Open Access
Open Peer Review

This article has Open Peer Review reports available.

How does Open Peer Review work?

Transcription factor 7-like 2 (TCF7L2) variant is associated with familial breast cancer risk: a case-control study

  • Barbara Burwinkel1, 2,
  • Kalai S Shanmugam1, 2,
  • Kari Hemminki2, 3,
  • Alfons Meindl4,
  • Rita K Schmutzler5, 6,
  • Christian Sutter7,
  • Barbara Wappenschmidt5, 6,
  • Marion Kiechle4,
  • Claus R Bartram7 and
  • Bernd Frank1, 2Email author
BMC Cancer20066:268

DOI: 10.1186/1471-2407-6-268

Received: 27 September 2006

Accepted: 17 November 2006

Published: 17 November 2006

Abstract

Background

The transcription factor 7-like 2 (TCF7L2) is a critical component of the Wnt/β-catenin pathway. Aberrant TCF7L2 expression modifies Wnt signaling and mediates oncogenic effects through the upregulation of c-MYC and cyclin D. Genetic alterations in TCF7L2 may therefore affect cancer risk. Recently, TCF7L2 variants, including the microsatellite marker DG10S478 and the nearly perfectly linked SNP rs12233372, were identified to associate with type 2 diabetes.

Methods

We investigated the effect of the TCF7L2 rs12255372 variant on familial breast cancer (BC) risk by means of TaqMan allelic discrimination, analyzing BRCA1/2 mutation-negative index patients of 592 German BC families and 735 control individuals.

Results

The T allele of rs12255372 showed an association with borderline significance (OR = 1.19, 95% C.I. = 1.01-1.42, P = 0.04), and the Cochran-Armitage test for trend revealed an allele dose-dependent association of rs12255372 with BC risk (P trend = 0.04).

Conclusion

Our results suggest a possible influence of TCF7L2 rs12255372 on the risk of familial BC.

Background

The transcription factor 7-like 2 (TCF7L2 alias TCF-4) gene product, a HMG box transcription factor, is part of the Wnt/β-catenin signaling cascade, one of the key mechanisms of development and growth regulation in the cell [1]. Grant et al. [2] have identified TCF7L2 as a novel candidate gene for type 2 diabetes and reported an association of the microsatellite marker DG10S478 within intron 3. The associated tetranucleotid repeat was shown to have six alleles, namely alleles 0, 4, 8, 12, 16 and 20. The combined non-zero alleles of DG10S478 (referred to as X) were associated with an increased risk in three independent populations (Danish, Icelandic and US). The composite at-risk allele X was nearly perfectly correlated with the T allele of the single nucleotide polymorphism (SNP) rs12255372, while the G allele was linked to allele 0. Consequently, the rs12255372 T allele showed association with type 2 diabetes as well [2]. Recent studies have confirmed these findings, revealing strong association between rs12255372 and type 2 diabetes in Dutch and US cohorts [3, 4].

There is accumulating evidence that aberrant activation of the Wnt/β-catenin pathway has oncogenic effects [5, 6]. Wnt signaling results in increased cytosolic levels of β-catenin which is released from the APC/Axin/GSK3β degradation complex and translocated into the nucleus to bind TCF7L2 [1, 2, 6]. The transcriptionally competent β-catenin/TCF7L2 complexes provoke an excessive expression of TCF7L2 target genes, such as the cyclin D and c-MYC oncogenes, which is a common feature in human cancers, including breast cancer (BC). This supports the biological significance and clinical relevance of the Wnt/β-catenin signaling pathway in carcinogenesis [79].

Given these facts, we investigated the effect of the rs12255372 polymorphism on familial BC risk.

