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Abstract 

Background:  Breast cancer (BC) is the most frequently diagnosed cancer among women. Numerous studies 
explored cell-free circulating microRNAs as diagnostic biomarkers of BC. As inconsistent and rarely intersecting micro-
RNA panels have been reported thus far, we aim to evaluate the overall diagnostic performance as well as the sources 
of heterogeneity between studies.

Methods:  Based on the search of three online search engines performed up to March 21st 2022, 56 eligible publica-
tions that investigated diagnostic circulating microRNAs by utilizing Real-Time Quantitative Reverse Transcription PCR 
(qRT-PCR) were obtained. Primary studies’ potential for bias was evaluated with the revised tool for the quality assess-
ment of diagnostic accuracy studies (QUADAS-2). A bivariate generalized linear mixed-effects model was applied to 
obtain pooled sensitivity and specificity. A novel methodology was utilized in which the sample and study models’ 
characteristics were analysed to determine the potential preference of studies for sensitivity or specificity.

Results:  Pooled sensitivity and specificity of 0.85 [0.81—0.88] and 0.83 [0.79—0.87] were obtained, respectively. 
Subgroup analysis showed a significantly better performance of multiple (sensitivity: 0.90 [0.86—0.93]; specificity: 0.86 
[0.80—0.90]) vs single (sensitivity: 0.82 [0.77—0.86], specificity: 0.83 [0.78—0.87]) microRNA panels and a comparable 
pooled diagnostic performance between studies using serum (sensitivity: 0.87 [0.81—0.91]; specificity: 0.83 [0.78—
0.87]) and plasma (sensitivity: 0.83 [0.77—0.87]; specificity: 0.85 [0.78—0.91]) as specimen type. In addition, based 
on bivariate and univariate analyses, miRNA(s) based on endogenous normalizers tend to have a higher diagnostic 
performance than miRNA(s) based on exogenous ones. Moreover, a slight tendency of studies to prefer specificity 
over sensitivity was observed.

Conclusions:  In this study the diagnostic ability of circulating microRNAs to diagnose BC was reaffirmed. Nonethe-
less, some subgroup analyses showed between-study heterogeneity. Finally, lack of standardization and of result 
reproducibility remain the biggest issues regarding the diagnostic application of circulating cell-free microRNAs.
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Introduction
Breast cancer (BC) is the malignancy with highest inci-
dence and mortality rates among women. In 2020, 2,260 
(all ages, in thousands) new BC cases were reported 
worldwide, with age standardised rates per 100,000 of 
47.8 and cumulative risk to age 75 of 5.20% [1]. Moreo-
ver, according to the Association of the Nordic Cancer 
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Registries, based on all Nordic countries, the prevalence 
of BC is around 2% [2]. Considering its high incidence, 
prevalence and mortality rates, early detection of BC is 
essential for the prognosis and prevention of the disease. 
Techniques such as mammography, ultrasonography and 
sometimes magnetic resonance imaging (MRI) are used 
for early detection and diagnosis of breast cancer. Nev-
ertheless, mammography and ultrasonography do have 
some drawbacks in detecting early-stage BC, such as 
lower sensitivity in younger women or in women with 
higher breast density [3, 4]. In addition, mammography 
screens are planned at fixed time intervals, but non-pre-
dicted interval cancers may occur between two screens 
[5]. Moreover, experienced radiologists are required to 
analyse mammography results [4] as well as to carry out 
MRI scans, which are also very time-consuming, costly 
and impractical to be performed routinely. Indeed, there 
is a general need for accurate BC biomarkers to bet-
ter guide diagnostic [6] and therapeutic [7] decisions. 
More specifically, robust minimally invasive diagnostic 
biomarkers for BC would allow for the improvement in 
planning of BC screening [8] and its early detection.

Several types of non-invasive biomarkers have been 
studied in the past years such as polygenic risk scores 
which involve single nucleotide polymorphisms (SNPs), 
cell-free DNA, proteins (tumour-associated autoanti-
bodies, carcinoembryonic antigen, carbohydrate anti-
gen, tissue polypeptide-specific antigen, etc.), circulating 
cell-free or exosomal non-coding RNAs, etc. [9–14]. One 
type of such biomarkers are cell-free circulating microR-
NAs (miRNAs). miRNAs are around 22 nucleotide long, 
single stranded, non-coding RNAs. They play an impor-
tant role in gene expression regulation as well as epige-
netics and cell–cell communication [15]. In their mature 
form, miRNAs are usually localized in the cytoplasm 
but can also be exported from the cell [16]. Therefore, 
some miRNAs are stably found in body fluids such as 
serum, plasma, saliva or urine as they escape degrada-
tion due to their interaction with RNA-binding proteins 
or exosomes [17]. Diagnostic circulating miRNAs have 
been studied as biomarkers in different types of cancers 
[18], including BC [6], and alterations of their levels have 
been found even before routinely applied diagnostic tools 
were able to detect tumours [19]. Hence, circulating cell-
free miRNAs are potentially more effective in detecting 
early-stage BC when compared to the other mentioned 
biomarkers. In addition, they are abundant, very easy 
to analyse and have a relatively low cost. This hints that 
circulating miRNAs have a potential for being clinically 
useful diagnostic biomarkers. Nevertheless, many of the 
published results were contradictory or non-intersecting 
as there have been many reported candidate miRNAs 
or panels of miRNAs but a common significant panel of 

miRNA(s) as a clinically viable tool was not identified [6]. 
One reason for this is the lack of experimental and meth-
odological standardization between the studies (e.g. nor-
malizer or specimen type) [6]. Two meta-analyses from 
2014 reviewed studies which reported diagnostic circu-
lating miRNAs for BC and concluded that miRNAs have 
promising diagnostic performance but also stated that a 
large degree of heterogeneity between the studies exists 
[20, 21], partly due to the lack of standardization.

In this meta-analysis we seek to include all high-quality 
evidence on the diagnostic performance of circulating 
diagnostic miRNA(s) for the detection of BC using any 
Real-Time Quantitative Reverse Transcription Polymer-
ase Chain Reaction (qRT-PCR) platform. Pooled diag-
nostic performance, heterogeneity analysis in context of 
lack of standardization, publication bias as well as general 
risk of bias in individual studies are the main goals of the 
study. Unlike the previous meta-analyses conducted on 
this topic, we have meta-analysed all the reported diag-
nostic models/miRNAs from each sample, not just one 
from independent samples within a study. Reports from 
the same study were considered as dependent (even if 
they were performed on separate cohorts) and we have 
taken into account within-study heterogeneity. Moreo-
ver, novel methodology is employed for within and 
between-study preference for sensitivity over specific-
ity based on the case–control ratio, model design and a 
statistic for the primary study authors’ perceived cost of 
misdiagnosis.

Material and methods
Search strategy and inclusion/exclusion criteria
The methodology was pre-registered in the interna-
tional database of prospectively registered systematic 
reviews (PROSPERO; CRD42021229910). The workflow 
and methodology of the meta-analysis was based on the 
guidelines of Preferred Reporting Items for Systematic 
Reviews and Meta-Analyses of Diagnostic Test Accuracy 
(PRISMA-DTA) [22].

