Sakamoto A, Iwamoto Y: Current status and perspectives regarding the treatment of osteo-sarcoma: chemotherapy. Rev Recent Clin Trials. 2008, 3 (3): 228-231. 10.2174/157488708785700267.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gorlick R: Osteosarcoma: clinical practice and the expanding role of biology. Journal of musculoskeletal & neuronal interactions. 2002, 2 (6): 549-551.
CAS
Google Scholar
Batanian JR, Cavalli LR, Aldosari NM, Ma E, Sotelo-Avila C, Ramos MB, Rone JD, Thorpe CM, Haddad BR: Evaluation of paediatric osteosarcomas by classic cytogenetic and CGH analyses. Mol Pathol. 2002, 55 (6): 389-393. 10.1136/mp.55.6.389.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lim G, Karaskova J, Beheshti B, Vukovic B, Bayani J, Selvarajah S, Watson SK, Lam WL, Zielenska M, Squire JA: An integrated mBAND and submegabase resolution tiling set (SMRT) CGH array analysis of focal amplification, microdeletions, and ladder structures consistent with breakage-fusion-bridge cycle events in osteosarcoma. Genes Chromosomes Cancer. 2005, 42 (4): 392-403. 10.1002/gcc.20157.
Article
CAS
PubMed
Google Scholar
Lim G, Karaskova J, Vukovic B, Bayani J, Beheshti B, Bernardini M, Squire JA, Zielenska M: Combined spectral karyotyping, multicolor banding, and microarray comparative genomic hybridization analysis provides a detailed characterization of complex structural chromosomal rearrangements associated with gene amplification in the osteosarcoma cell line MG-63. Cancer Genet Cytogenet. 2004, 153 (2): 158-164. 10.1016/j.cancergencyto.2004.01.016.
Article
CAS
PubMed
Google Scholar
Sandberg AA, Bridge JA: Updates on the cytogenetics and molecular genetics of bone and soft tissue tumors: osteosarcoma and related tumors. Cancer Genet Cytogenet. 2003, 145 (1): 1-30. 10.1016/S0165-4608(03)00105-5.
Article
CAS
PubMed
Google Scholar
Selvarajah S, Yoshimoto M, Maire G, Paderova J, Bayani J, Squire JA, Zielenska M: Identification of cryptic microaberrations in osteosarcoma by high-definition oligonucleotide array comparative genomic hybridization. Cancer Genet Cytogenet. 2007, 179 (1): 52-61. 10.1016/j.cancergencyto.2007.08.003.
Article
CAS
PubMed
Google Scholar
Squire JA, Pei J, Marrano P, Beheshti B, Bayani J, Lim G, Moldovan L, Zielenska M: High-resolution mapping of amplifications and deletions in pediatric osteosarcoma by use of CGH analysis of cDNA microarrays. Genes Chromosomes Cancer. 2003, 38 (3): 215-225. 10.1002/gcc.10273.
Article
CAS
PubMed
Google Scholar
Zielenska M, Marrano P, Thorner P, Pei J, Beheshti B, Ho M, Bayani J, Liu Y, Sun BC, Squire JA, et al: High-resolution cDNA microarray CGH mapping of genomic imbalances in osteosarcoma using formalin-fixed paraffin-embedded tissue. Cytogenet Genome Res. 2004, 107 (1-2): 77-82. 10.1159/000079574.
Article
CAS
PubMed
Google Scholar
Tang N, Song WX, Luo J, Haydon RC, He TC: Osteosarcoma development and stem cell differentiation. Clinical orthopaedics and related research. 2008, 466 (9): 2114-2130. 10.1007/s11999-008-0335-z.
Article
PubMed
PubMed Central
Google Scholar
Thomas D, Kansara M: Epigenetic modifications in osteogenic differentiation and transformation. J Cell Biochem. 2006, 98 (4): 757-769. 10.1002/jcb.20850.
Article
CAS
PubMed
Google Scholar
Walkley CR, Qudsi R, Sankaran VG, Perry JA, Gostissa M, Roth SI, Rodda SJ, Snay E, Dunning P, Fahey FH, et al: Conditional mouse osteosarcoma, dependent on p53 loss and potentiated by loss of Rb, mimics the human disease. Genes Dev. 2008, 22 (12): 1662-1676. 10.1101/gad.1656808.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gokgoz N, Wunder JS, Mousses S, Eskandarian S, Bell RS, Andrulis IL: Comparison of p53 mutations in patients with localized osteosarcoma and metastatic osteosarcoma. Cancer. 2001, 92 (8): 2181-2189. 10.1002/1097-0142(20011015)92:8<2181::AID-CNCR1561>3.0.CO;2-3.
