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Abstract 

Background:  Lung squamous cell carcinoma (LUSC) is prone to metastasis and likely to develop resistance to 
chemotherapeutic drugs. DNA repair has been reported to be involved in the progression and chemoresistance of 
LUSC. However, the relationship between LUSC patient prognosis and DNA damage repair genes is still unclear.

Methods:  The clinical information of LUSC patients and tumour gene expression level data were downloaded from 
the TCGA database. Unsupervised clustering and Cox regression were performed to obtain molecular subtypes and 
prognosis-related significant genes based on a list including 150 DNA damage repair genes downloaded from the 
GSEA database. The coefficients determined by the multivariate Cox regression analysis and the expression level of 
prognosis-related DNA damage repair genes were employed to calculate the risk score, which divided LUSC patients 
into two groups: the high-risk group and the low-risk group. Immune viability, overall survival, and anticarcinogen 
sensitivity analyses of the two groups of LUSC patients were performed by Kaplan–Meier analysis with the log rank 
test, ssGSEA and the pRRophetic package in R software. A time-dependent ROC curve was applied to compare the 
survival prediction ability of the risk score, which was used to construct a survival prediction model by multivariate 
Cox regression. The prediction model was used to build a nomogram, the discriminative ability of which was con-
firmed by C-index assessment, and its calibration was validated by calibration curve analysis. Differentially expressed 
DNA damage repair genes in LUSC patient tissues were retrieved by the Wilcoxon test and validated by qRT–PCR and 
IHC.

Result:  LUSC patients were separated into two clusters based on molecular subtypes, of which Cluster 2 was associ-
ated with worse overall survival. A prognostic prediction model for LUSC patients was constructed and validated, and 
a risk score calculated based on the expression levels of ten DNA damage repair genes was employed. The clinical 
utility was evaluated by drug sensitivity and immune filtration analyses. Thirteen-one genes were upregulated in LUSC 
patient samples, and we selected the top four genes that were validated by RT–PCR and IHC.
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Background
Lung cancer is one of the most common malignant 
tumours in the world and has the greatest morbidity 
among all cancers. Lung cancer has become the lead-
ing cause of death from malignant tumours in China’s 
urban population [1]. Most cases of lung cancer are non-
small-cell lung cancer (NSCLC) [2]. NSCLCs account for 
approximately 80% of lung cancers, of which approxi-
mately 30% are LUSCs [3, 4]. Although many effective 
therapies have been applied, including surgery, chemo-
therapy, radiotherapy and targeted therapy, the progno-
sis of LUSC patients remains poor [5]. It is estimated that 
more than 60% of clinical stage I and II LUSC patients 
die 5  years after surgery due to relapse. Furthermore, 
approximately 75% of the patients have stage III or stage 
IV disease at diagnosis, and only 5% of these patients 
survive 5  years after surgery [6]. Chemotherapy with 
platinum therapy are currently used as basic treatments 
for patients with LUSC, but chemoresistance is a major 
obstacle leading to clinical failure [6]. Thus, it is neces-
sary to identify novel molecular indicators in LUSC to 
calculate survival and identify chemoresistance in LUSC 
patients.

DNA damage develops in various kinds of cells dur-
ing life. Cells have a DNA repair mechanism to avoid the 
fatal effect of DNA damage [7]. If the repair mechanism 
does not work properly, it leads to genome instability, 
cell apoptosis, cell cycle arrest, and even tumorigenesis 
[8]. Many kinds of DNA repair gene mutations exist in 
lung squamous cell cancer [9–11]. DNA damage repair 
is implicated not only in regulating the development 
of LUSC but also in resistance to chemoradiotherapy 
[12]. For instance, Ji W et al. evaluated the sensitivity of 
BRCA1- and BRCA2- deficient NSCLC cells to PARP 
inhibitors. However, few studies have concentrated on 
the relationships between DNA damage repair genes and 
the outcomes of LUSC patients.