Methods

Study population

We analyzed TCF7L2 rs12255372 in 592 German familial BC cases and 735 control individuals. The BC cases comprised unrelated female index patients (19 to 87 years of age, median age 45) without mutations in the high-penetrance genes BRCA1 and BRCA2. Mutations in the open reading frame of BRCA1 and BRCA2 were excluded by applying denaturing high performance liquid chromatography (DHPLC) on all exons, followed by direct sequencing of conspicuous exons. Cases were collected during the years 1996–2005 through the Institute of Human Genetics (Heidelberg, Germany), the Department of Gynaecology and Obstetrics (Cologne, Germany) and the Department of Medical Genetics (Munich, Germany). According to the German Consortium for Hereditary Breast and Ovarian Cancer, BC cases were divided into six categories based on family history: (A1) families with two or more breast cancer cases including at least two cases with onset below the age of 50 years (39.0%); (A2) families with at least one male breast cancer case (0.7%); (B) families with at least one breast cancer and one ovarian cancer case (18.1%); (C) families with at least two breast cancer cases including one case diagnosed before the age of 50 years (25.5%); (D) families with at least two breast cancer cases diagnosed after the age of 50 years (8.4%) and (E) single cases of breast cancer diagnosed before the age of 35 years (8.3%) [10, 11]. The TCF7L2 rs12255372 analysis comprised one index case per family. DNA of further family members to evaluate segregation of the variant with BC risk was not available.

The corresponding control series consisted of healthy, unrelated and ethnically matched blood donors (26 to 68 years of age, median age 49) sharing the ethnic background with the patients. They were recruited in 2004 and 2005 by the Institute of Transfusion Medicine and Immunology (Mannheim, Germany). The study was approved by the Ethics Committee of the University of Heidelberg (Heidelberg, Germany), and written informed consent was obtained from all individuals.

SNP selection

Grant et al. investigated five SNPs located within a 92.1 kb linkage disequilibrium (LD) block, encompassing parts of introns 3 and 4 and the whole of exon 4 [2]. We selected rs12255372 which was the most highly correlated SNP to the associated microsatellite marker DG10S478 (r2 = 0.95) for genotyping.

Detection of TCF7L2 rs12255372 genotypes

Genotyping of TCF7L2 rs12255372 was performed by TaqMan allelic discrimination as described before [12]. Primers and probes were provided by the assay-by-design service (Applied Biosystems, Foster City, CA). The corresponding sequences are available upon request. Genotyping errors were excluded by re-genotyping ≥ 10% of the samples with a concordance rate of 100%.

Statistical analysis

Genotype-specific odds ratios (OR), 95% confidence intervals (95% C.I.) and P values were computed by unconditional logistic regression using the Statistical Analysis System software (Version 9.1.; SAS Institute Inc., Cary, NC). Hardy-Weinberg equilibrium test was undertaken using Pearson's goodness-of-fit chi-square test with one degree of freedom. Power calculation was carried out with the power and sample size software PS [13]. With the present sample size, we had a power of 80% at a significance level of 0.05 to detect an OR of ≥ 1.38.

Results and discussion

The TCF7L2 rs12255372 T allele frequency of the controls (German Caucasians) was in accordance with those published in previous studies (Danish, Dutch, Icelandic and US Caucasians) [24], and the frequencies of rs12255372 genotypes were consistent with Hardy-Weinberg equilibrium (P = 0.64, Table 1). The minor T allele of rs12255372 was significantly overrepresented in cases, and we found an allelic association with an increased familial BC risk (OR = 1.19, 95% C.I. = 1.01-1.42, P = 0.04, Table 1). Given the borderline significance, a finding by chance cannot be excluded. However, according to the Cochran-Armitage test for trend the association was allele dose-dependent (P trend = 0.04, Table 1), adding consistency to our data.
Table 1

Genotype and allele frequencies of rs12255372 in unrelated female German BRCA1/2 mutation-negative familial breast cancer (BC) patients and healthy, unrelated female control subjects

Genotype

BC Case Patients N (%)

Control Subjects N (%)

OR [95% C.I.], Pvaluea

GG

297 (50.2)

408 (55.5)

1.00

GT

244 (41.2)

276 (37.6)

1.21 [0.97, 1.53], 0.09

TT

51 (8.6)

51 (6.9)

1.37 [0.91, 2.08], 0.13

GT+TT

295 (49.8)

327 (44.5)

1.24 [1.00, 1.54], 0.05

Allele

   

G

0.71

0.74

1.00

T

0.29

0.26

1.19 [1.01, 1.42], 0.04

Cochran-Armitage trend test

P trend = 0.04

 

aOdds ratios (OR) with 95% confidence intervals (95% C.I.) and respective P values were computed by unconditional logistic regression using the Statistical Analysis System software (SAS version 9.1.; SAS Institute Inc., Cary, NC). Adjustment for age did not change the ORs, assuming that the distribution of the TCF7L2 rs12255372 genotypes is age-independent.