Publications were searched in two databases, Pub-
Med and PubMed Central (NCBI PMC), as well as the 
Google Scholar search engine. The search was performed 
up to March 21st, 2022. The full search strategy, with 
the keywords, is documented in the pre-registration. 
Only peer-reviewed journal articles published in Eng-
lish were considered. Abstracts and other types of pub-
lications were excluded. Eligible articles for inclusion 
were studies which analysed diagnostic performance of 
circulating cell-free miRNAs in (early stage) breast can-
cer patients compared to healthy controls or to healthy 
controls plus patients with benign breast lesions. There-
fore, any prognostic studies, studies which analysed exo-
somal miRNAs, studies which did not have a miRNA 
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model based on qRT-PCR data and studies which did 
not have a model with healthy controls were excluded. 
The study designs included in this meta-analysis are ret-
rospective or prospective case–control studies. Studies 
which included more than 4.5% metastatic (TNM Clas-
sification of Malignant Tumours stage IV) breast cancer 
patients were also excluded. It was also required that the 
studies report diagnostic performance data (sensitivity, 
specificity, area under the curve of the receiver operat-
ing characteristic (ROC AUC), etc.). Studies from which 
the frequencies of true positives (TP), false positives (FP), 
true negatives (TN) and false negatives (FN) could not 
be directly or indirectly extracted were excluded. In case 
studies had unclear, but existing, patient data they were 
included in the analysis, but the authors were contacted 
for clarification. However, studies which did not specify 
whether stage IV cases were included and did not specify 
their number/percentage were excluded from the study 
if the authors did not reply to our inquiry. In addition, 
since the Google Scholar search engine was used, we 
checked whether all article’s journals were peer-reviewed 
and indexed before inclusion in the full-text eligibility 
evaluation.

Data extraction and synthesis
The obtained set of items and research publications 
obtained from the mentioned search sources were col-
lected as a list in one spreadsheet. All duplicate hits 
were removed. First the publication type, title and key-
words were evaluated by reviewers ES and GC. Then the 
abstracts of all articles which were not excluded in the 
initial evaluation were read. In case of any disagreements 
a third reviewer PD was the arbiter. Afterwards the arti-
cles which satisfied inclusion criteria based on screen-
ing of abstracts were selected for the full text evaluation, 
which was performed thoroughly, again by ES and GC, 
in order to decide on inclusion or exclusion. In all three 
steps the reasons for exclusion were documented. Lastly, 
a list of articles fully eligible for this meta-analysis was 
compiled.

Using the same data extraction protocol and data 
structure, data from the selected articles was indepen-
dently extracted by ES and GC. In case disagreements 
occurred between the two reviewers, PD was the arbiter. 
From each study the country, bibliometric data (author, 
year  and journal), patients’ average or median age, 
patients’ breast cancer stage distribution (from stage 0 to 
stage IV), diagnostic performance data (TP, FP, TN, FN; 
potentially several miRNA models were reported and if 
a study had a train as well as test/validation cohort the 
performance data were extracted only for test/valida-
tion cohorts), ROC AUC value(s), normalization method, 
cut-off value(s), sample size of all groups, miRNA(s) 

profiled, specimen type, platform information and sta-
tistical model information were extracted. In addition, 
from the reported ROC curves, the q-Point of the ROC 
(intersection of the anti-diagonal line on the ROC plot 
with the ROC curve) as well as three other points, aim-
ing for equal distance between them, which were not 
on the extremities were extracted. As some studies only 
reported a ROC curve, the q-Point was extracted in order 
to obtain a uniform performance statistic from all the 
models. This enabled a complementary analysis because 
there were more studies which reported a ROC curve 
than studies with diagnostic performance data. The three 
additional points were extracted to fit a parametric ROC 
curve which would then be used for the preference anal-
yses. The extraction of the mentioned points from the 
ROC graphs was performed using the digitize function 
from the digitize package in R software [23].

Risk of bias analysis
All the included studies were evaluated, independently 
by two reviewers, ES and GC, using the revised tool 
for Quality Assessment of Diagnostic Accuracy Stud-
ies (QUADAS-2) [24] in order to evaluate the poten-
tial risks of bias (in four key domains: patient selection; 
index test; reference standard; flow and timing). The 
QUADAS-2 was tailored to be more suitable for stud-
ies which dealt with diagnostic performance of miRNAs 
for early BC diagnosis. The main changes were made in 
Domain 2 (Index test) and Domain 4 (Flow and Tim-
ing). For each variable in QUADAS-2, the percentage of 
agreement between the two reviewers was determined. 
Discrepancies in coding and/or QUADAS-2 evaluations 
were resolved by trying to reach a consensus. In case no 
consensus could be reached, a third reviewer PD was the 
arbiter.

Statistical analysis
Primary studies use a wide range of computational 
methods to obtain estimates of diagnostic performance 
and ROC-curves, including classification methods like 
logistic regression and machine learning when the 
screening result depends on more than one variable. 
In this paper we will refer to the study level computa-
tions as models, even if the computations are relatively 
simple. By utilizing the diagnostic performance data 
(TP, TN, FP, FN) of the models, the sensitivity, speci-
ficity and diagnostic odds ratio (DOR) were calculated. 
In addition, other diagnostic performance parameters 
of the model such as positive likelihood ratio (PLR), 
negative likelihood ratio (NLR), positive predictive 
value (PPV), negative predictive value (NPV), accuracy, 
etc. were calculated. Confidence intervals of PPV and 
NPV were calculated using the formula from [25] if 
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sensitivity or specificity were equal to 1, otherwise logit 
transformation from [26] was applied. A formula from 
[27] was used to calculate the confidence intervals of 
PLR and NLR.

Descriptive statistics on diagnostic performance 
data was calculated using the madad function from the 
mada package in R software [28]. The equality of sensi-
tivities and specificities, as well as the DOR and their 
confidence intervals were calculated. In addition, the 
correlation of sensitivities and false positive rates was 
calculated. Forest plots of sensitivities and specifici-
ties, the crosshair and ROC ellipse plots were based on 
those models labelled as the preferred model by pri-
mary study authors or, if no preferred model was speci-
fied, on the best performing model (from now on ‘most 
important model per study’).

To estimate pooled sensitivity and specificity, two 
bivariate mixed models (in this case referred to the sta-
tistical analysis models) were performed: one including 
all the models and one considering only one model per 
study. In the first model, random effects on models and 
studies were added to take into account the between- 
and within-study variance. In the latter, only the random 
effect on study was considered, resulting in the bivari-
ate model from [29]. The approach was implemented 
with the glmer function in the lme4 package [30], rec-
ommended by [31], and the SROC was plotted for both 
models. The analyses were repeated on subgroups to 
detect possible differences in the performance measures. 
Subgroups analyses were based on normalizer type, spec-
imen type, miRNA profiles (single or multiple miRNA 
panel) and presence of stage III and/or stage IV cases 
(< 4.5% as previously described). In addition, a subgroup 
analysis was performed on 3 subsets of studies depend-
ing on their QUADAS-2 score. Specifically, the score was 
determined by the number of “low” classifications (indi-
cating a low probability of bias) among the seven key 
QUADAS-2 questions. The cut-points of the three sub-
sets were set at > 3, > 4 and > 5 “low” classifications.

Sensitivity analysis
The outlier analysis was performed on all the models 
which have reported diagnostic performance data. It 
was calculated based on the odds ratio. After having cal-
culated the odds ratio for all models, the z-scores were 
calculated and a cut-off of z-score > 2 was selected for 
classifying outliers. Influence analysis was performed 
on both all models as well as the most important model 
per study. Cook’s distance of the bivariate mixed mod-
els was calculated using the influence function from the 
influence.ME package [32]. The z-scores were calculated 

on Cook’s distance and models with a z-score > 2 were 
deemed as influential.

Imbalance of proportions
To compare the performance of models with the imbal-
ance of proportions of cases to controls or predicted pos-
itive to predicted negative screens, all reported models 
were divided in 3 groups. The cut-points for imbalance 
of proportions were set at < 0.7, > 0.7 and < 1.3 and > 1.3. A 
graphical technique was utilized where the models were 
plotted on a ROC plane and marked according to the 
imbalance of proportions group they belonged to.