In the present study, prognostic predictors were iden-
tified by performing Cox regression analysis of DNA 
repair genes. Risk scores were calculated based on the 
level of ten DNA damage repair genes related to LUSC 
patient prognosis. According to the expression levels of 
the ten genes and other clinical factors, we constructed a 
nomogram and model for prognosis prediction. We hope 
this research will identify potential molecular targets for 
predicting the prognosis and chemotherapy response of 
LUSC patients.

Method
Consensus clustering of DNA repair genes
The LUSC tissue data were clustered into k (2 to 9) 
groups by the ConsensuClusterPlus package in R soft-
ware based on DNA repair genes. The k value was opti-
mized according to the unsupervised clustering method, 
and LUSC cancer tissues showed consistent clustering. 
Two subgroups were obtained and verified by PCA. The 
survival of patients was compared by Kaplan–Meier 
analysis.

Acquisition of DNA damage repair genes and clinical 
information of LUSC patients from the TCGA dataset
The DNA damage repair genes and the clinical informa-
tion of the patients from whom the LUSC samples were 
derived were downloaded from the TCGA database. 
The information can be found in additional file Table 
S1. In total, 504 lung squamous cell cancer tissues were 
included in this study. A list including 150 DNA damage 
repair genes was downloaded from the hallmark gene 
set of the GSEA database to screen the gene expression 
matrix.

Screening of differentially expressed DNA damage repair 
genes
The expression levels of DNA damage repair genes were 
compared by the Wilcoxon rank-sum test between the 
normal and tumour groups. The screening criteria were 
FDR (false discovery rate) < 0.05 and log2|fold change|> 1. 
The results of the differential DNA repair gene analysis 
are presented as volcano plots, heatmaps and box.

Construction of the prognostic model
First, univariate Cox regression with the Wald χ2 test was 
used to establish the relationship between overall survival 
(OS) and DNA damage repair genes in LUSC patient 
tumour tissue. DNA repair genes with p values calcu-
lated by the Wald χ2 test less than 0.05 were considered 
statistically significant. According to the median expres-
sion level of DNA damage repair genes, the patients 
were divided into two groups: high and low expres-
sion groups. The overall survival of the two groups was 
analysed by the log-rank test, and survival curves were 
drawn. The multivariate Cox regression model was con-
structed by applying all the statistically significant vari-
ables in the univariate Cox regression. It was optimized 
by the AIC value in a stepwise algorithm. Then, a risk 

Conclusion:  We established a novel prognostic model based on DNA damage repair gene expression that can be 
used to predict therapeutic efficacy in LUSC patients.

Keywords:  LUSC, DNA damage repair genes, Risk model, Prognosis, Drug sensitivity
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score based on the significant prognosis-related DNA 
damage repair genes was developed for LUSC patients: 
( riskscore = h0(t)exp(

n
j=1Coef j × Xj) , where n is the 

quantity of sorted genes, h0(t) is the baseline risk func-
tion, Coefj is the coefficient of each DNA repair gene, and 
Xj is the relative expression level of each DNA damage 
repair gene. The survival of LUSC patients with different 
risk scores was evaluated with prognostic hazard curves. 
Then, significant prognosis-related DNA damage repair 
genes were employed to construct a prognostic model 
with other clinical factors by multivariate Cox regres-
sion analysis. The predictive ability of the risk score and 
other clinical features were evaluated by time-dependent 
receiver operating characteristic (ROC) curve and area 
under the curve (AUC) analyses. The survival ROC pack-
age in R software was applied to draw the ROC curve. 
The AUC value, which indicates the sensitivity and spec-
ificity of the predictive indicators, varied from 0.5 to 1. 
The predictive ability of prognostic indicators increases 
with increasing AUC. The prognostic prediction model 
was ultimately developed into a nomogram, the calibra-
tion of which was measured with a calibration curve, 
and the discriminative ability was measured by C-index 
analysis.