The strengths of the present study on BC risk are based on a large sample size and a homogeneous study cohort of a single ethnic group. Only BRCA1/2 mutation-negative familial BC cases were included in order to avoid effects caused by these high-penetrance susceptibility genes. Our study comprised individuals selected for familial BC, since the power of an association study based on cases with a family history of the disease is considerably higher compared to a study using unselected cases [14, 15].

This is the first study to investigate TCF7L2 as a candidate gene for cancer susceptibility, suggesting a prominent role of TCF7L2 variants in human cancers, especially in BC. According to Duval et al. [16], mutant TCF7L2 stimulates its transcriptional activity synergistically with APC/β-catenin gene alterations. Moreover, it is predicted to show a reduced binding of the C-terminal binding protein (CtBP) which hence loses its capability to repress TCF7L2 activity [17]. Both hypotheses involve an increase of TCF7L2 transcriptional activation, leading to uncontrolled target gene expression. Along the lines of Grant et al. [2] who have ruled out exonic mutations, we assume that the linked repeat polymorphism DG10S478 is causative itself or that DG10S478 and rs12255372 are in strong LD with a functional variant affecting transcription, splicing or message stability.

In summary, our data suggest that TCF7L2 variants may contribute to the risk of familial BC. Regarding the borderline significance level of our results, confirmation in an independent BC cohort is essential. Moreover, it would be of interest to estimate their impact on further types of human cancer.

Conclusion

Our data suggest a possible influence of the TCF7L2 rs12255372 variant on the risk of familial BC.

Abbreviations

BC: 

breast cancer

CtBP: 

C-terminal binding protein

DHPLC: 

denaturing high performance liquid chromatography

95% C.I.: 

95% confidence interval

OR: 

odds ratio

SNP: 

single nucleotide polymorphism

TCF7L2: 

transcription factor 7-like 2

TCF-4: 

HMG box transcription factor 4

Declarations

Acknowledgements

We wish to thank all participants who joined the study and are grateful to Kerstin Wagner and Justo Lorenzo Bermejo for their helpful comments. The German breast cancer samples were collected within a project funded by the Deutsche Krebshilfe. It was supported by the Center of Molecular Medicine Cologne (CMMC) and the EU, LSHC-CT-2004-503465.

Authors’ Affiliations

(1)
Helmholtz-University Group Molecular Epidemiology, German Cancer Research Center, DKFZ
(2)
Division of Molecular Genetic Epidemiology, German Cancer Research Center, DKFZ
(3)
Center for Family Medicine, Karolinska Institute
(4)
Department of Gynaecology and Obstetrics, Klinikum rechts der Isar at the Technical University
(5)
Division of Molecular Gynaeco-Oncology, Department of Gynaecology and Obstetrics, Clinical Center University of Cologne
(6)
Center of Molecular Medicine Cologne (CMMC), University Hospital of Cologne
(7)
Institute of Human Genetics, University of Heidelberg