Implicit cost of misdiagnosis
Despite similar accuracy in terms of statistics like the 
AUC, study level ROC curves can have very different 
shapes. Assuming authors consciously or intuitively bal-
ance the shape of the study level ROC curve in accord-
ance with the primary screening purpose, the study level 
ROC reflects a preference or compromise between sensi-
tivity and specificity in the context of a population level 
prevalence. Based on a method of [33], we include two 
statistics explained subsequently: (i) The shape parameter 
α that quantifies the (a)symmetry of the study level ROC 
curve. A value of α = 1 indicates a ROC curve symmetric 
around the anti-diagonal on ROC space. Low values of α 
indicate a preference of specificity over sensitivity at the 
same overall accuracy, while high values lead to a prefer-
ence of sensitivity over specificity. (ii) The cost parameter 
c1 that is a measure of the (implicit) author perceived cost 
of a false negative misdiagnosis in relation to the cost of 
a false positive misdiagnosis. A value of c1 = 1 indicates 
that for the prevalence at hand, authors chose a cut-off 
value for the primary study’s ROC curve that assumes 
equal cost of both types of misdiagnosis. Values lower/
higher than 1 correspond to lower/higher cost of a false 
negative case in relation to a false positive case. Detailed 
explanations of these statistics are in Supplementary 
Methods (see Additional file 1).

Publication bias
The escalc function from the metafor package [34] was 
used to calculate the effect sizes and sample variances 
of the models, which were then used to generate a fun-
nel plot. In order to test for publication bias, Egger’s test 
using the rma.mv function [34] was performed. All statis-
tical analyses were performed in R [35]; script and data-
set can be found in the github repository of the project 
(https://​github.​com/​sarau​rru/​Meta-​analy​sis-​of-​diagn​
ostic-​cell-​free-​circu​lating-​miRNAs-​for-​BC-​detec​tion).

https://github.com/saraurru/Meta-analysis-of-diagnostic-cell-free-circulating-miRNAs-for-BC-detection
https://github.com/saraurru/Meta-analysis-of-diagnostic-cell-free-circulating-miRNAs-for-BC-detection
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Results
A total of 1,165 publication hits were obtained after per-
forming a search in two databases (PubMed and NCBI 
PMC) and the Google scholar search engine (Fig.  1). 
PubMed and NCBI databases yielded 449 and 235 pub-
lications, respectively. The Google Scholar engine yielded 
481 hits. After the removal of duplicates (n = 443) 722 
unique publications were obtained. Type of publication, 
title and keywords were evaluated in the initial eligibil-
ity assessment while the abstract was evaluated in the 

secondary eligibility assessment. In the initial and sec-
ondary eligibility assessment 397 and 145 publications 
were excluded, respectively. The final, full-text, eligibility 
evaluation was performed on 180 articles, of which 124 
were excluded. Hence, a total of 56 articles remained eli-
gible for the meta-analysis. A generalized summary of the 
exclusion reasons for all three eligibility evaluation steps 
is shown in Table 1, while the comprehensive and com-
plete list of reasons and their frequencies are available in 
Supplementary Table S1 (see Additional file 2).

Fig. 1  Flow diagram of the selection procedure for the inclusion of studies in the meta-analysis



Page 6 of 23Sehovic et al. BMC Cancer          (2022) 22:634 

Included studies
Within the 56 studies which analysed the performance 
of circulating miRNAs in diagnosis of BC using qRT-
PCR, a total of 3,894 cases and 2,948 controls were 
included. The sample size range of BC patients among 
the studies was from 15 to 180, while the range of con-
trols was from 10 to 199. The case and control number 
of each study is based on the model within each study 
with the largest case/control number. The studies were 
conducted in 15 different countries: Belgium (n = 1), 
China (n = 21), Egypt (n = 7), Germany (n = 3), Indone-
sia (n = 1), Iran (n = 6), Iraq (n = 1), Kazakhstan (n = 1), 
Lebanon (n = 1), Mexico (n = 2), Rwanda (n = 1), Sin-
gapore (n = 1), South Korea (n = 2), Spain (n = 4), USA 
(n = 3) and 1 included samples from multiple institu-
tions. Hence, 8 studies were conducted in Africa, 34 
in Asia, 8 in Europe, 5 in North America and 1 study 
was multicontinental. Seven of the 56 studies included 
stage IV breast cancer patients, 4.5% or less of the total 
cancer patient cohort. The remaining 49 studies did not 
include any stage IV cases. Ten of the 56 studies did not 
report diagnostic performance data but reported ROC 
graphs with AUC values, while 3 studies did not report 
ROC graphs with AUC values but reported only diag-
nostic accuracy in terms of sensitivity and specificity. 
Key information about the included studies can be seen 
in Table 2.

The 56 studies reported a total of 173 different mod-
els. Among them, 121 analysed single miRNA perfor-
mance, which covered a total of 68 unique miRNAs. On 
the other hand, 52 models analysed panels of miRNAs 
and their performance, covering 55 unique miRNAs. 

Moreover, 82 models had plasma as the specimen type, 
81 had serum, while 10 had whole blood. It is worth 
restating that, in addition to the analyses performed on 
all the reported models, this meta-analysis also evalu-
ates one model per study (n = 56), the most important 
model per study.

QUADAS‑2 risk of bias assessment
The QUADAS-2 assessment was performed on the 56 
included studies. More than 75% of studies had a low 
probability of having an index test and patient selection 
applicability concern, while 82.1% of studies had low 
probability of having a reference standard applicabil-
ity concern. On the other hand, 41.1% of the studies had 
low risk of bias within the patient flow and timing cat-
egory. Despite the low probability of applicability con-
cern for the index tests for the majority of the studies, 
only 44.6% had a low probability of risk of bias coming 
from the index test. Nevertheless, in the index test cat-
egory, only 16.1% of the studies had a high probability of 
bias (Fig. 2a). Interestingly, only 8.9% of the studies per-
formed or explicitly stated that prospective sampling, 
without knowing the status of the cases and controls was 
performed. This is also associated with the fact that in 
most meta-analysed studies blood was collected after the 
biopsy was performed on the patient. Additionally, 50% 
of studies explicitly stated that blood collection was per-
formed before surgery (Fig. 2b).

Descriptive statistics
Both sensitivity and specificity reports were heteroge-
neous across models (sensitivity: X2 = 1171.8, p < 0.001; 
specificity: X2 = 1019.3, p < 0.001). In addition, on the 
same group of models, a negligible positive correlation 
r = 0.09 [-0.08—0.25] of sensitivities and false positive 
rates (FPRs) was found. Forest plots of sensitivity and 
specificity were based on the most important models per 
study and can be seen in Fig. 3a and b, respectively.

Bivariate analysis
A pooled estimate of 0.85 was obtained for sensitivity 
and 0.83 for specificity on all the reported models with 
performance data (146 models). For the most impor-
tant model per study (46 models), slightly better pooled 
sensitivity (0.88) and specificity (0.88) were obtained. 
Confidence intervals as well as the variances of logit 
transformed sensitivity and FPR and correlation esti-
mates for both bivariate models can be found in Table 3. 
The summary receiver operating characteristic curves 
(SROCs) of the two models are shown in Fig. 4a and b.