Article
CAS
PubMed
Google Scholar
Miller CW, Aslo A, Tsay C, Slamon D, Ishizaki K, Toguchida J, Yamamuro T, Lampkin B, Koeffler HP: Frequency and structure of p53 rearrangements in human osteosarcoma. Cancer research. 1990, 50 (24): 7950-7954.
CAS
PubMed
Google Scholar
Radig K, Schneider-Stock R, Oda Y, Neumann W, Mittler U, Roessner A: Mutation spectrum of p53 gene in highly malignant human osteosarcomas. Gen Diagn Pathol. 1996, 142 (1): 25-32.
CAS
PubMed
Google Scholar
Fuchs B, Pritchard DJ: Etiology of osteosarcoma. Clinical orthopaedics and related research. 2002, 397: 40-52. 10.1097/00003086-200204000-00007.
Article
PubMed
Google Scholar
Deshpande A, Hinds PW: The retinoblastoma protein in osteoblast differentiation and osteosarcoma. Curr Mol Med. 2006, 6 (7): 809-817.
CAS
PubMed
Google Scholar
Sadikovic B, Yoshimoto M, Al-Romaih K, Maire G, Zielenska M, Squire JA: In vitro analysis of integrated global high-resolution DNA methylation profiling with genomic imbalance and gene expression in osteosarcoma. PLoS ONE. 2008, 3 (7): e2834-10.1371/journal.pone.0002834.
Article
PubMed
PubMed Central
Google Scholar
Sadikovic B, Yoshimoto M, Chilton-MacNeill S, Thorner P, Squire JA, Zielenska M: Identification of interactive networks of gene expression associated with osteosarcoma oncogenesis by integrated molecular profiling. Hum Mol Genet. 2009, 18 (11): 1962-1975. 10.1093/hmg/ddp117.
Article
CAS
PubMed
Google Scholar
Gamberi G, Benassi MS, Bohling T, Ragazzini P, Molendini L, Sollazzo MR, Pompetti F, Merli M, Magagnoli G, Balladelli A, et al: C-myc and c-fos in human osteosarcoma: prognostic value of mRNA and protein expression. Oncology. 1998, 55 (6): 556-563. 10.1159/000011912.
Article
CAS
PubMed
Google Scholar
Wu JX, Carpenter PM, Gresens C, Keh R, Niman H, Morris JW, Mercola D: The proto-oncogene c-fos is over-expressed in the majority of human osteosarcomas. Oncogene. 1990, 5 (7): 989-1000.
CAS
PubMed
Google Scholar
Lu XY, Lu Y, Zhao YJ, Jaeweon K, Kang J, Xiao-Nan L, Ge G, Meyer R, Perlaky L, Hicks J, et al: Cell cycle regulator gene CDC5L, a potential target for 6p12-p21 amplicon in osteosarcoma. Mol Cancer Res. 2008, 6 (6): 937-946. 10.1158/1541-7786.MCR-07-2115.
Article
CAS
PubMed
PubMed Central
Google Scholar
Maire G, Yoshimoto M, Chilton-MacNeill S, Thorner PS, Zielenska M, Squire JA: Recurrent RECQL4 imbalance and increased gene expression levels are associated with structural chromosomal instability in sporadic osteosarcoma. Neoplasia. 2009, 11 (3): 260-268. 263p following 268
Article
CAS
PubMed
PubMed Central
Google Scholar
Davicioni E, Wai DH, Anderson MJ: Diagnostic and prognostic sarcoma signatures. Molecular Diagnosis and Therapy. 2008, 12 (6): 359-374.
Article
CAS
PubMed
Google Scholar
Cervigne NK, Reis PP, Machado J, Sadikovic B, Bradley G, Galloni NN, Pintilie M, Jurisica I, Gilbert R, Gullane P, et al: Identification of a microRNA signature associated with progression of leukoplakia to oral carcinoma. Human Molecular Genetics. 2009
Google Scholar
Parsons DW, Jones S, Zhang X, Lin JC, Leary RJ, Angenendt P, Mankoo P, Carter H, Siu IM, Gallia GL, et al: An integrated genomic analysis of human glioblastoma multiforme. Science. 2008, 321 (5897): 1807-1812. 10.1126/science.1164382.
Article
CAS
PubMed
PubMed Central
Google Scholar
McLendon R, Friedman A, Bigner D, Van Meir EG, Brat DJ, Mastrogianakis M, Olson JJ, Mikkelsen T, Lehman N, Aldape K, et al: Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature. 2008
Google Scholar
Rogers S, Cambrosio A: Making a new technology work: the standardization and regulation of microarrays. Yale Journal of Biology and Medicine. 2007, 80 (4): 165-178.
CAS
PubMed
Google Scholar
Farragher SM, Tanney A, Kennedy RD, Paul Harkin D: RNA expression analysis from formalin fixed paraffin embedded tissues. Histochemistry and Cell Biology. 2008, 130 (3): 435-445. 10.1007/s00418-008-0479-7.
