Skip to main content

Table 2 Diagnostic performance of various machine learning-based radiomics signatures

From: Prediction of the Ki-67 expression level in head and neck squamous cell carcinoma with machine learning-based multiparametric MRI radiomics: a multicenter study

Model

Training cohort

Internal validation cohort

External validation cohort

Validation cohorts

AUC (95% CI)

ACC (%)

AUC (95% CI)

ACC (%)

AUC (95% CI)

ACC (%)

Average AUC

Average ACC (%)

KNN

0.829 (0.753—0.904)

77.55

0.778 (0.675—0.862)

72.62

0.768 (0.653—0.860)

76.06

0.773

74.34

SVM

0.884 (0.831—0.925)

80.61

0.860 (0.767—0.926)

83.33

0.841 (0.734—0.917)

83.10

0.851

83.22

LR

0.870 (0.815—0.914)

82.14

0.809 (0.708—0.886)

79.76

0.744 (0.627—0.840)

74.64

0.777

77.20

RF

1.000 (1.000–1.000)

100.0

0.642 (0.530—0.744)

63.10

0.642 (0.519—0.752)

63.38

0.642

63.24

LDA

0.830 (0.770—0.880)

75.00

0.782 (0.678—0.864)

77.38

0.717 (0.598—0.818)

73.24

0.749

75.31

NB

0.769 (0.704—0.826)

70.92

0.762 (0.657—0.848)

75.00

0.691 (0.571—0.796)

69.01

0.727

72.01

XGBoost

0.926 (0.880—0.959)

85.71

0.686 (0.575—0.783)

69.05

0.643 (0.520—0.753)

69.01

0.665

69.03

  1. AUC Area under the curve, ACC Accuracy, CI Confidence interval, KNN K-nearest neighbors, SVM Support vector machine, LR Logistic regression, RF Random forest, LDA Linear discriminant analysis, NB Naive Bayes, XGBoost eXtreme Gradient Boosting