To take into account the experimental and study-design 
differences among studies, fixed effects were added to 
the bivariate mixed models (specimen type, normalizer, 

Table 1  Summary of the exclusion reasons for all three eligibility 
evaluation steps

Reason for exclusion Number

Abstracts/Comments/Letters 60

Metastatic focus 17

Dubious article/Language/Not found 45

Different method/Goal 162

No performance data 54

Too specific subtype of BC 11

Unclear stage data 33

 > 4,5% stage IV samples 31

Review/Meta-analysis 86

Prognostic 68

Not related to BC 3

Exosomal miRNAs 23

Therapeutic 47

Not biomarker focused 26

Total excluded publications 666
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Table 2  General information about the studies included in the meta-analysis. The references of the studies were marked with an 
asterix symbol in the References section

Authors Year Countrya Source Sample size 
(Healthy 
controls + benign)b

Index test (model) Diagnostic 
Performancec

Swellam et al. [36] 2019 Egypt Serum 182 (39 + 47) - miR-21 0.857

- miR-126 0.998

- miR-155 0.995

111 (39 + 47)d - miR-21 0.400/0.930

- miR-126 0.760/1.000

- miR-155 0.958/0.965

Zhang et al. [37] 2017 China Whole Blood 28 (13) - miR-30b-5p 0.933

- miR-96-5p 0.769

- miR-182-5p 0.759

- miR-374b-5p 0.826

- miR-942-5p 0.813

Mar-Aguilar et al. [38] 2013 Mexico Serum 71 (10) - miR-10b 0.950

- miR-21 0.950

- miR-125b 0.950

- miR-145 0.978

- miR-155 0.994

- miR-191 0.794

- miR-382 0.967

- miR-145/miR-155/miR-382 0.988

Wu et al. [39] 2012 China Serum 100 (50) - miR-222-3p 0.670

Diansyah et al. [40] 2021 Indonesia Plasma 42 (16) - miR-21 0.923

Hosseini Mojahed et al. [41] 2020 Iran Serum 72 (36) - miR-155 0.890

Pena-Cano et al. [42] 2019 Mexico Serum 100 (50) - miR-195-5p 0.882

Kim et al. [43] 2020 South Korea Plasma 60 (30) - miR-202 0.950

Heydari et al. [44] 2018 Iran Serum 80 (40) - miR-140-3p 0.660

Motamedi et al. [45] 2019 Iran Plasma 47 (24) - miR-21 0.828

Swellam et al. [46] 2019 Egypt Serum 150 (30 + 40) - miR-17-5p 0.871

- miR-155 0.993

- miR-222-3p 0.863

103 (30 + 40)d - miR-17-5p 1.000/0.757

- miR-155 0.935/0.944

- miR-222-3p 1.000/0.786

Matamala et al. [47] 2015 Spain Plasma 230 (116) - miR-505-5p 0.721

- miR-96-5p 0.717

- miR-125b-5p 0.637

- miR-21 0.607

Li et al. [48] 2019 China Plasma 226 (113) - let-7b-5p/miR-122-5p/miR-146-5p/miR-
210-3p/miR-215-5p

0.966

Han et al. [49] 2017 China Serum 120 (21) - miR-21 0.788

71 (21) - miR-125b 0.559

120 (21) - miR-145 0.587

70 (21) - miR-155 0.749

120 (21) - miR-365 0.795

70 (21) - miR-21/miR-155 0.868

70 (21) - miR-21/miR-155/miR-365 0.918

120 (21) - miR-21/miR-365 0.868
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Table 2  (continued)

Authors Year Countrya Source Sample size 
(Healthy 
controls + benign)b

Index test (model) Diagnostic 
Performancec

Zhao et al. [50] 2010 USA Plasma 30 (15) - let-7c 0.780

30 (15) - miR-589 0.850

20 (10) - miR-425 0.830

20 (10) - let-7d 0.990

Pastor-Navarro et al. [51] 2020 Spain Serum 90 (45) - miR-21/miR-205 0.773

- miR-21 0.771

- miR-205 0.649

Si et al. [52] 2013 China Serum 120 (20) - miR-92a 0.923

- miR-21 0.933

Freres et al. [53] 2015 Belgium Plasma 196 (88) - miR-16/let-7d/miR-103/miR-107/miR-
148a/let-7i/miR-19b/miR-22*

0.810

- miR-16/let-7d/miR-103/miR-181a/miR-
107/miR-142-3p/miR-148a/let-7f-1/miR-
199a-5p/miR-590-5p/miR-32

0.800

Schrauder et al. [54] 2012 Germany Whole Blood 48 (24) - miR-202 0.680

Ng et al. [55] 2013 China Plasma 120 (50) - miR-145/miR-451a 0.931

Li et al. [56] 2018 China Plasma 292 (146) - miR-106a-3p/miR-106a-5p/miR-20b-5p/
miR-92a-5p

0.826

Serum 298 (148) - miR-106a-5p/miR-19b-3p/miR-20b-5p/
miR-92a-3p

0.965

Shen et al. [57] 2014 USA Serum 100 (50) - miR-133a/miR-148b 0.860

Antolin et al. [58] 2015 Spain Whole Blood 64 (20) - miR-200c 0.850

37 (20) - miR-200c 0.820

Soleimanpour et al. [59] 2019 Iran Plasma 60 (30) - miR-21 0.990

- miR-155 0.920

Nashtahosseini et al. [60] 2021 Iran Serum 72 (38) - miR-660-5p 0.774

62 (38)d - miR-660-5p 0.816

72 (38) - miR-210-3p 0.716

62 (38)d - miR-210-3p 0.652

Han et al. [61] 2020 China Serum 182 (38) - miR-1204 0.823

Chen et al. [18] 2016 USA Plasma 102 (49) - miR-21 0.613

- miR-152 0.687

Yu et al. [62] 2018 China Serum 160 (47) - miR-21-5p/miR-21-3p/miR-99a-5p 0.895

Zou et al. [63] 2021 China Serum 246 (122) - let-7b-5p/miR-106a-5p/miR-16-5p/
miR-19a-3p/miR-19b-3p/miR-20a-5p/miR-
223-3p/miR-25-3p/miR-425-5p/miR-451a/
miR-92a-3p/miR-93-5p

0.956

Fang et al. [64] 2019 China Plasma 131 (38 + 40) - miR-324-3p/miR-382-5p/miR-21-3p/
miR-324-3p/miR-30a-5p/miR-30e-5p/miR-
221-3p/miR-324-3p

0.901

- miR-324-3p/miR-382-5p/miR-21-3p/
miR-324-3p/miR-30a-5p/miR-30e-5p/miR-
221-3p/miR-324-3p

0.820

An et al. [65] 2018 China Serum 109 (24) - miR-24 0.716

- miR-103a 0.721

Hu et al. [66] 2012 China Serum 152 (76) - miR-16/miR-25/miR-222/miR-324-5p 0.928

Zhang et al. [67] 2015 China Serum 151 (93) - miR-205 0.840

Eichelser et al. [68] 2013 Germany Serum 160 (40) - miR-34a 0.636

- miR-93 0.699

- miR-373 0.879
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Table 2  (continued)

Authors Year Countrya Source Sample size 
(Healthy 
controls + benign)b

Index test (model) Diagnostic 
Performancec

Wang et al. [69] 2018 China Serum 102 (44) - miR-130b-5p/miR-151a-5p/miR-206/miR-
222-3p

0.931

- miR-130b-5p 0.728

- miR-151a-5p 0.796

- miR-206 0.861

- miR-222-3p 0.886

Zhang et al. [70] 2017 China Plasma 125 (50) - miR-200c 0.557

- miR-141 0.582

Feliciano et al. [71] 2020 Spain Serum 80 (60) - miR-125b/miR-29c/miR-16/miR-1260/
miR-451a

