A, Arantes S, Conti C, McArthur M, Aldaz CM, Macleod MC: Epidermal hyperplasia and oral carcinoma in mice overexpressing the transcription factor ATF3 in basal epithelial cells. Mol Carcinog. 2007, 46 (6): 476-487. 10.1002/mc.20298.
Article
CAS
PubMed
Google Scholar
Amundson SA, Bittner M, Chen Y, Trent J, Meltzer P, Fornace AJ: Fluorescent cDNA microarray hybridization reveals complexity and heterogeneity of cellular genotoxic stress responses. Oncogene. 1999, 18 (24): 3666-3672. 10.1038/sj.onc.1202676.
Article
CAS
PubMed
Google Scholar
Hai T, Wolfgang CD, Marsee DK, Allen AE, Sivaprasad U: ATF3 and stress responses. Gene Expr. 1999, 7 (4–6): 321-335.
CAS
PubMed
Google Scholar
Wang A, Gu J, Judson-Kremer K, Powell KL, Mistry H, Simhambhatla P, Aldaz CM, Gaddis S, MacLeod MC: Response of human mammary epithelial cells to DNA damage induced by BPDE: involvement of novel regulatory pathways. Carcinogenesis. 2003, 24 (2): 225-234. 10.1093/carcin/24.2.225.
Article
PubMed
Google Scholar
Chen BP, Liang G, Whelan J, Hai T: ATF3 and ATF3 delta Zip. Transcriptional repression versus activation by alternatively spliced isoforms. J Biol Chem. 1994, 269 (22): 15819-15826.
CAS
PubMed
Google Scholar
Ramirez A, Bravo A, Jorcano JL, Vidal M: Sequences 5' of the bovine keratin 5 gene direct tissue- and cell-type-specific expression of a lacZ gene in the adult and during development. Differentiation. 1994, 58 (1): 53-64.
CAS
PubMed
Google Scholar
Porter RM, Gandhi M, Wilson NJ, Wood P, McLean WH, Lane EB: Functional analysis of keratin components in the mouse hair follicle inner root sheath. Br J Dermatol. 2004, 150 (2): 195-204. 10.1111/j.1365-2133.2004.05720.x.
Article
CAS
PubMed
Google Scholar
Harper EG, Alvares SM, Carter WG: Wounding activates p38 map kinase and activation transcription factor 3 in leading keratinocytes. J Cell Sci. 2005, 118 (Pt 15): 3471-3485. 10.1242/jcs.02475.
Article
CAS
PubMed
Google Scholar
Fuchs E: Epidermal differentiation: the bare essentials. J Cell Biol. 1990, 111 (6 Pt 2): 2807-2814. 10.1083/jcb.111.6.2807.
Article
CAS
PubMed
Google Scholar
Rothnagel JA, Seki T, Ogo M, Longley MA, Wojcik SM, Bundman DS, Bickenbach JR, Roop DR: The mouse keratin 6 isoforms are differentially expressed in the hair follicle, footpad, tongue and activated epidermis. Differentiation. 1999, 65 (2): 119-130. 10.1046/j.1432-0436.1999.6520119.x.
Article
CAS
PubMed
Google Scholar
Kallioniemi A, Kallioniemi O-P, Piper J, Tanner M, Stokke T, Chen L, Smith H, Pinkel D, Gray J, Waldman F: Detection and mapping of amplified DNA sequences in breast cancer by comparative genomic hybridization. Proc Natl Acad Sci USA. 1994, 91: 2156-2160. 10.1073/pnas.91.6.2156.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bieche I, Champeme MH, Lidereau R: Loss and gain of distinct regions of chromosome 1q in primary breast cancer. Clin Cancer Res. 1995, 1 (1): 123-127.
CAS
PubMed
Google Scholar
Pimkhaokham A, Shimada Y, Fukuda Y, Kurihara N, Imoto I, Yang ZQ, Imamura M, Nakamura Y, Amagasa T, Inazawa J: Nonrandom chromosomal imbalances in esophageal squamous cell carcinoma cell lines: possible involvement of the ATF3 and CENPF genes in the 1q32 amplicon. Jpn J Cancer Res. 2000, 91 (11): 1126-1133.
Article
CAS
PubMed
Google Scholar
Tirkkonen M, Tanner M, Karhu R, Kallioniemi A, Isola J, Kallioniemi OP: Molecular cytogenetics of primary breast cancer by CGH. Genes Chromosomes Cancer. 1998, 21 (3): 177-184. 10.1002/(SICI)1098-2264(199803)21:3<177::AID-GCC1>3.0.CO;2-X.