Article
CAS
PubMed
Google Scholar
Li G, Zhang W, Zeng H, Chen L, Wang W, Liu J, Zhang Z, Cai Z: An integrative multi-platform analysis for discovering biomarkers of osteosarcoma. BMC Cancer. 2009, 9: 150-10.1186/1471-2407-9-150.
Article
PubMed
PubMed Central
Google Scholar
Kresse SH, Ohnstad HO, Paulsen EB, Bjerkehagen B, Szuhai K, Serra M, Schaefer KL, Myklebost O, Meza-Zepeda LA: LSAMP, a novel candidate tumor suppressor gene in human osteosarcomas, identified by array comparative genomic hybridization. Genes, Chromosomes and Cancer. 2009, 48 (8): 679-693. 10.1002/gcc.20675.
Article
CAS
PubMed
Google Scholar
Rosen G, Caparros B, Huvos AG, Kosloff C, Nirenberg A, Cacavio A, Marcove RC, Lane JM, Mehta B, Urban C: Preoperative chemotherapy for osteogenic sarcoma: selection of postoperative adjuvant chemotherapy based on the response of the primary tumor to preoperative chemotherapy. Cancer. 1982, 49 (6): 1221-1230. 10.1002/1097-0142(19820315)49:6<1221::AID-CNCR2820490625>3.0.CO;2-E.
Article
CAS
PubMed
Google Scholar
Picci P, Sangiorgi L, Rougraff BT, Neff JR, Casadei R, Campanacci M: Relationship of chemotherapy-induced necrosis and surgical margins to local recurrence in osteosarcoma. J Clin Oncol. 1994, 12 (12): 2699-2705.
CAS
PubMed
Google Scholar
Fritsch MK, Bridge JA, Schuster AE, Perlman EJ, Argani P: Performance characteristics of a reverse transcriptase-polymerase chain reaction assay for the detection of tumor-specific fusion transcripts from archival tissue. Pediatr Dev Pathol. 2003, 6 (1): 43-53. 10.1007/s10024-002-0013-1.
Article
CAS
PubMed
Google Scholar
Livak KJ, Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001, 25 (4): 402-408. 10.1006/meth.2001.1262.
Article
CAS
PubMed
Google Scholar
Bender R, Lange S: Adjusting for multiple testing--when and how?. Journal of clinical epidemiology. 2001, 54 (4): 343-349. 10.1016/S0895-4356(00)00314-0.
Article
CAS
PubMed
Google Scholar
Sadikovic B, Al-Romaih K, Squire JA, Zielenska M: Cause and consequences of genetic and epigenetic alterations in human cancer. Curr Genomics. 2008, 9 (6): 394-408. 10.2174/138920208785699580.
Article
CAS
PubMed
PubMed Central
Google Scholar
el-Deiry WS, Harper JW, O'Connor PM, Velculescu VE, Canman CE, Jackman J, Pietenpol JA, Burrell M, Hill DE, Wang Y, et al: WAF1/CIP1 is induced in p53-mediated G1 arrest and apoptosis. Cancer research. 1994, 54 (5): 1169-1174.
CAS
PubMed
Google Scholar
Brazier H, Stephens S, Ory S, Fort P, Morrison N, Blangy A: Expression profile of RhoGTPases and RhoGEFs during RANKL-stimulated osteoclastogenesis: identification of essential genes in osteoclasts. J Bone Miner Res. 2006, 21 (9): 1387-1398. 10.1359/jbmr.060613.
Article
CAS
PubMed
Google Scholar
Carlo-Stella C, Lavazza C, Locatelli A, Vigano L, Gianni AM, Gianni L: Targeting TRAIL agonistic receptors for cancer therapy. Clin Cancer Res. 2007, 13 (8): 2313-2317. 10.1158/1078-0432.CCR-06-2774.
Article
CAS
PubMed
Google Scholar
Lian JB, Javed A, Zaidi SK, Lengner C, Montecino M, van Wijnen AJ, Stein JL, Stein GS: Regulatory controls for osteoblast growth and differentiation: role of Runx/Cbfa/AML factors. Critical Reviews in Eukaryotic Gene Expression. 2004, 14 (1-2): 1-41. 10.1615/CritRevEukaryotGeneExpr.v14.i12.10.
Article
CAS
PubMed
Google Scholar
Zhang HY, Jin L, Stilling GA, Ruebel KH, Coonse K, Tanizaki Y, Raz A, Lloyd RV: RUNX1 and RUNX2 upregulate Galectin-3 expression in human pituitary tumors. Endocrine. 2009, 35 (1): 101-111. 10.1007/s12020-008-9129-z.