1.000/0.8167

188 (92) - miR-125b/miR-29c/miR-16/miR-1260/
miR-451a

0.962/0.922

Ibrahim et al. [72] 2020 Egypt Plasma 50 (20) - miR-10b 0.730

- miR-21-3p 0.780

- miR-181a 0.700

- miR-145 0.700

Swellam et al. [73] 2021 Egypt Serum 94 (20 + 30) - miR-27a 0.818/0.920

Jang et al. [74] 2021 South Korea Plasma 136 (56) - miR-1246 0.963

- miR-206 0.935

- miR-24 0.965

- miR-373 0.935

- miR-1246/miR-206 0.988

- miR-1246/miR-206/miR-373 0.991

- miR-1246/miR-206/miR-24/miR-373 0.992

Guo et al. [75] 2020 China Plasma 79 (40) - miR-21 0.658

- miR-1273 g-3p 0.633

Huang et al. [76] 2018 China Serum 235 (107) - let-7a 0.683

- miR-155 0.638

- miR-574-5p 0.891

Ashirbkekov et al. [77] 2020 Kazakhstan Plasma 68 (33) - miR-16-5p 0.664

- miR-210-3p 0.713

- miR-222-3p 0.760

- miR-29c-3p 0.739

- miR-145-5p 0.932

- miR-191-5p 0.904

- miR-21 0.705

- miR-145-5p/miR-191-5p 0.984

- miR-145-5p/miR-21-5p 0.932

- miR-191-5p/miR-21-5p 0.919

- miR-145-5p/miR-191-5p/miR-21-5p 0.984

Guo et al. [78] 2018 China Serum 60 (30) - miR-1915-3p 0.881

- miR-455-3p 0.778
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Table 2  (continued)

Authors Year Countrya Source Sample size 
(Healthy 
controls + benign)b

Index test (model) Diagnostic 
Performancec

Cuk et al. [79] 2013 Germany Plasma 180 (60) - miR-127-3p 0.650

- miR-148b 0.700

- miR-376a 0.590

- miR-376c 0.590

- miR-409-3p 0.620

- miR-652 0.750

- miR-801 0.720

- Panel of 7 miRs above 0.810

Raheem et al. [80] 2019 Iraq Serum 60 (30) - miR-34a 0.669

Zhu et al. [81] 2020 China Serum 120 (60) - miR-1908-3p 0.838

Ahmed Mohmmed et al. [82] 2021 Egypt Serum 80 (30) - miR-106a 0.947

Sadeghi et al. [83] 2021 Iran Whole Blood 130 (60) - miR-145 0.650/0.610

- miR-106b-5p/miR-126-3p/miR-140-3p/
miR-193a-5p/miR-10b-5p

0.790/0.860

Itani et al. [84] 2021 Lebanon Plasma 73 (32) - miR-21 0.760

- miR-155 0.700

- miR-23a 0.740

- miR-130a 0.780

- miR-145 0.810

- miR-425-5p 0.830

- miR-139-5p 0.830

- miR-451 0.730

- miR-145/miR-425-5p 0.830

- miR-21/miR-23a 0.800

- miR-21/miR-130a 0.820

- miR-21/miR-23a/miR-130a 0.820

-miR-145/miR-139-5p/mir-130a 0.960

- miR-145/miR-139-5p/mir-130a/miR-
425-5p

0.970

Mahmoud et al. [85] 2021 Egypt Serum 95 (25) - miR-185-5p 0.838

- miR-301a-3p 0.899

Zou et al. [86] 2022 Multiple Serum 374 (197) - miR-133a-3p/miR-497-5p/mir-24-3p/
miR-125b-5p/miR-377-3p/miR-374c-5p/
miR-324-5p/miR-19b-3p

0.918

379 (199) - miR-133a-3p/miR-497-5p/mir-24-3p/
miR-125b-5p/miR-377-3p/miR-374c-5p/
miR-324-5p/miR-19b-3p

0.915

325 (199)d - miR-133a-3p/miR-497-5p/mir-24-3p/
miR-125b-5p/miR-377-3p/miR-374c-5p/
miR-324-5p/miR-19b-3p

0.916

210 (199)e - miR-133a-3p/miR-497-5p/mir-24-3p/
miR-125b-5p/miR-377-3p/miR-374c-5p/
miR-324-5p/miR-19b-3p

0.953

Zou et al. [87] 2021 Singapore Serum 369 (100 + 196) - miR-451a/miR-195-5p/miR-126-5p/miR-
423-3p/miR-192-5p/miR-17-5p

0.873

Li et al. [88] 2022 China Serum 98 (49) - miR-9-5p 0.852/0.937

- miR-17-5p 0.706/0.652

- miR-148a-3p 0.866/0.875
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single or multiple miRNA panel and inclusion of stage 
III and/or stage IV cases). The significant fixed effects for 
all models were the single or multiple panel type as well 
as the normalizer type, whereas for the most important 

models there were no significant fixed effects. Details on 
the fixed effect models can be found in Supplementary 
Tables S2 and S3 (Additional file 2).

Table 2  (continued)

Authors Year Countrya Source Sample size 
(Healthy 
controls + benign)b

Index test (model) Diagnostic 
Performancec

Shaker et al. [89] 2021 Egypt Serum 450 (150 + 120) - miR-29 0.916

- miR-182 0.970

Uyisenga et al. [90] 2021 Rwanda Plasma 45 (18) - let-7a-5p/miR-150-5p/miR-940/miR-
32-5p/miR-342-3p/miR-33a-5p/miR-
130a-3p/let-7i-5p/miR-328-3p/miR-29b-3p/
miR-146a-5p/miR-29a-3p/miR-126-3p

0.868

- let-7a-5p/miR-150-5p/miR-940/miR-
32-5p/miR-33a-5p/miR-130a-3p/miR-
185-5p/let-7i-5p/miR-328-3p/miR-29b-3p/
miR-146a-5p/miR-210-3p/miR-126-3p

0.865

- let-7a-5p/miR-150-5p/miR-940/miR-
32-5p/miR-33a-5p/miR-130a-3p/let-7i-5p/
miR-328-3p/miR-29b-3p/miR-210-3p/
miR-126-3p

0.865

- let-7a-5p/miR-150-5p/miR-940/miR-
32-5p/miR-342-3p/miR-33a-5p/miR-
130a-3p/let-7i-5p/miR-328-3p/miR-29b-3p/
miR-146a-5p/miR-210-3p/miR-126-3p

0.865

- let-7a-5p/miR-150-5p/miR-940/miR-
32-5p/miR-33a-5p/miR-130a-3p/miR-
185-5p/let-7i-5p/miR-328-3p/miR-29b-3p/
miR-146a-5p/miR-29a-3p/miR-126-3p

0.863

- let-7a-5p/miR-150-5p/miR-940/miR-
32-5p/miR-33a-5p/miR-130a-3p/let-7i-5p/
miR-328-3p/miR-29b-3p/miR-146a-5p/miR-
210-3p/miR-126-3p

0.863

- let-7a-5p/miR-150-5p/miR-940/miR-
32-5p/miR-33a-5p/miR-130a-3p/let-7i-5p/
miR-29b-3p/miR-146a-5p/miR-210-3p/
miR-126-3p

0.861

- let-7a-5p/miR-150-5p/miR-940/miR-
33a-5p/miR-130a-3p/miR-328-3p/miR-
29a-3p/miR-126-3p

0.859

- let-7a-5p/miR-150-5p/miR-940/miR-
32-5p/miR-33a-5p/miR-130a-3p/let-7i-5p/
miR-328-3p/miR-29b-3p/miR-29a-3p/
miR-126-3p

0.859

- let-7a-5p/miR-150-5p/miR-940/miR-
32-5p/miR-33a-5p/let-7i-5p/miR-29b-3p/
miR-146a-5p/miR-29a-3p/miR-126-3p

0.859

- let-7a-5p/miR-150-5p/miR-940/miR-
32-5p/miR-130a-3p/miR-185-5p/let-7i-5p/
miR-29b-3p/miR-146a-5p/miR-126-3p

0.859

- let-7a-5p/miR-150-5p/miR-940/miR-
130a-3p/miR-328-3p/miR-29a-3p/miR-
210-3p/miR-126-3p

0.857

a Country from which the cases and controls of the reported model were sampled
b Sample size (cases, controls and benign) of the reported model
c For each reported model, its ROC AUC is shown. If not available, then the sensitivity and specificity pair are reported
d Model with cases up to TNM stage II
e Model with TNM stage III and IV cases
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Influence analysis and outliers
Outlier analysis was performed on the complete set of 
models and was based on the odds ratio. Models with 
an odds ratio of 2 standard deviations (SDs) away from 
the mean were considered outliers. A total of 5 models 
were identified as outliers.