Article
CAS
PubMed
Google Scholar
Yin X, DeWille JW, Hai T: A potential dichotomous role of ATF3, an adaptive-response gene, in cancer development. Oncogene. 2008, 27 (15): 2118-2127. 10.1038/sj.onc.1210861.
Article
CAS
PubMed
Google Scholar
Bandyopadhyay S, Wang Y, Zhan R, Pai SK, Watabe M, Iiizumi M, Furuta E, Mohinta S, Liu W, Hirota S, Hosobe S, Tsukada T, Miura K, Takano Y, Saito K, Commes T, Piquemal D, Hai T, Watabe K: The tumor metastasis suppressor gene Drg-1 down-regulates the expression of activating transcription factor 3 in prostate cancer. Cancer Res. 2006, 66 (24): 11983-11990. 10.1158/0008-5472.CAN-06-0943.
Article
CAS
PubMed
Google Scholar
Hartman MG, Lu D, Kim ML, Kociba GJ, Shukri T, Buteau J, Wang X, Frankel WL, Guttridge D, Prentki M, Grey ST, Ron D, Hai T: Role for activating transcription factor 3 in stress-induced beta-cell apoptosis. Mol Cell Biol. 2004, 24 (13): 5721-5732. 10.1128/MCB.24.13.5721-5732.2004.
Article
CAS
PubMed
PubMed Central
Google Scholar
Perez S, Vial E, van Dam H, Castellazzi M: Transcription factor ATF3 partially transforms chick embryo fibroblasts by promoting growth factor-independent proliferation. Oncogene. 2001, 20 (9): 1135-1141. 10.1038/sj.onc.1204200.
Article
CAS
PubMed
Google Scholar
Nieto AI, Shyamala G, Galvez JJ, Thordarson G, Wakefield LM, Cardiff RD: Persistent mammary hyperplasia in FVB/N mice. Comp Med. 2003, 53 (4): 433-438.
CAS
PubMed
Google Scholar
Wakefield LM, Thordarson G, Nieto AI, Shyamala G, Galvez JJ, Anver MR, Cardiff RD: Spontaneous pituitary abnormalities and mammary hyperplasia in FVB/NCr mice: implications for mouse modeling. Comp Med. 2003, 53 (4): 424-432.
CAS
PubMed
Google Scholar
Fan F, Jin S, Amundson SA, Tong T, Fan W, Zhao H, Zhu X, Mazzacurati L, Li X, Petrik KL, Fornace AJ, Rajasekaran B, Zhan Q: ATF3 induction following DNA damage is regulated by distinct signaling pathways and over-expression of ATF3 protein suppresses cells growth. Oncogene. 2002, 21 (49): 7488-7496. 10.1038/sj.onc.1205896.
Article
CAS
PubMed
Google Scholar
Jiang HY, Wek SA, McGrath BC, Lu D, Hai T, Harding HP, Wang X, Ron D, Cavener DR, Wek RC: Activating transcription factor 3 is integral to the eukaryotic initiation factor 2 kinase stress response. Mol Cell Biol. 2004, 24 (3): 1365-1377. 10.1128/MCB.24.3.1365-1377.2004.
Article
CAS
PubMed
PubMed Central
Google Scholar
Allen-Jennings AE, Hartman MG, Kociba GJ, Hai T: The roles of ATF3 in liver dysfunction and the regulation of phosphoenolpyruvate carboxykinase gene expression. J Biol Chem. 2002, 277 (22): 20020-20025. 10.1074/jbc.M200727200.
Article
CAS
PubMed
Google Scholar
Chu HM, Tan Y, Kobierski LA, Balsam LB, Comb MJ: Activating transcription factor-3 stimulates 3',5'-cyclic adenosine monophosphate-dependent gene expression. Mol Endocrinol. 1994, 8 (1): 59-68. 10.1210/me.8.1.59.
CAS
PubMed
Google Scholar
Kang Y, Chen CR, Massague J: A self-enabling TGFbeta response coupled to stress signaling: Smad engages stress response factor ATF3 for Id1 repression in epithelial cells. Mol Cell. 2003, 11 (4): 915-926. 10.1016/S1097-2765(03)00109-6.