Article
CAS
PubMed
Google Scholar
Nakahara S, Oka N, Raz A: On the role of galectin-3 in cancer apoptosis. Apoptosis. 2005, 10 (2): 267-275. 10.1007/s10495-005-0801-y.
Article
CAS
PubMed
Google Scholar
Khanna C, Khan J, Nguyen P, Prehn J, Caylor J, Yeung C, Trepel J, Meltzer P, Helman L: Metastasis-associated differences in gene expression in a murine model of osteosarcoma. Cancer research. 2001, 61 (9): 3750-3759.
CAS
PubMed
Google Scholar
Vladimirova V, Waha A, Luckerath K, Pesheva P, Probstmeier R: Runx2 is expressed in human glioma cells and mediates the expression of galectin-3. Journal of Neuroscience Research. 2008, 86 (11): 2450-2461. 10.1002/jnr.21686.
Article
CAS
PubMed
Google Scholar
Blyth K, Vaillant F, Hanlon L, Mackay N, Bell M, Jenkins A, Neil JC, Cameron ER: Runx2 and MYC collaborate in lymphoma development by suppressing apoptotic and growth arrest pathways in vivo. Cancer research. 2006, 66 (4): 2195-2201. 10.1158/0008-5472.CAN-05-3558.
Article
CAS
PubMed
Google Scholar
Pregizer S, Baniwal SK, Yan X, Borok Z, Frenkel B: Progressive recruitment of Runx2 to genomic targets despite decreasing expression during osteoblast differentiation. Journal of Cellular Biochemistry. 2008, 105 (4): 965-970. 10.1002/jcb.21900.
Article
CAS
PubMed
PubMed Central
Google Scholar
Maruyama Z, Yoshida CA, Furuichi T, Amizuka N, Ito M, Fukuyama R, Miyazaki T, Kitaura H, Nakamura K, Fujita T, et al: Runx2 determines bone maturity and turnover rate in postnatal bone development and is involved in bone loss in estrogen deficiency. Developmental Dynamics. 2007, 236 (7): 1876-1890. 10.1002/dvdy.21187.
Article
CAS
PubMed
Google Scholar
Pratap J, Wixted JJ, Gaur T, Zaidi SK, Dobson J, Gokul KD, Hussain S, van Wijnen AJ, Stein JL, Stein GS, et al: Runx2 transcriptional activation of Indian Hedgehog and a downstream bone metastatic pathway in breast cancer cells. Cancer research. 2008, 68 (19): 7795-7802. 10.1158/0008-5472.CAN-08-1078.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dalla-Torre CA, Yoshimoto M, Lee CH, Joshua AM, de Toledo SR, Petrilli AS, Andrade JA, Chilton-MacNeill S, Zielenska M, Squire JA: Effects of THBS3, SPARC and SPP1 expression on biological behavior and survival in patients with osteosarcoma. BMC Cancer. 2006, 6: 237-10.1186/1471-2407-6-237.
Article
PubMed
PubMed Central
Google Scholar
Luo X, Chen J, Song WX, Tang N, Luo J, Deng ZL, Sharff KA, He G, Bi Y, He BC, et al: Osteogenic BMPs promote tumor growth of human osteosarcomas that harbor differentiation defects. Lab Invest. 2008, 88 (12): 1264-1277. 10.1038/labinvest.2008.98.
Article
CAS
PubMed
Google Scholar
Lamour V, Detry C, Sanchez C, Henrotin Y, Castronovo V, Bellahcene A: Runx2- and histone deacetylase 3-mediated repression is relieved in differentiating human osteoblast cells to allow high bone sialoprotein expression. J Biol Chem. 2007, 282 (50): 36240-36249. 10.1074/jbc.M705833200.
Article
CAS
PubMed
Google Scholar
Cleton-Jansen AM, Anninga JK, Briaire-de Bruijn IH, Romeo S, Oosting J, Egeler RM, Gelderblom H, Taminiau AH, Hogendoorn PC: Profiling of high-grade central osteosarcoma and its putative progenitor cells identifies tumourigenic pathways. British journal of cancer. 2009, 101 (12): 2064-10.1038/sj.bjc.6605482.
Article
PubMed
PubMed Central
Google Scholar
Berger M, Muraro M, Fagioli F, Ferrari S: Osteosarcoma derived from donor stem cells carrying the Norrie's disease gene. N Engl J Med. 2008, 359 (23): 2502-2504. 10.1056/NEJMc0807172.
Article
CAS
PubMed
Google Scholar
Tolar J, Nauta AJ, Osborn MJ, Panoskaltsis Mortari A, McElmurry RT, Bell S, Xia L, Zhou N, Riddle M, Schroeder TM, et al: Sarcoma derived from cultured mesenchymal stem cells. Stem Cells. 2007, 25 (2): 371-379. 10.1634/stemcells.2005-0620.
Article
CAS
PubMed
Google Scholar