In order to detect influential models in the two gen-
eralized linear multilevel models mentioned above, 
Cook’s distances of the included models were calcu-
lated (Fig.  5a and b). Models with a Cook’s distance 
more than 2 SDs away from the mean were deemed as 
very influential. On all reported models, 8 of them were 
influential. Interestingly, none of the models from the 
outlier analysis matched the ones obtained from the 
influence analysis. Generalized linear multilevel mod-
els without the influential models were fit in order to 
determine statistical robustness; a pooled estimate of 
0.84 [0.80—0.87] was obtained for sensitivity and 0.84 
[0.80—0.88] for specificity. On the most important 
model per study, 3 models were found to be influen-
tial. After repeating the generalized linear multilevel 
model, pooled sensitivity and specificity were 0.87 
[0.84—0.90] and 0.86 [0.82—0.89], respectively. A very 
modest discrepancy is observed between the bivariate 

analyses with and without the influential models. This 
was observed for estimates on both all and most impor-
tant models, indicating the robustness of the pooled 
estimates.

Publication bias
Publication bias was evaluated for all the reported mod-
els. A funnel plot was generated on the log odds ratio and 
standard error (Fig.  6). Egger’s test, in which a random 
effect on the studies was added, was used to test for pub-
lication bias. A p-value of < 0.001 indicated a potential 
publication bias.

Subgroup bivariate analysis
In order to determine performance differences between 
methodological variations in the studies as well as to 
evaluate some potential candidate sources of between-
study heterogeneity, subgroup analyses were performed. 
The main subgroups considered were: single vs multiple 
(panel) miRNAs, plasma vs serum specimen type, stud-
ies including stage III and/or IV BC cases vs studies not 
including stage III and/or IV BC cases, exogenous vs 
endogenous normalizer and stratification of studies by 
QUADAS-2 performance. The subgroup analyses based 

Fig. 2  Summary of the QUADAS-2 evaluation performed on 56 articles. Proportions of Low risk of bias (Yes), Unclear and High risk of bias (No) are 
shown for A) key questions on applicability and bias and B) most important signalling questions
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on all reported models were performed utilizing gener-
alized linear multilevel models with both random effects 
on study and models.

Pooled sensitivity and specificity on plasma models  
were 0.83 [0.77—0.87] and 0.85 [0.78—0.91], respectively, 
while for serum the pooled sensitivity and specificity 
were 0.87 [0.81—0.91] and 0.83 [0.78—0.87], respectively 
(Fig.  7A). On average, models based on miRNA panels 
perform better than models based on a single miRNA. 
The former subgroup had a pooled sensitivity and speci-
ficity of 0.90 [0.86—0.93] and 0.86 [0.80—0.90], respec-
tively, while the latter subgroup had a pooled sensitivity 

and specificity of 0.82 [0.77—0.86] and 0.83 [0.78—0.87], 
respectively (Fig.  7B). Considering the sample size dis-
parity between models that used exogenous and endog-
enous normalizers, the performance between the two 
groups is quite similar, with the endogenous based mod-
els having a higher specificity (Fig. 7C). For models with 
an exogenous normalizer, the pooled sensitivity and 
specificity were 0.82 [0.60—0.93] and 0.76 [0.63—0.86], 
respectively, while the pooled sensitivity and specific-
ity for models with an endogenous normalizer were 0.82 
[0.77—0.86] and 0.83 [0.78—0.87], respectively. Expect-
edly, models without stage IV BC samples and models 

Fig. 3  Forest plot of A) sensitivities and B) specificities of the most important model from each study. The respective values and their confidence 
intervals can be seen on the right side of each plot

Table 3  Summary of the bivariate analyses on all reported models and on most important model per study

Fixed Effects Random Effects

Model Study

Estimates CI Std.Dev Corr n Std.Dev Corr n

All reported models Sensitivity 0.85 [0.81—0.88] 0.85 -0.17 146 0.70 0.06 46

Specificity 0.83 [0.79—0.87] 0.60 -0.17 146 0.74 0.06 46

Most important models Sensitivity 0.88 [0.85—0.91] 0.86 0.23 46

Specificity 0.88 [0.84—0.91] 1.00 0.23 46
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with < 4.5% stage IV BC samples performed similarly 
when the pooled sensitivities and specificities were com-
pared. The models without stage IV cases had a pooled 
sensitivity of 0.85 [0.81—0.88] and specificity of 0.84 
[0.80—0.88], while models with stage IV cases had a 
slightly better pooled estimate where the sensitivity was 
0.87 [0.61—0.97] and specificity was 0.86 [0.80—0.90]. 
This slight difference could be attributed to the differ-
ence in model numbers analysed in the two groups, as 
can be seen from the confidence interval for the sen-
sitivity estimate for models with stage IV cases. Thus, 
since low between-study heterogeneity was observed in 
this subgroup analysis, the total cohort of models which 
includes both with (< 4.5%) and without stage IV BC 
samples can be considered reliable for assessing general 
ability of circulating miRNAs to diagnose BC, with the 
condition that the models assessed do not have a higher 
percentage of stage IV cases than would be observed in 
community screening for BC. To further investigate the 
impact of stages on diagnostic performance, a subgroup 
analysis of the models with and without stage III and IV 
was performed. Pooled sensitivity and specificity of 0.84 
[0.80—0.88] and 0.85 [0.80—0.88], respectively, were 
obtained for the former group, while of 0.86 [0.77—0.91] 
and 0.82 [0.74—0.88], respectively, for the latter (Fig. 7D). 
As observed in the previous subgroup analyses, models 
which include later BC stages (III and IV) have a slightly 
better diagnostic performance when compared to models 
which include only earlier stages (0, I and II). SROCs of 
the subgroup analyses on the most important model of 
each study can be found in Supplementary Fig. 1 (Addi-
tional file  3). Interestingly, when studies were stratified 
based on the QUADAS-2 performance cut-points (no 
cut-point, > 3, > 4 and > 5 “low” on the seven key ques-
tions), increasing QUADAS-2 score corresponded to 

decreasing pooled diagnostic performance, chiefly 
reflected in specificity. This was observed on all reported 
models as well as on the most important model per study. 
Details on results of subgroup analysis on all reported 
models and on the most important model per study can 
be found in Supplementary Table S4 and S5, respectively 
(Additional file 2).

Lastly, we estimated the pooled sensitivity and specific-
ity on all reported models for each year to assess if there 
is a diagnostic performance trend throughout the years. 
A linear regression was performed on pooled sensitivities 
and specificities and no significant linear association was 
found (Supplementary Fig. 3—Additional file 3).

miRNA‑21‑5p
miRNA-21-5p is the most commonly analysed miRNA 
among the included studies in this meta-analysis. There-
fore, we performed a bivariate analysis using the gener-
alized linear multilevel model in order to meta-analyse 
the  diagnostic ability of circulating cell-free  miRNA-
21-5p in BC. The pooled sensitivity and specificity for 
models evaluating only miRNA-21-5p were 0.74 [0.64—
0.83] and 0.81 [0.70—0.89], respectively. The SROC and 
the details on the model can be seen in the Supplemen-
tary Fig.  2 (see Additional file  3) and Supplementary 
Tables S4 and S5 (Additional file 2).