Article
CAS
PubMed
Google Scholar
Lopez A, Wang C, Huang C, Yaman I, Li Y, Chakravarty K, Johnson PF, Chiang CM, Snider MD, Wek RC, Hatzoglou M: A feedback transcriptional mechanism controls the level of the arginine/lysine transporter cat-1 during amino acid starvation. Biochem J. 2007, 402 (1): 163-173. 10.1042/BJ20060941.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stearns ME, Kim G, Garcia F, Wang M: Interleukin-10 induced activating transcription factor 3 transcriptional suppression of matrix metalloproteinase-2 gene expression in human prostate CPTX-1532 Cells. Mol Cancer Res. 2004, 2 (7): 403-416.
CAS
PubMed
Google Scholar
Wolfgang CD, Chen BP, Martindale JL, Holbrook NJ, Hai T: gadd153/Chop10, a potential target gene of the transcriptional repressor ATF3. Mol Cell Biol. 1997, 17 (11): 6700-6707.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wolfgang CD, Liang G, Okamoto Y, Allen AE, Hai T: Transcriptional autorepression of the stress-inducible gene ATF3. J Biol Chem. 2000, 275 (22): 16865-16870. 10.1074/jbc.M909637199.
Article
CAS
PubMed
Google Scholar
Yan C, Wang H, Boyd DD: ATF3 Represses 72-kDa Type IV Collagenase (MMP-2) Expression by Antagonizing p53-dependent trans-Activation of the Collagenase Promoter. J Biol Chem. 2002, 277 (13): 10804-10812. 10.1074/jbc.M112069200.
Article
CAS
PubMed
Google Scholar
Zhang C, Gao C, Kawauchi J, Hashimoto Y, Tsuchida N, Kitajima S: Transcriptional activation of the human stress-inducible transcriptional repressor ATF3 gene promoter by p53. Biochem Biophys Res Commun. 2002, 297 (5): 1302-1310. 10.1016/S0006-291X(02)02382-3.
Article
CAS
PubMed
Google Scholar
Kool J, Hamdi M, Cornelissen-Steijger P, Eb van der AJ, Terleth C, van Dam H: Induction of ATF3 by ionizing radiation is mediated via a signaling pathway that includes ATM, Nibrin1, stress-induced MAPkinases and ATF-2. Oncogene. 2003, 22 (27): 4235-4242. 10.1038/sj.onc.1206611.
Article
CAS
PubMed
Google Scholar
Nobori K, Ito H, Tamamori-Adachi M, Adachi S, Ono Y, Kawauchi J, Kitajima S, Marumo F, Isobe M: ATF3 inhibits doxorubicin-induced apoptosis in cardiac myocytes: a novel cardioprotective role of ATF3. J Mol Cell Cardiol. 2002, 34 (10): 1387-1397. 10.1006/jmcc.2002.2091.
Article
CAS
PubMed
Google Scholar
Kawauchi J, Zhang C, Nobori K, Hashimoto Y, Adachi MT, Noda A, Sunamori M, Kitajima S: Transcriptional repressor activating transcription factor 3 protects human umbilical vein endothelial cells from tumor necrosis factor-alpha-induced apoptosis through down-regulation of p53 transcription. J Biol Chem. 2002, 277 (41): 39025-39034. 10.1074/jbc.M202974200.
Article
CAS
PubMed
Google Scholar
Allan AL, Albanese C, Pestell RG, LaMarre J: Activating transcription factor 3 induces DNA synthesis and expression of cyclin D1 in hepatocytes. J Biol Chem. 2001, 276 (29): 27272-27280. 10.1074/jbc.M103196200.
Article
CAS
PubMed
Google Scholar
Janz M, Hummel M, Truss M, Wollert-Wulf B, Mathas S, Johrens K, Hagemeier C, Bommert K, Stein H, Dorken B, Bargou RC: Classical Hodgkin lymphoma is characterized by high constitutive expression of activating transcription factor 3 (ATF3), which promotes viability of Hodgkin/Reed-Sternberg cells. Blood. 2006, 107 (6): 2536-2539. 10.1182/blood-2005-07-2694.
Article
CAS
PubMed
Google Scholar
Nakagomi S, Suzuki Y, Namikawa K, Kiryu-Seo S, Kiyama H: Expression of the activating transcription factor 3 prevents c-Jun N-terminal kinase-induced neuronal death by promoting heat shock protein 27 expression and Akt activation. J Neurosci. 2003, 23 (12): 5187-5196.
CAS
PubMed
Google Scholar
James CG, Woods A, Underhill TM, Beier F: The transcription factor ATF3 is upregulated during chondrocyte differentiation and represses cyclin D1 and A gene transcription. BMC Mol Biol. 2006, 7: 30-10.1186/1471-2199-7-30.