External validation of the risk score
To validate the prognostic predictive value of the risk 
score calculated based on the prognosis-related DNA 
repair genes, a gene expression level data matrix of lung 
cancer tissues with corresponding patient clinical data 
was downloaded from the GEO database (GSE31210). 
The risk score was calculated based on the formula 
constructed by the TCGA database. The prognosis-
predicting ability of the risk score was estimated by time-
dependent ROC curve analysis. According to the median 
risk score, the lung cancer patients in the GSE31210 
dataset were divided into two groups: a high-risk group 
and a low-risk group. Kaplan–Meier curves of the two 
groups were drawn and compared by the log-rank test. 
Subsequently, the prognostic value of the risk score was 
estimated by univariate Cox proportional hazard regres-
sion. Furthermore, multivariate Cox proportional haz-
ard regression revealed the risk score as an independent 
prognostic predictor.

Immune and DNA repair genes in LUSC
Single-sample gene set enrichment analysis was per-
formed by the "GSVA" package in R software with the 
method “ssGSEA” to calculate the infiltration scores of 
16 types of immune cells. The infiltration scores of each 
tumour sample from LUSC patients in the high-risk 
group and low-risk group were calculated and compared 
by the Wilcoxon rank sum test. The immune infiltration 

scores of each type of immune cell and patient group 
were displayed as a box plot, as were the activities of 13 
immune-related pathways (see additional file Table S2) 
[13, 14].

Anticancer Agent Sensitivity Analysis
The IC50 values of six kinds of anticancer agents (etopo-
side, imatinib, methotrexate, rapamycin, vinorelbine, 
and vorinostat) were analysed in each lung squamous 
carcinoma sample. The pRRophetic package [15] in R 
software was applied to calculate the IC50 of each drug 
on the Genomics of Drug Sensitivity in Cancer website 
[16]. The half maximal inhibitory concentrations of drugs 
were compared between the high groups and low groups 
by the Wilcoxon rank-sum test.

Real‑Time Quantitative PCR
Total RNA from each specimen was purified by TRI-
zol (Invitrogen, USA). Then, RNA was transcribed into 
cDNA (complementary DNA) by the PrimeScript® RT 
Reagent Kit with gDNA (genomic DNA) Eraser (Takara, 
Japan). Real-time quantitative PCR was performed using 
a SYBR green master mix kit (ABI technology, USA). The 
QuantStudio System (Q6, Applied Biosystems, USA) was 
used to perform RT–qPCR. All samples were normalized 
to endogenous GAPDH (glyceraldehyde-3-phosphate 
dehydrogenase) with 2−△△Ct algorithms. GenScript 
company (China) provided the primers for each gene.

Immunohistochemistry
The LUSC tissue microarrays were incubated with anti-
bodies (anti-RAE1, anti-POLR2H, anti-RAD51, anti-
ZWINT and anti-RFC4) for immunohistochemical 
staining. The intensity and extent of staining were taken 
into consideration by the scoring system. Staining inten-
sity was classified as 0 (negative), 1 (weak), 2 (moderate), 
or 3 (strong). The IHC score result was stratified as fol-
lows: 0 to 1, negative (-); 2 to 4, weakly positive (+ +); 
5 to 8, moderately positive (+ +), and 9 to 12, strongly 
positive (+ + +).

Result
Molecular subgroups of LUSC clustered based on DNA 
damage repair genes
An analysis flowchart is shown in Fig.  1A. To investi-
gate the characteristics of DNA damage repair genes in 
LUSC, we divided the LUSC samples from TCGA into 
subgroups based on the expression of 150 genes related 
to DNA damage repair, which were downloaded from 
the GSEA website by the R package ConsensusCluster-
Plus. Clustering stability was analysed from k = 2 to 9 for 
the TCGA datasets, and k = 2 was identified as the best 
value, showing expression similarity of the DNA damage 
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repair-related genes. The subgroups were divided into 
Cluster 1 and Cluster 2 and the division of lung squa-
mous carcinoma samples by DNA repair genes showed 
a good differentiation effect validated by PCA analysis 
(Fig.  1B-E). Survival analysis also showed a significant 
difference between these 2 subgroups (P value = 0.013) 
(Fig. 1F). These results suggested that two groups of lung 
squamous carcinoma patients stratified by concensus 
cluster were different in clinical characters.