Univariate analysis on log‑DOR
In order to include studies not reporting diagnostic accu-
racy in terms of sensitivity and specificity we performed 
a univariate analysis on log-DOR using the q-Point 
data from the reported ROC graphs. The q-Point was 
extracted for all models with a ROC curve. A pooled 
log-DOR based on all reported models of 2.48 [2.15 – 
2.81] resulted. Significant heterogeneity was observed 

Fig. 4  SROCs of the bivariate models. A SROC of all reported models. Points with the same colour in the graph represent models which come from 
the same study. B SROC of the most important model from each study
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in the model (Cochran’s Q = 978.9, p < 0.001). As there 
was a large difference in the number of models that used 
endogenous and exogenous normalizers, we comple-
mented the bivariate subgroup analysis on endogenous 
versus exogenous models with the log-DOR univariate 

analysis where the difference in the model numbers is 
smaller. The estimate of pooled log-DOR for endogenous 
models is 2.58 [2.22—2.94], while for the exogenous 
models it is 1.45 [0.86 – 2.04], confirming the  discrep-
ancy in diagnostic accuracy found with bivariate models. 

Fig. 5  The calculated influence analysis was represented in Cook’s distance units. A Influence analysis of most important models from each study. B 
Influence analysis of all reported models where the points with the same colour represent models which come from the same study

Fig. 6  Publication bias was performed on all reported models. Points with the same colour in the graph represent models which come from the 
same study. The cluster of grey points on the left-hand side of the graph represents the missing models which would be required in order not to 
have a publication bias
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The log-DOR estimate details of the mentioned models 
as well as all the other models are found in Supplemen-
tary Table S6 and S7 (Additional file 2).

Preference for sensitivity or specificity
To investigate whether a preference of a model for sen-
sitivity/specificity is related to an imbalance of propor-
tions between cases and controls or to predicted positive 
(TP + FP) and predicted negative (TN + FN) samples, a 
graphical technique was employed: models were divided 
in three groups according to the proportion of cases to 
controls or predicted positive to predicted negative sam-
ples, coloured and plotted on a ROC plane (Fig. 8).

Differences in model designs based on the propor-
tion of cases to controls are mainly reflected in the 
FPR (Fig.  8a), as models with fewer cases than con-
trols tend to have a larger FPR. Overall, models with 
a balanced case–control design or a design with more 
cases than controls are far more abundant than models 
with fewer cases than controls. A clearer performance 
trend can be seen when the proportion of the posi-
tive screens and negative screens is taken into account 
(Fig. 8b). Models with fewer positive screens than neg-
ative usually tend to have a smaller FPR and sensitivity, 
while models with more positive screens than nega-
tive have the tendency for the opposite performance 

Fig. 7  SROCs of the subgroup bivariate models based on all reported models. A) Plasma vs Serum B) Single vs Multiple panel miRNAs C) 
Endogenous v Exogenous normalizer D) With vs Without stage III and stage IV cases
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characteristics, with larger FPR and sensitivity. Those 
models with balanced positive and negative screens 
have more balanced FPR and sensitivity when com-
pared to the previous two groups. In sum, sample 
composition, i.e. ratio of cases to controls, seems to 
influence diagnostic accuracies, probably via study 
level model tuning. Moreover, the predicted positive 
and predicted negative ratio is most likely influenced 

by the compromise or preference between sensitivity 
and specificity.

Quantifying the author or model preference for sensitivity 
or specificity
By utilizing the alpha parameter, we assessed from 
the ROC shape if the meta-analysed models preferred 
sensitivity or specificity (Fig.  9a). A general trend of 

Fig. 8  Comparison of diagnostic performance of models to their imbalance of proportions of A) cases to controls or B) predicted positive to 
predicted negative screens, represented by a colour which corresponds to one of the three imbalance of proportions cut-point groups. Diagnostic 
performance means (with the confidence intervals) of the three ratio groups are represented by diamonds

Fig. 9  Preference estimates based on log (sensitivity/specificity) for all reported models using A) alpha for minimum Q and B) relative perceived 
cost of misdiagnosis (c1). Points with the same colour in the graph represent models which come from the same study
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preference can be seen in the plot. However, since the 
trend is not strong enough, only the models with an alpha 
z-score > 0.8 SDs away from the mean were considered as 
studies with some kind of preference. Based on the men-
tioned alpha parameter, 25 of the 117 analysed models 
had a preference for sensitivity, while 24 had a preference 
for specificity. The preference is derived from ROC curve 
shape, so a preference in shape does not necessarily imply 
that the pair of sensitivity and specificity at the authors’ 
preferred cut-off  value reflects this preference: 22 out 
of the 25 models considered to prefer sensitivity had a 
higher sensitivity than specificity, while 18 out of the 
24 models considered to prefer specificity had a higher 
specificity.

In addition to the assessment of preference of the 
model by the alpha parameter, we assumed that in all the 
models the study authors base their decision about the 
cut-off value on a perceived cost c1 for not detecting a 
BC patient and a cost c0 for a positive screen on a healthy 
person. Recall that the perceived cost c1 is calculated in 
units of c0 = 1 (Fig. 9b) and note that the prevalence fac-
tor was omitted. The strength of the preference trend is 
similar to that of the previous plot. Hence, models with 
a c1 z-score of > 0.8 SDs away from the mean were con-
sidered as studies with some kind of author preference. 
Based on the c1 value, 10 of the 117 analysed models had 
a preference for sensitivity, while 80 had a preference for 
specificity. From the 80 models which were considered to 
prefer specificity 41 had a higher specificity than sensitiv-
ity. Interestingly, most of the models with a high c1 value 
(> 0.8 SD) did not have a higher sensitivity compared to 
specificity, a consequence of the underlying ROC curve 
shapes. In this sense, most of the ten models did not have 
a preference for sensitivity in the naive sense. Until the 
c1 starts surpassing the value of 1, the plot seems to be 
linear and in concordance with the plot in Fig. 9a. Hence, 
the alpha parameter preference method has shown more 
robust results. Having said that, it is worth noting that 
between the two preference assessment methods, there 
were 12 common models which preferred specificity and 
23 common models which did not have a significant pref-
erence. No common models were found for sensitivity 
preference.

Discussion
As circulating cell-free miRNAs are promising biomark-
ers for the (early) detection of BC and as there have been 
numerous diagnostic circulating miRNA studies in the 
recent years [6], in this study we have attempted to evalu-
ate the overall diagnostic performance capability of the 
thus-far reported circulating miRNA-based screenings. 
In addition, one important segment which we touched 
upon is the lack of standardization between the studies 

as well as other factors which might be the cause of some 
discordant results and of a lack of commonly appear-
ing miRNAs which could be clinically viable diagnostic 
biomarkers. The pooled sensitivity (0.85) and specific-
ity (0.83) obtained on all the reported models was quite 
satisfactory, especially considering the fact that even the 
models which did not perform as well were included 
in the pool. The obtained estimate of the pooled sensi-
tivity is quite robust and reliable: after repeating the 
bivariate analysis without the influential models a very 
similar pooled sensitivity (0.84) and specificity (0.84) 
were obtained. It is important to note, however, that a 
highly significant publication bias was observed based 
on the Egger’s test, which could also hint at a tendency of 
primary report authors to report top performing models 
instead of all a priori plausible models. In addition, stud-
ies tend to have slightly worse diagnostic performance, 
mainly reflected in specificity, when having a lower prob-
ability of bias or lower probability of poor applicability. 
Moreover, single or multiple miRNA panel and normal-
izer type were significant fixed effects in the bivariate 
model on all reported models. The significance of the 
fixed effects is also confirmed by the subgroup analyses 
as we see a significantly better performance, especially 
in sensitivity, of multiple miRNA panels compared to 
single, as well as a better pooled performance of models 
utilizing endogenous compared to exogenous normaliz-
ers. Considering that in the bivariate analysis there was a 
sample disparity between the models which used endog-
enous and exogenous normalizers, the issue was less 
severe in the univariate analysis based on the log-DOR. 
Nevertheless, in the univariate analysis we also observed 
that models based on endogenous normalizers perform 
better than exogenous normalizers.

