Wechsler-Reya R, Scott MP: The developmental biology of brain tumors. Annu Rev Neurosci. 2001, 24: 385-428. 10.1146/annurev.neuro.24.1.385.
Article
CAS
PubMed
Google Scholar
Ellison D: Classifying the medulloblastoma: insights from morphology and molecular genetics. Neuropathol Appl Neurobiol. 2002, 28 (4): 257-282. 10.1046/j.1365-2990.2002.00419.x.
Article
CAS
PubMed
Google Scholar
Pomeroy SL, Tamayo P, Gaasenbeek M, Sturla LM, Angelo M, McLaughlin ME, Kim JY, Goumnerova LC, Black PM, Lau C, Allen JC, Zagzag D, Olson JM, Curran T, Wetmore C, Biegel JA, Poggio T, Mukherjee S, Rifkin R, Califano A, Stolovitzky G, Louis DN, Mesirov JP, Lander ES, Golub TR: Prediction of central nervous system embryonal tumour outcome based on gene expression. Nature. 2003, 415: 436-442. 10.1038/415436a.
Article
Google Scholar
Raffel C, Jenkins RB, Frederick L, Hebrink D, Alderete B, Fults DW, James CD: Sporadic medulloblastomas contain PTCH mutations. Cancer Res. 1997, 57: 842-845.
CAS
PubMed
Google Scholar
Pietsch T, Waha A, Koch A, Kraus J, Albrecht S, Tonn J, Sörensen N, Berthold F, Henk B, Schmandt N, Wolf HK, von Deimling A, Wainwright B, Chenevix-Trench G, Wiestler OD, Wicking C: Medulloblastomas of the desmoplastic variant carry mutations of the human homologue of Drosophila patched. Cancer Res. 1997, 57: 2085-2088.
CAS
PubMed
Google Scholar
Echelard Y, Epstein DJ, St-Jacques B, Shen L, Mohler J, McMahon JA, McMahon AP: Sonic hedgehog, a member of a family of putative signaling molecules, is implicated in the regulation of CNS polarity. Cell. 1993, 75 (7): 1417-1430. 10.1016/0092-8674(93)90627-3.
Article
CAS
PubMed
Google Scholar
Roessler E, Belloni E, Gaudenz K, Jay P, Berta P, Scherer SW, Tsui LC, Muenke M: Mutations in the human Sonic Hedgehog gene cause holoprosencephaly. Nat Genet. 1996, 14 (3): 357-360. 10.1038/ng1196-357.
Article
CAS
PubMed
Google Scholar
Dahmane N, Ruiz i Altaba A: Sonic hedgehog regulates the growth and patterning of the cerebellum. Development. 1999, 126: 3089-3100.
PubMed
Google Scholar
Palma V, Lim DA, Dahmane N, Sánchez P, Brionne TC, Herzberg CD, Gitton Y, Carleton A, Alvarez-Buylla A, Ruiz i Altaba A: Sonic hedgehog controls stem cell behavior in the postnatal and adult brain. Development. 2005, 132 (2): 335-344. 10.1242/dev.01567.
Article
CAS
PubMed
Google Scholar
Goodrich LV, Milenkovic L, Higgins KM, Scott MP: Altered neural cell fates and medulloblastoma in mouse patched mutants. Science. 1997, 277: 1109-1113. 10.1126/science.277.5329.1109.
Article
CAS
PubMed
Google Scholar
Barakat MT, Humke EW, Scott MP: : Learning from Jekyll to control Hyde: Hedgehog signaling in development and cancer. Trends Mol Med. 2010, 16 (8): 337-348. 10.1016/j.molmed.2010.05.003.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hahn H, Christiansen J, Wicking C, Zaphiropoulos PG, Chidambaram A, Gerrard B, Vorechovsky I, Bale AE, Toftgard R, Dean M, Wainwright B: A mammalian patched homolog is expressed in target tissues of sonic hedgehog and maps to a region associated with developmental abnormalities. J Biol Chem. 1996, 271 (21): 12125-12128. 10.1074/jbc.271.21.12125.
Article
CAS
PubMed
Google Scholar
Johnson RL, Rothman AL, Xie J, Goodrich LV, Bare JW, Bonifas JM, Quinn AG, Myers RM, Cox DR, Epstein EH, Scott MP: Human homolog of patched, a candidate gene for the basal cell nevus syndrome. Science. 1996, 272 (5268): 1668-1671. 10.1126/science.272.5268.1668.