Determination of the prognostic significance of DNA 
damage repair‑related genes
The expression profile dataset, which included 504 LUSC 
samples, was obtained from the TCGA database. Clinical 
information of these 504 patients was listed in Table  1. 
First, univariate Cox proportional hazard regression with 
the Wald χ2 test was used to identify 16 DNA damage 
repair genes (POLD4, HPRT1, MRPL40, ITPA, ERCC3, 
AK1, DGUOK, TK2, POLR3GL, RFC4, VPS28, POLR2H, 
CANT1, NCBP2, SDCBP, and CCNO). The expression 
level of these genes was significantly correlated with the 
overall survival of LUSC patients (Fig.  2A). Moreover, 
multivariate Cox regression models were constructed 

using these genes. The model with the lowest AIC value 
was selected for further analysis to avoid overfitting. 
After optimization based on the AIC value, ten DNA 
repair genes (POLD4, MRPL40, ITPA, ERCC3, TK2, 
POLR3GL, VPS28, CANT1, SDCBP, and CCNO) were 
preserved in the last multivariate Cox regression model 
and had potential to be prognostic factors (Fig. 2B, addi-
tional file Table S3).

Based on their relationship with LUSC patient survival 
(HR > 1), six genes (SDCBP, POLD4, VPS28, CANT1, 
TK2, and ITPA) were considered risk factors, but the 
other four genes (POLR3GL, MRPL40, ERCC3, and 
CCNO) played protective roles (HR < 1). Ultimately, the 
risk scores of the patients were calculated based on the 
expression of these ten significant prognosis-related 
DNA damage repair genes and their coefficients in the 
multivariate Cox regression model. The median risk 
score was used to classify the LUSC patients into a high-
risk group and a low-risk group. Overall survival was sig-
nificantly different between the two groups of patients 
(median time = 2.64  years vs. 6.16  years, log rank p 
value < 0.001, Fig. 2C).
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Prognostic hazard curves for the LUSC patients 
showed the distribution of the risk score. The survival 
time and risk score results were visualized with a scatter 
plot to display the survival time of each patient with the 
corresponding risk score (Fig. 2D-E). The results revealed 
that patients with higher risk scores had shorter survival.

Analysis of the relationship between TNM stage 
and the expression of significant DNA damage 
repair‑related genes
The risk score and TNM stage were used to perform uni-
variate Cox regression analysis. Pathologic stage (stage III 
vs. stage I HR = 1.542, P value = 0.037) and the risk score 
(HR = 1.610, P value < 0.001) were correlated with the 
overall survival (OS) of LUSC patients (Fig.  3A). Multi-
variate Cox regression analysis of these clinical features 
showed that T stage (HR = 2.757, P value = 0.031) and the 
risk score (HR = 1.490, P value < 0.001) were independent 
risk factors for survival (Fig. 3B).

To assess the difference between risk scores and other 
prognosis-related clinical features, time-dependent ROC 
curves were constructed for 1-year, 3-year and 5-year 
survival. Moreover, we used the area under the curve 

(AUC) values to assess the ability of each prognostic pre-
dictor to discriminate between patients who survived 
and those who died. The AUC of the risk score was larger 
than that of age, stage and T stage at 1 year, 3 years and 
5 years, which indicated that the risk score was a better 
prognostic predictor than other clinical features (risk 
score AUC = 0.662, 0.708, 0.741 for 1  year, 3  years and 
5 years, respectively) (Fig. 3C).

We applied a t test or Kruskal–Wallis test to assess 
the correlation between the DNA damage repair genes 
and TNM stage. The expression levels of CANT1 and 
VPS28 were increased in advanced stage compared with 
stage I-II to stage III-IV disease (P value = 0.004 and 
P value = 0.008) (Fig.  3D). In T3-T4 stage patients, the 
expression level of VPS28 was higher than that in early 
T stage patients (P value = 0.02), implying its dangerous 
role in the development of LUSC (Fig. 3E). Furthermore, 
the expression level of CANT1 was higher in N1-N3 
LUSC tissues than in N0 stage LUSC tissues, which was 
determined based on the distribution of CANT1 expres-
sion levels between N0 stage and N1-N3 stage tissues 
(Fig. 3F). Thus, we conclude that the disruption of DNA 
damage repair might be responsible for the poor progno-
sis of patients with LUSC.