References

  1. Nelson WJ, Nusse R: Convergence of Wnt, beta-catenin, and cadherin pathways. Science. 2004, 303: 1483-1487. 10.1126/science.1094291.View ArticlePubMedPubMed CentralGoogle Scholar
  2. Grant SF, Thorleifsson G, Reynisdottir I, Benediktsson R, Manolescu A, Sainz J, Helgason A, Stefansson H, Emilsson V, Helgadottir A, et al: Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of type 2 diabetes. Nat Genet. 2006, 38: 320-323. 10.1038/ng1732.View ArticlePubMedGoogle Scholar
  3. van Vliet-Ostaptchouk JV, Shiri-Sverdlov R, Zhernakova A, Strengman E, van Haeften TW, Hofker MH, Wijmenga C: Association of variants of transcription factor 7-like 2 (TCF7L2) with susceptibility to type 2 diabetes in the Dutch Breda cohort. Diabetologia. 2006, Oct 10
  4. Zhang C, Qi L, Hunter DJ, Meigs JB, Manson JE, van Dam RM, Hu FB: Variant of transcription factor 7-like 2 (TCF7L2) gene and the risk of type 2 diabetes in large cohorts of U.S. women and men. Diabetes. 2006, 55: 2645-2648. 10.2337/db06-0643.View ArticlePubMedGoogle Scholar
  5. Sjoblom T, Jones S, Wood LD, Parsons DW, Lin J, Barber T, Mandelker D, Leary RJ, Ptak J, Silliman N, et al: The Consensus Coding Sequences of Human Breast and Colorectal Cancers. Science. 2006, 314: 268-274. 10.1126/science.1133427.View ArticlePubMedGoogle Scholar
  6. Wong NA, Pignatelli M: Beta-catenin – a linchpin in colorectal carcinogenesis?. Am J Pathol. 2002, 160: 389-401.View ArticlePubMedPubMed CentralGoogle Scholar
  7. Lin SY, Xia W, Wang JC, Kwong KY, Spohn B, Wen Y, Pestell RG, Hung MC: Beta-catenin, a novel prognostic marker for breast cancer: its roles in cyclin D1 expression and cancer progression. Proc Natl Acad Sci U S A. 2000, 97: 4262-4266. 10.1073/pnas.060025397.View ArticlePubMedPubMed CentralGoogle Scholar
  8. Cowin P, Rowlands TM, Hatsell SJ: Cadherins and catenins in breast cancer. Curr Opin Cell Biol. 2005, 17: 499-508. 10.1016/j.ceb.2005.08.014.View ArticlePubMedGoogle Scholar
  9. Rowlands TM, Pechenkina IV, Hatsell SJ, Pestell RG, Cowin P: Dissecting the roles of beta-catenin and cyclin D1 during mammary development and neoplasia. Proc Natl Acad Sci U S A. 2003, 100: 11400-11405. 10.1073/pnas.1534601100.View ArticlePubMedPubMed CentralGoogle Scholar
  10. Meindl A, the German Consortium for Hereditary Breast and Ovarian Cancer: Comprehensive analysis of 989 patients with breast or ovarian cancer provides BRCA1 and BRCA2 mutation profiles and frequencies for the German population. Int J Cancer. 2002, 97: 472-480. 10.1002/ijc.1626.View ArticlePubMedGoogle Scholar
  11. Frank B, Hemminki K, Wappenschmidt B, Klaes R, Meindl A, Schmutzler RK, Bugert P, Untch M, Bartram CR, Burwinkel B: Variable number of tandem repeats polymorphism in the SMYD3 promoter region and the risk of familial breast cancer. Int J Cancer. 2006, 118: 2917-2918. 10.1002/ijc.21696.View ArticlePubMedGoogle Scholar
  12. Frank B, Hemminki K, Wirtenberger M, Bermejo JL, Bugert P, Klaes R, Schmutzler RK, Wappenschmidt B, Bartram CR, Burwinkel B: The rare ERBB2 variant Ile654Val is associated with an increased familial breast cancer risk. Carcinogenesis. 2005, 26: 643-647. 10.1093/carcin/bgh342.View ArticlePubMedGoogle Scholar
  13. Dupont WD, Plummer WD: Power and sample size calculations for studies involving linear regression. Control Clin Trials. 1998, 19: 589-601. 10.1016/S0197-2456(98)00037-3.View ArticlePubMedGoogle Scholar
  14. Houlston RS, Peto J: The future of association studies of common cancers. Hum Genet. 2003, 112: 434-435.PubMedGoogle Scholar
  15. Antoniou AC, Easton DF: Polygenic inheritance of breast cancer: Implications for design of association studies. Genet Epidemiol. 2003, 25: 190-202. 10.1002/gepi.10261.View ArticlePubMedGoogle Scholar
  16. Duval A, Gayet J, Zhou XP, Iacopetta B, Thomas G, Hamelin R: Frequent frameshift mutations of the TCF-4 gene in colorectal cancers with microsatellite instability. Cancer Res. 1999, 59: 4213-4215.PubMedGoogle Scholar
  17. Duval A, Rolland S, Tubacher E, Bui H, Thomas G, Hamelin R: The human T-cell transcription factor-4 gene: structure, extensive characterization of alternative splicings, and mutational analysis in colorectal cancer cell lines. Cancer Res. 2000, 60: 3872-3879.PubMedGoogle Scholar
  18. Pre-publication history

    1. The pre-publication history for this paper can be accessed here:http://www.biomedcentral.com/1471-2407/6/268/prepub

Copyright

© Burwinkel et al; licensee BioMed Central Ltd. 2006

This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Advertisement