Article
CAS
PubMed
Google Scholar
Ruiz i Altaba A, Palma V, Dahmane N: Hedgehog-Gli signaling and the growth of the brain. Nat Rev Neurosci. 2002, 3 (1): 24-33. 10.1038/nrn704.
Article
CAS
PubMed
Google Scholar
Dellovade T, Romer JT, Curran T, Rubin LL: The hedgehog pathway and neurological disorders. Annu Rev Neurosci. 2006, 29: 539-563. 10.1146/annurev.neuro.29.051605.112858.
Article
CAS
PubMed
Google Scholar
Cohen MM: The hedgehog signaling network. Am J Med Genet A. 2003, 123A (1): 5-28. 10.1002/ajmg.a.20495.
Article
PubMed
Google Scholar
Hooper JE, Scott MP: Communicating with Hedgehogs. Nat Rev Mol Cell Biol. 2005, 6: 306-317. 10.1038/nrm1622.
Article
CAS
PubMed
Google Scholar
Kinzler KW, Vogelstein B: The GLI gene encodes a nuclear protein which binds specific sequences in the human genome. Mol Cell Biol. 1990, 10 (2): 634-642.
Article
CAS
PubMed
PubMed Central
Google Scholar
Agren M, Kogerman P, Kleman MI, Wessling M, Toftgård R: Expression of the PTCH1 tumor suppressor gene is regulated by alternative promoters and a single functional Gli-binding site. Gene. 2004, 330: 101-114. 10.1016/j.gene.2004.01.010.
Article
CAS
PubMed
Google Scholar
Mas C, Ruiz i Altaba A: Small molecule modulation of HH-GLI signaling: current leads, trials and tribulations. Biochem Pharmacol. 2010, 80 (5): 712-723. 10.1016/j.bcp.2010.04.016.
Article
CAS
PubMed
Google Scholar
Li W, Ohlmeyer JT, Lane ME, Kalderon D: Function of protein kinase A in HH signal transduction and Drosophila imaginal disc development. Cell. 1995, 80: 553-562. 10.1016/0092-8674(95)90509-X.
Article
CAS
PubMed
Google Scholar
Hammerschmidt M, Bitgood MJ, McMahon A: Protein kinase A is as common negative regulator of SHH signaling in the vertebrate embryo. Genes Dev. 1996, 10: 647-648. 10.1101/gad.10.6.647.
Article
CAS
PubMed
Google Scholar
Epstein DJ, Marti E, Scott MP, McMahon AP: Antagonizing cAMP-dependent protein kinase A in the dorsal CNS activates a conserved SHH signaling pathway. Development. 1996, 122: 2885-2894.
CAS
PubMed
Google Scholar
Miyata A, Arimura A, Dahl RR, Minamino N, Uehara A, Jiang L, Culler MD, Coy DH: Isolation of a novel 38 residue-hypothalamic polypeptide which stimulates adenylate cyclase in pituitary cells. Biochem Biophys Res Commun. 1989, 164: 567-574. 10.1016/0006-291X(89)91757-9.
Article
CAS
PubMed
Google Scholar
Nicot A, DiCicco-Bloom E: Regulation of neuroblast mitosis is determined by PACAP receptor isoform expression. Proc Natl Acad Sci USA. 2001, 98 (8): 4758-4763. 10.1073/pnas.071465398.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nicot A, Lelievre V, Tam J, Waschek JA, DiCicco-Bloom E: Pituitary adenylate cyclase-activating polypeptide and sonic hedgehog interact to control cerebellar granule precursor cell proliferation. J Neurosci. 2002, 22: 9244-9254.
CAS
PubMed
Google Scholar
Vaudry D, Gonzalez BJ, Basille M, Fournier A, Vaudry H: Neurotrophic activity of pituitary adenylate cyclase-activating polypeptide on rat cerebellar cortex during development. Proc Natl Acad Sci USA. 1999, 96: 9415-9420. 10.1073/pnas.96.16.9415.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vaudry D, Gonzalez BJ, Basille M, Yon L, Fournier A, Vaudry H: Pituitary adenylate cyclase-activating polypeptide and its receptors: from structure to functions. Pharmacol Rev. 2000, 52 (2): 269-324.