External validation of the risk score
The RNA-seq data and clinical data of the lung can-
cer tissues were downloaded from the GEO database 
(GSE31210). Totally 226 patients were involved into 
research, after the filtration of patients without survival 
time. The detail of clinical information was presented in 
Table  1. The risk score was calculated with the formula 
based on patient data from the TCGA database and the 
expression level of prognostic genes in the GSE31210 
dataset. Patients in GSE31210 were divided into a high-
risk group and a low-risk group according to the median 
risk score. The difference in overall survival between the 
high-risk group and the low-risk group was statistically 
significant (Fig.  4A) (log-rank test P value = 1.901−03). 
The ability of the risk score to predict prognosis was 
estimated by the area under the curve (AUC) of the 
time-dependent ROC curve (Fig. 4B). Prognostic hazard 
curves were drawn to analyse the utility of the prognos-
tic DNA repair genes (Fig.  4C-D). The survival is much 
higher in both high and low risk groups in the validation 
GEO data (GSE31210) set as compared to the discov-
ery TCA set. It is perhaps due to only early stages (stage 
I and stage II) cancer patients’ data in this validation 
(Table 1). Actually, early LUSC detection leads to the bet-
ter survival outcomes of patients. We also analysed the 
hazard ratio of the risk score using univariate and mul-
tivariate Cox regression (Fig. 4E-F). Similar results were 
derived from the GSE31210 cohort and the TCGA LUSC 

Table 1  Clinical information of training cohort and validation 
cohort

TCGA-training 
cohort

GEO-
validation 
cohort

Gender Male 373 105

Female 131 121

Age  < 60 91 96

 >  = 60 404 130

Pathological stage Stage I 245 168

Stage II 163 58

Stage III 85 -

Stage IV 7 -

unknow 4 -

Survival Status Alive 304 191

Dead 200 35

T stage T1 stage 114 -

T2 stage 295 -

T3 stage 71 -

T4 stage 24 -

N stage N0 stage 320 -

N1 stage 133 -

N2 stage 40 -

N3 stage 5 -

unknow 6 -

M stage M0 414 -

M1 7 -

unknow 83 -
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cohort. Therefore, the risk scores were correlated with 
the overall survival (OS) of LUSC patients, and univari-
ate or multivariate Cox regression analyses verified DNA 
repair-related gene-based model could be served as an 
independent prognostic indicator of LUSC.

Establishment and validation of the nomogram
A nomogram was generated to utilize the constructed 
prognostic model for LUSC patients. We selected tumour 
stage, N stage, T stage, risk score, sex and age to estab-
lish the nomogram (Fig.  5A). The discriminatory ability 

of the nomogram was estimated based on the C-index, 
which varied from 0.5 to 1. The discriminatory ability 
increased with increasing C-index. The results showed 
that the C-index of the constructed nomogram was 
0.669. Furthermore, the calibration curves of the nom-
ogram at 1  year, 3  years and 5  years are displayed in 
Fig. 5B. The closer the calibration curve is to the diagonal 
line, the more precise the calibration is. Taken together, 
these C-index and calibration curve data suggest that the 
nomogram can be used to predict the prognosis of LUSC 
patients.
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Evaluation of cancer therapy agents in different risk groups
pRRophetic was applied to estimate the sensitivity of the 
high-risk group and the low-risk group of LUSC patients 
to anticancer agents, including etoposide, imatinib, 
methotrexate, rapamycin, vinorelbine and vorinostat. 
The analysis of anticancer agent sensitivity demonstrated 
that etoposide, methotrexate and vinorelbine had higher 
IC50 levels in the high-risk group, implying that low-
risk group patients is more sensitive to the three drugs. 
In contrast, the IC50 values of imatinib,  vorinostat and 

rapamycin were higher in the low-risk group, which indi-
cated that high-risk group patients is more sensitive to 
the three drugs (Fig. 6A).