Article
PubMed
PubMed Central
Google Scholar
Lu D, Wolfgang CD, Hai T: Activating transcription factor 3, a stress-inducible gene, suppresses Ras-stimulated tumorigenesis. J Biol Chem. 2006, 281 (15): 10473-10481. 10.1074/jbc.M509278200.
Article
CAS
PubMed
Google Scholar
Nawa T, Nawa MT, Adachi MT, Uchimura I, Shimokawa R, Fujisawa K, Tanaka A, Numano F, Kitajima S: Expression of transcriptional repressor ATF3/LRF1 in human atherosclerosis: colocalization and possible involvement in cell death of vascular endothelial cells. Atherosclerosis. 2002, 161 (2): 281-291. 10.1016/S0021-9150(01)00639-6.
Article
CAS
PubMed
Google Scholar
Zhang C, Kawauchi J, Adachi MT, Hashimoto Y, Oshiro S, Aso T, Kitajima S: Activation of JNK and transcriptional repressor ATF3/LRF1 through the IRE1/TRAF2 pathway is implicated in human vascular endothelial cell death by homocysteine. Biochem Biophys Res Commun. 2001, 289 (3): 718-724. 10.1006/bbrc.2001.6044.
Article
CAS
PubMed
Google Scholar
Newman JRS, Keating AE: Comprehensive identification of human bZIP interactions with coiled coil arrays. Science. 2003, 300: 2097-2101. 10.1126/science.1084648.
Article
CAS
PubMed
Google Scholar
Hsu JC, Bravo R, Taub R: Interactions among LRF-1, JunB, c-Jun and c-Fos define a regulatory program in the G1 phase of liver regeneration. Mol Cell Biol. 1992, 12 (10): 4654-4665.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nilsson M, Ford J, Bohm S, Toftgard R: Characterization of a nuclear factor that binds juxtaposed with ATF3/Jun on a composite response element specifically mediating induced transcription in response to an epidermal growth factor/ras/raf signaling pathway. Cell Growth Differ. 1997, 8 (8): 913-920.
CAS
PubMed
Google Scholar
Yan C, Lu D, Hai T, Boyd DD: Activating transcription factor 3, a stress sensor, activates p53 by blocking its ubiquitination. EMBO J . 2005, 24 (13): 2425-2435. 10.1038/sj.emboj.7600712.
Article
CAS
PubMed
PubMed Central
Google Scholar
Imbert A, Eelkema R, Jordan S, Feiner H, Cowin P: Delta N89 beta-catenin induces precocious development, differentiation, and neoplasia in mammary gland. J Cell Biol. 2001, 153 (3): 555-568. 10.1083/jcb.153.3.555.
Article
CAS
PubMed
PubMed Central
Google Scholar
Miyoshi K, Shillingford JM, LeProvost F, Gounari F, Bronson R, von Boehmer H, Taketo MK, Cardiff RD, Hennigshausen L, Khazaie K: Activation of β-catenin signaling in differentiated mammary secretory cells induces transdifferentiation into epidermis and squamous metaplasias. Proc Natl Acad Sci USA. 2002, 99: 219-224. 10.1073/pnas.012414099.
Article
CAS
PubMed
PubMed Central
Google Scholar
Miyoshi K, Rosner A, Nozawa M, Byrd C, Morgan F, Landesman-Bollag E, Xu X, Seldin DC, Schmidt EV, Taketo MK, Robinson GW, Cardiff RD, Hennigshausen L: Activation of different Wnt/b-catenin signaling components in mammary epithelium induces transdifferentiation and the formation of pilar tumors. Oncogene. 2002, 21: 5548-55556. 10.1038/sj.onc.1205686.
Article
CAS
PubMed
Google Scholar
Farago M, Dominguez I, Landesman-Bollag E, Xu X, Rosner A, Cardiff RD, Seldin DC: Kinase-inactive glycogen synthase kinase 3beta promotes Wnt signaling and mammary tumorigenesis. Cancer Res. 2005, 65 (13): 5792-5801. 10.1158/0008-5472.CAN-05-1021.
Article
CAS
PubMed
Google Scholar
Rosner A, Miyoshi K, Landesman-Bollag E, Xu X, Seldin DC, Moser AR, MacLeod CL, Shyamala G, Gillgrass AE, Cardiff RD: Pathway pathology: histological differences between ErbB/Ras and Wnt pathway transgenic mammary tumors. Am J Pathol. 2002, 161 (3): 1087-1097.
Article
CAS
PubMed
PubMed Central
Google Scholar