CAS
PubMed
Google Scholar
Pantaloni C, Brabet P, Bilanges B, Dumuis A, Houssami S, Spengler D, Bockaert J, Journot L: Alternative Splicing in the N-Terminal Extracellular Domain of the Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) Receptor Modulates Receptor Selectivity and Relative Potencies of PACAP-27 and PACAP-38 in Phospholipase C Activation. J Biol Chem. 1996, 271: 22146-22151. 10.1074/jbc.271.36.22146.
Article
CAS
PubMed
Google Scholar
Straub SG, Sharp GW: A Wortmannin-Sensitive Signal Transduction Pathyway Involved in the Stimulation of Insulin Release by Vasoactive Intestinal Polypeptide and Pituitary Adenylate Cyclase-Activating Polypeptide. J Biol Chem. 1996, 271: 1660-1668. 10.1074/jbc.271.3.1660.
Article
CAS
PubMed
Google Scholar
SW Koh: Signal Transduction Through the Vasoactive Intestinal Peptide Receptor Stimulates Phosphorylation of the Kinase pp60c-Src. Biochem Biophys Res Commun. 1991, 174: 452-458. 10.1016/0006-291X(91)91437-H.
Article
Google Scholar
Villalba M, Bockaert J, Journot L: Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP-38) Protects Cerebellar Granule Neurons from Apoptosis by Activating the Mitogen-Activated Protein Kinase (MAP Kinase) Pathway. J Neurosci. 1997, 17: 83-90.
CAS
PubMed
Google Scholar
Barrie AF, Clohessy AM, Buensuceso CS, Rogers MV, Allen JM: Pituitary Adenylyl Cyclase-Activating Peptide Stimulates Extracellular Signal-RegulatedKinase 1 or 2 (ERK1/2) Activity in In Ras-Independent, Mitogen-Activated Protein Kinase/ERK Kinase1 or 2-Dependent Manner in PC12 Cells. J Biol Chem. 1997, 272: 19666-19671. 10.1074/jbc.272.32.19666.
Article
CAS
PubMed
Google Scholar
Lelievre V, Pineau N, Du J, C-H Wen, T.B Nguyen, Janet J, J-M Muller, JA Waschek: Differential Effects of Peptide Histidine Isoleucine (PHI) and Related Peptides on Stimulation and Suppression on Neuroblastoma Cell Proliferation:A Novel VIP-Independent Action of PHI via MAP Kinase. J Biological Chemistry. 1998, 273: 19685-19690. 10.1074/jbc.273.31.19685.
Article
CAS
Google Scholar
Traiffort E, Charytoniuk D, Watroba L, Faure H, Sales N, Ruat M: Discrete localizations of hedgehog signalling components in the developing and adult rat nervous system. Eur J Neurosci. 1999, 11 (9): 3199-3214. 10.1046/j.1460-9568.1999.00777.x.
Article
CAS
PubMed
Google Scholar
Lelievre V, Seksenyan A, Nobuta H, Yong WH, Chhith S, Niewiadomski P, Cohen JR, Dong H, Flores A, Liau LM, Kornblum HI, Scott MP, Waschek JA: Disruption Of The PACAP Gene Promotes Medulloblastoma In PTC1 Mutant Mice. Develop Biol. 2008, 313 (1): 359-370. 10.1016/j.ydbio.2007.10.031.
Article
CAS
PubMed
Google Scholar
Donehower LA, Harvey M, Slagle BL, McArthur MJ, Montgomery CA, Butel JS, Bradley A: Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature. 1992, 356 (6366): 215-221. 10.1038/356215a0.
Article
CAS
PubMed
Google Scholar
Wetmore C, Eberhart DE, Curran T: Loss of p53 but not ARF accelerates medulloblastoma in mice heterozygous for patched. Cancer Res. 2001, 61 (2): 513-516.
CAS
PubMed
Google Scholar
Zhao H, Ayrault O, Zindy F, Kim JH, Roussel MF: Post-transcriptional down-regulation of Atoh1/Math1 by bone morphogenic proteins suppresses medulloblastoma development. Genes Dev. 2008, 22 (6): 722-727. 10.1101/gad.1636408.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sasai K, Romer JT, Lee Y, Finkelstein D, Fuller C, McKinnon PJ, Curran T: Shh Pathway Activity Is Down-Regulated in Cultured Medulloblastoma Cells. Implications for Preclinical Studies Cancer Res. 2006, 66 (8): 4215-4222.