DNA damage repair defects will lead to increased 
genomic instability and tumour tumorigenesis, which 
may activate the tumour immune response. The infiltra-
tion scores of 16 kinds of immune cells and the enrich-
ment scores of 13 corresponding immune functions were 
estimated by the “ssGSEA” method, which is provided 
in the “GSVA” R package. The analysis results revealed 
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that 15 kinds of immune cell subpopulations (B cells, NK 
cells, macrophages, mast cells, Tregs, T helper cells, TILs, 
Th1 cells, Th2 cells, Tfh cells, CD8 + T cells, DCs, iDCs, 
neutrophils, and pDCs) had lower scores in the low-risk 
group than in the high-risk group (Fig. 6B). Furthermore, 

we also found that the scores of 7 immune functions were 
also significantly lower in the low-risk group, including 
T-cell costimulation, parainflammation, APC costimu-
lation, CCR, checkpoint, HLA and type II IFN response 
(Fig.  6C). These results suggest that immunological 
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functions are more active in the high-risk group than in 
the low-risk group, and these functions may be related to 
the expression level of DNA damage repair genes. Com-
bining DDR-targeting drugs and tumourimmunotherapy 
to treat LUSC holds wide application prospects.

Differentially expressed DNA repair genes
Differentially expressed DNA repair genes were retrieved 
from the gene expression profile dataset downloaded 
from the TCGA database. The dataset included 49 nor-
mal lung tissue samples and 501 lung squamous cancer 
tissue samples. Thirty-four differentially expressed DNA 
repair genes (DEGs) were ultimately retrieved. Thirty-
one genes were upregulated and three genes were down-
regulated in the tumour group compared with the normal 
group. The genes are displayed in additional file Table S4. 
The DEGs are presented in volcano plots, box plots and 
heatmaps (Fig.  7A-C). Most of the DNA repair genes 
were upregulated in the tumour group, which indicates 
that cancer cells might have better DNA repair abilities 
that help them survive in a hostile environment.

The expression levels of differentially expressed DNA 
repair genes in LUSC tumour tissues
To further verify the differentially expressed DNA repair 
genes in LUSC, we used real-time quantitative PCR 
(qRT–PCR) and immunohistochemistry (IHC) to analyse 
the four genes (POLR2H, RFC4, ZWINT, and RAD51) 
that had the most significantly different differences in 
expression. The qRT–PCR results showed that the four 
genes were upregulated in the tumour group compared 
with adjacent normal tissues, which was consistent with 
the results of the differential expression analysis of the 
RNA-seq data from TCGA (Fig.  8A). To confirm the 
RNA-seq results, the four genes were validated by immu-
nohistochemical staining in lung squamous cancer tis-
sue microarrays. POLR2H, RAD51, ZWINT and RFC4 
were expressed at higher levels in LUSC tissues than in 
adjacent normal tissues (Fig. 8B). These genes should be 
validated in larger-scale clinical studies in the future. The 
molecular biological function of these genes deserves 
further exploration.
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Discussion
Genomic DNA damage caused by smoking or exposure 
to harmful chemical and physical factors is believed to 
be the first stage of carcinogenesis in lung cancer. It has 
been reported that the process of cancer development 
can be affected greatly by the expression level of DNA 
repair genes in tumour tissues, which can help sustain 

the stability of the cancer cell genome [17]. A case–
control study showed that lung cancer patients had a 
reduced DNA repair capacity (DRC) [18]. On the other 
hand, another case–control study pointed out that lung 
cancer patients with higher DNA repair capacity had 
elevated chemoresistance [19]. These previous reports 
found similar to our research showing that DNA repair 
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genes may have both protective and unfavourable effects 
in the development of LUSC in specific patients [20]. In 
light of the important role that DNA repair genes play 
in the origination and development of lung cancer, we 
performed bioinformatics analysis to identify significant 
prognosis-related DNA repair genes in LUSC.