Multiple different endogenous and exogenous normal-
izing miRNAs/genes have been used both in the meta-
analysed studies and in studies working with circulating 
miRNAs in other fields. However, none of them were 
found to be an optimal solution for normalizing qRT-
PCR miRNA data [91]. Hence, normalizer is one of the 
most important factors which contributes to the hetero-
geneity of results. One solution to the normalizer issue 
which might produce more consistent results, as pro-
posed by [91], is to use ratio-based normalization where 
the ratio of two miRNAs is compared between cases and 
controls. Only one study [64] out of the 56 which we 
meta-analysed used the ratio-based normalization. Mim-
ics of miRNAs and mean threshold cycle of 50 miRNAs 
with the highest mean expression were two other types of 
normalization methods found within three distinct meta-
analysed studies [53, 78, 90]. However, we believe that the 
lack of experimental practicality and efficiency of the for-
mer and the lack of between-study comparability of the 
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latter method may limit the use of such normalization 
methods in a standardized way. Although not significant 
in the fixed effect model, a slight diagnostic performance 
difference between models with and without stages III 
and IV was observed. The same is true for models with 
and without stage IV. This indicates that the stage distri-
bution could play a role in the between-study bias. Two 
other important factors could contribute to the increase 
of more consistent results: the usage of validation cohorts 
and random selection of cases and controls with prospec-
tive sampling [92]. As can be seen in Fig. 2b, only about 
40% of the studies used a validation cohort while no 
study performed or explicitly stated that they performed 
prospective sampling without knowing the status of cases 
and controls. Independent internal/external cohorts are 
a fundamental requirement in the process of biomarker 
validation, while prospective random sampling would 
enable a non-biased and generalizable biomarker evalu-
ation [92] as well as sampling of blood before biopsy. 
Blood sampling before biopsy would allow to minimize 
the influence of biopsychological/physical effects that 
could also influence the level of circulating miRNAs [93]. 
Despite not significant in this meta-analysis, differences 
in specimen type might influence the heterogeneity of 
the obtained results. Utilizing plasma as specimen type 
runs the risk of having hemolysed samples which affects 
the miRNA content of the samples [94–96] as plasma 
contains cellular components that may contribute miR-
NAs from apoptotic or lysed cells (e.g., red blood cells, 
platelets). Therefore, studies using plasma as the speci-
men type need to check for hemolysed samples and 
exclude them [97] or to evaluate the influence of poten-
tial hemolysis on candidate miRNAs before their analysis 
in plasma samples [98]. On the other hand, during coagu-
lation of serum samples, RNA molecules are released and 
may change the true profile of circulating miRNAs [96]. 
Hence, these issues are of crucial importance in order to 
standardize the procedure of circulating miRNA detec-
tion. Taken together, in order to obtain clinically viable 
diagnostic miRNAs which could be applied on the target 
population (women eligible for routine mammographic 
screening), a standardized laboratory protocol should be 
created. Additionally, future studies with random case–
control selection from prospective sampling of women 
undergoing routine screening will allow for a standard-
ized stage distribution and a higher applicability of novel 
diagnostic biomarkers to the target population.

Among the meta-analysed models, there were slightly 
more models with a balanced case–control ratio than 
models with significantly more cases than controls. Mod-
els with significantly less cases were less common than 
the previous two groups. Sensitivity across the three 
groups seemed to be consistent, while the group with 

significantly less cases tends to have a larger FPR. Thus, 
the ratio of cases and controls has an effect on diag-
nostic accuracies while the ratio of predicted positive 
and predicted negative screens is influenced by or is a 
resemblance of the model’s preference for sensitivity or 
specificity.

Either due to the model designs or authors’ perceived 
costs of misdiagnosis, for some models a slight prefer-
ence for sensitivity or specificity was observed. Such a 
trend could clearly be obtained with the alpha method as 
many of the studies which were predicted to prefer sen-
sitivity or specificity actually had the higher respective 
diagnostic performance value. On the other hand, the 
method based on the authors’ perceived cost of misdiag-
nosis is not as robust as it yielded a much larger num-
ber of models which prefer specificity to sensitivity than 
models which prefer sensitivity to specificity, where many 
of the models in the groups did not have a higher respec-
tive diagnostic performance statistic.

Two meta-analyses on BC  diagnostic circulating miR-
NAs were performed in 2014 [20, 21]. Seventeen unique 
studies were meta-analysed in the two studies. Seven out 
of the 17 studies were included in this meta-analysis. One 
of the main differences in exclusion criteria between our 
study and the mentioned two studies is the fact that we 
excluded studies with > 4.5% stage IV cases. The reason 
for this being that we expected an overestimation in diag-
nostic performance in studies which include a larger per-
centage of stage IV cases than would be expected in BC 
community screens [99]. The pooled sensitivity and spec-
ificity obtained in this study is in concordance with [20]. 
However, [21] have obtained a slightly lower pooled sen-
sitivity and slightly higher specificity. This suggests that 
the overall diagnostic performance of circulating miR-
NAs on detection of BC has not significantly improved 
over the years. On the other hand, the pooled diagnostic 
performance obtained from the most important model of 
each study has shown an improvement in both sensitiv-
ity and specificity. Interestingly, the percentage of stud-
ies with high, low and unclear evaluations on the four 
key domains of QUADAS-2 were very similar between 
this study and [21]. As it is the most commonly analysed 
miRNA among the meta-analysed studies, we have evalu-
ated the pooled sensitivity and specificity on miRNA-
21-5p. A study in 2014 [100] performed a meta-analysis 
on  BC  diagnostic  serum miRNA-21. Marginally lower 
pooled sensitivity and specificity on miRNA-21 were 
obtained in this study in comparison to the estimates of 
[100].

The main strengths of this meta-analysis are the eval-
uation of all the reported models from each study (as 
opposed to singling out one model per study), explora-
tion of the model or author preference for sensitivity or 
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specificity and robust, comprehensive results obtained 
from bivariate analyses complemented by univariate 
analyses when necessary. The main limitation is uncer-
tainty due to unmodeled factors: laboratory and experi-
mental differences, differences in stage composition 
of analysed cases within the studies, as well as different 
levels of statistical robustness of the models reported 
in primary studies. Another limitation is the relatively 
low number of databases assessed. Although we cannot 
exclude the possibility that we have missed some studies 
in the search phase, based on suggestions from the cur-
rent literature with respect to database choice [101, 102] 
we deem the potential for systematic bias to be low. Due 
to their complementarity, the databases chosen for this 
study have around 90% median recall rate when com-
pared to the most elaborate approach with four databases 
(EMBASE, MedLine, Google Scholar and Web of Sci-
ence) [103].

Conclusion
By presenting reliable estimates of diagnostic per-
formance across studies, we have shown that diag-
nostic  cell-free circulating miRNAs are promising 
biomarkers for (early) detection of BC. The subgroup 
analysis has revealed that multiple miRNA panels have 
a better pooled diagnostic performance when compared 
to single miRNA panels. Using novel methods to evalu-
ate model/author preference for sensitivity or specificity, 
we have determined that overall, there is a tendency of 
the meta-analysed studies to prefer specificity. Addition-
ally, case–control ratio likely has an impact on diagnostic 
accuracy, while the preference for sensitivity or specific-
ity has an influence on the ratio of predicted positive to 
predicted negative screens. Prospective random sampling 
of cases and controls, independent validation cohorts as 
well as standardization of studies, especially on normal-
izing method, patient flow and specimen type, are of cru-
cial importance to obtain consistent and homogenous 
results between studies. This would reveal reliable candi-
date BC diagnostic miRNA models that should be inde-
pendently validated across multiple laboratories.
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