CAS
PubMed
Google Scholar
Chen JK, Taipale J, Young KE, Maiti T, Beachy PA: Small molecule modulation of Smoothened activity. Proc Natl Acad Sci USA. 2002, 99 (22): 14071-14076. 10.1073/pnas.182542899.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wu X, Walker J, Zhang J, Ding S, Schultz PG: Purmorphamine induces osteogenesis by activation of the hedgehog signaling pathway. Chem Biol. 2004, 11 (9): 1229-1238. 10.1016/j.chembiol.2004.06.010.
Article
CAS
PubMed
Google Scholar
Sinha S, Chen JK: Purmorphamine activates the Hedgehog pathway by targeting Smoothened. Nat Chem Biol. 2006, 2 (1): 29-30. 10.1038/nchembio753.
Article
CAS
PubMed
Google Scholar
Fontaine C, Cousin W, Plaisant M, Dani C, Paraldi P: Hedgehog signaling alters adipocyte maturation of human mesenchymal stem cells. Stem Cells. 2008, 26 (4): 1037-1046. 10.1634/stemcells.2007-0974.
Article
CAS
PubMed
Google Scholar
Taipale J, Chen JK, Cooper MK, Wang B, Mann RK, Milenkovic L, Scott MP, Beachy PA: Effects of oncogenic mutations in Smoothened and Patched can be reversed by cyclopamine. Nature. 2000, 406 (6799): 1005-1009. 10.1038/35023008.
Article
CAS
PubMed
Google Scholar
Kimura H, Ng JM, Curran T: Transient inhibition of the Hedgehog pathway in young mice causes permanent defects in bone structure. Cancer Cell. 2008, 13 (3): 249-260. 10.1016/j.ccr.2008.01.027.
Article
CAS
PubMed
Google Scholar
Zhou JX, Jia LW, Liu WM, Miao CL, Liu S, Cao YJ, Duan EK: Role of sonic hedgehog in maintaining a pool of proliferating stem cells in the human fetal epidermis. Hum Reprod. 2006, 21 (7): 1698-1704. 10.1093/humrep/del086.
Article
CAS
PubMed
Google Scholar
Pan Y, Wang C, Wang B: Phosphorylation of Gli2 by protein kinase A is required for Gli2 processing and degradation and the Sonic Hedgehog-regulated mouse development. Dev Biol. 2009, 326 (1): 177-189. 10.1016/j.ydbio.2008.11.009.
Article
CAS
PubMed
Google Scholar
Wang B, Fallon JF, Beachy PA: Hedgehog-regulated processing of Gli3 produces an anterior/posterior repressor gradient in the developing vertebrate limb. Cell. 2000, 100 (4): 423-434. 10.1016/S0092-8674(00)80678-9.
Article
CAS
PubMed
Google Scholar
Tempé D, Casas M, Karaz S, Blanchet-Tournier MF, Concordet JP: Multisite protein kinase A and glycogen synthase kinase 3beta phosphorylation leads to Gli3 ubiquitination by SCFbetaTrCP. Mol Cell Biol. 2006, 26 (11): 4316-4326.
Article
PubMed
PubMed Central
Google Scholar
Waschek JA, Dicicco-Bloom E, Nicot A, Lelievre V: Hedgehog signaling: new targets for GPCRs coupled to cAMP and protein kinase A. Ann N Y Acad Sci. 2006, 1070: 120-128. 10.1196/annals.1317.089.
Article
CAS
PubMed
Google Scholar
Vaudry D, Falluel-Morel A, Bourgault S, Basille M, Burel D, Wurtz O, Fournier A, Chow BK, Hashimoto H, Galas L, Vaudry H: Pituitary adenylate cyclase-activating polypeptide and its receptors: 20 years after thediscovery. Pharmacol Rev. 2009, 61 (3): 283-357. 10.1124/pr.109.001370.
Article
CAS
PubMed
Google Scholar
Fila T, Trazzi S, Crochemore C, Bartesaghi R, Ciani E: Lot1 is a key element of the pituitary adenylate cyclase-activating polypeptide (PACAP)/cyclic AMP pathway that negatively regulates neuronal precursor proliferation. J Biol Chem. 2009, 284 (22): 15325-15338. 10.1074/jbc.M109.002329.
Article
CAS
PubMed
PubMed Central
Google Scholar