Our research uncovered and evaluated the prognostic 
value of ten DNA repair genes (POLD4, MRPL40, ITPA, 
ERCC3, TK2, POLR3GL, VPS28, CANT1, SDCBP, and 
CCNO). The function of these genes in lung adenocarci-
noma has been reported in previous studies. POLD4 has 

an important role in genomic instability, double-stranded 
DNA breaks (DSBs) and lung cancer. POLD4 decreases 
the intrinsically high induction of γ-H2AX, a marker of 
DSBs [21]. The expression levels of TK2 were signifi-
cantly associated with prognosis in lung cancer tissues. 
The levels of TK2 were higher, and the prognosis of LUSC 
patients was better [22]. Higher CANT1 expression was 
closely related to the TN stage. High expression levels 
and promoter demethylation of CANT1 were related to 
worse prognosis in LUSC [23, 24]. Other papers have also 
shown that CCNO is a key protein in lung physiology, 
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and CCNO mutations result in lung disease [25]. Moreo-
ver CCNO upregulation is significantly associated with 
reduced overall survival in lung cancer patients [26]. In 
our study, prognostic predictors were identified via Cox 
regression analysis based on DNA repair genes. The risk 
scores of each LUSC patient were calculated based on the 
expression levels of the ten prognosis-related DNA repair 
genes. Overall, the prognostic model based on these ten 
genes was a useful tool for predicting the prognosis of 
LUSC patients.

Many DNA repair-related genes have been proven to 
be involved in the progression of distinct kinds of cancer. 
Such genes have been applied as signatures for determin-
ing the prognosis of cancer. Wang et al. identified eleven 
genes that were able to predict the survival of patients 
with colon cancer [27]. Hu et al. constructed a prognostic 
prediction model based on 13 DNA repair genes for lung 
adenocarcinoma patients [28]. Twenty-eight DNA repair 
genes related to the prognosis of patients with ovarian 
cancer were identified, and some of them were applied 
to construct a prognostic model of ovarian cancer [29]. 

Fig. 8  The different expression levels of DNA repair genes between LUSC tumor tissues and adjacent normal tissues. ATotal RNA was isolated from 
7 pairs of clinical LUSC tumor tissue and adjacent normal tissue. Relative mRNA expression was analyzed by qPCR. Each bar is the log2 value of the 
ration of 4 genes between tumor and adjacent normal tissues. B IHC analysis of the indicated genes in LUSC tumor tissues and adjacent normal 
tissues



Page 13 of 14Wang et al. BMC Cancer          (2022) 22:866 	

A set of seven genes were used to predict the survival 
of patients with hepatocellular carcinoma [30]. Liu et al. 
discovered that a nine DNA repair gene set had promi-
nent clinical implications for prognosis evaluation and 
could predict the survival of patients with endometrial 
carcinoma. Similarly, a DNA repair gene signature was 
applied to establish a prognostic nomogram for predict-
ing the biochemical recurrence-free survival of prostate 
cancer patients [31]. However, the relationship between 
the expression level of DNA repair genes and LUSC 
patients remains unclear. In this study, we created a novel 
prognostic prediction model based on DNA repair genes 
for lung squamous carcinoma. Our model provides cli-
nicians with a way to evaluate the survival of lung squa-
mous carcinoma patients.

Chemotherapy with cisplatin is currently used as basic 
treatments for patients with LUSC, but chemoresistance 
is a major obstacle leading to clinical failure [32, 33]. 
Actually, LUSC is the least sensitive to chemotherapy 
compared with other types of NSCLC. It is an important 
question how to select suitable chemotherapeutic drug 
for patients in order to obtain more benefit. DNA repair 
has been reported to be involved in the progression and 
chemoresistance of LUSC. In our study, prognostic pre-
dictors were identified by performing Cox regression 
analysis of DNA repair genes. Patients with a low-risk 
score may be more sensitive to etoposide, methotrexate 
and vinorelbine, and high-risk group patients is more 
sensitive to the imatinib, vorinostat and rapamycin, sug-
gesting that different groups of patients have different 
sensitivity to drugs. Therefore, we hoped that we estab-
lished this novel prognostic model based on DNA dam-
age repair gene expression that can be used to predict 
therapeutic efficacy with LUSC patients.

Conclusion
In this study, a novel prognostic model based on DNA 
repair genes was constructed for lung squamous carci-
noma patients. Our model is able to effectively predict 
the sensitivity of anticancer therapy. Furthermore, this 
study provides potential independent biomarkers that 
could be applied in the clinic.
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