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Abstract 

Background:  Numerous studies have revealed that gamma delta (γδ) T cell infiltration plays a crucial regulatory role 
in hepatocellular carcinoma (HCC) development. Nonetheless, a comprehensive analysis of γδ T cell infiltration in 
prognosis evaluation and therapeutic prediction remains unclear.

Methods:  Multi-omic data on HCC patients were obtained from public databases. The CIBERSORT algorithm was 
applied to decipher the tumor immune microenvironment (TIME) of HCC. Weighted gene co-expression network 
analysis (WGCNA) was performed to determine significant modules with γδ T cell-specific genes. Kaplan-Meier sur-
vival curves and receiver operating characteristic analyses were used to validate prognostic capability. Additionally, 
the potential role of RFESD inhibition by si-RFESD in vitro was investigated using EdU and CCK-8 assays.

Results:  A total of 16,421 genes from 746 HCC samples (616 cancer and 130 normal) were identified based on 
three distinct cohorts. Using WGCNA, candidate modules (brown) with 1755 significant corresponding genes were 
extracted as γδ T cell-specific genes. Next, a novel risk signature consisting of 11 hub genes was constructed using 
multiple bioinformatic analyses, which presented great prognosis prediction reliability. The risk score exhibited a 
significant correlation with ICI and chemotherapeutic targets. HCC samples with different risks experienced diverse 
signalling pathway activities. The possible interaction of risk score with tumor mutation burden (TMB) was further 
analyzed. Subsequently, the potential functions of the RFESD gene were explored in HCC, and knockdown of RFESD 
inhibited cell proliferation in HCC cells. Finally, a robust prognostic risk-clinical nomogram was developed and vali-
dated to quantify clinical outcomes.

Conclusions:  Collectively, comprehensive analyses focusing on γδ T cell patterns will provide insights into prognosis 
prediction, the mechanisms of immune infiltration, and advanced therapy strategies in HCC.

Keywords:  Hepatocellular carcinoma, γδ T cells, Prognosis predition, Tumor immune microenvironment, Tumor 
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Background
Primary liver cancer, is one of the most aggressive and 
common malignant tumors, and has resulted in thou-
sands of cancer-related deaths worldwide [1–3]. Based 

on traditional pathological classification, hepatocellular 
carcinoma (HCC) accounts for approximately 80% of all 
liver cancer cases [2]. Many well-known risk factors for 
HCC, including aflatoxin exposure, hepatitis virus infec-
tion, heavy alcohol intake, type 2 diabetes mellitus, and 
obesity, play pivotal roles in hepatocarcinogenesis [3, 4]. 
Because of the extremely complex molecular diversity 
of genetic and genomic alterations, HCC is considered 
a highly heterogeneous disease at both the inter- and 
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intratumoral levels [5–9]. Considering the high heteroge-
neity and diverse etiologies among distinct populations, 
tumor-node-metastasis (TNM) staging stratification has 
been ineffective in the prediction of clinical outcomes in 
patients with HCC [10–13]. Therefore, it is important to 
develop robust and novel tools for prognostic prediction 
and therapeutic evaluation to further contribute to the 
determination of the optimal treatment.

In the past decades, the progression of anti-tumor 
treatments in immune checkpoint blockade (ICB) immu-
notherapy, such as anti-cytotoxic T-lymphocyte antigen 
(CTLA-4) and programmed death (PD)-ligand 1 (L1), 
have exhibited encouraging therapeutic outcomes in vari-
ous human malignant tumors [14–17]. According to clin-
ical trial data, only a minor proportion of HCC patients 
showed an objective response to immunotherapy, indi-
cating the need for further exploration of immunother-
apy in HCC [18]. An increasing number of studies have 
highlighted that the interactions of infiltrating immune 
cells with tumor components act as key driving fac-
tors for tumor progression and therapeutic sensitivity 
[19–21]. An independent study highlighted that CD4+ 
T cell exhaustion leads to the acceleration of tumors in 
HCC [22]. CD8+ T cells produce lymphotoxin-α and 
lymphotoxin-β, which serve as key promoters of HCC 
development [23]. Gamma delta (γδ) T cells, a small pop-
ulation of peripheral blood T lymphocytes, express het-
erodimeric receptors composed of γ and δ chains on the 
cell surface. Several studies have indicated that γδ T cells 
with protumor activity serve as pivotal players in cancer 
development and anti-tumor responses [24, 25]. There-
fore, the most promising and robust strategy for compre-
hensive estimation of tumor sensitivity to therapy may 
be derived from γδ T cell patterns and classifying HCC 
patients using specific molecular signatures based on γδ 
T cell profiling, thereby optimizing therapeutic programs 
to increase overall survival (OS) probability. However, 
studies focusing on the prognostic value of γδ T cell pat-
terns in HCC are lacking.

In this study, three HCC sample datasets, GSE54236, 
The Cancer Genome Atlas-Liver Hepatocellular Carci-
noma (TCGA-LIHC), and International Cancer Genome 
Consortium (ICGC)-FR, were amalgamated to reveal the 
possible functions of γδ T cell patterns. γδ T cell profil-
ing was performed using the CIBERSORT algorithm, 
followed by weighted gene co-expression network analy-
sis (WGCNA) to identify the γδ T cell-specific module 
with the corresponding genes. Candidate genes from the 
significant module were screened using multiple Cox 
regression analysis to identify the final 11 key genes. 
Next, a novel multi-gene prognostic signature and inte-
grated clinical nomogram were constructed. In addi-
tion, the possible functions of risk signature in immune 

infiltration and therapeutic prediction were investigated. 
Finally, the potential role of RFESD in prognosis predic-
tion, immune infiltration, and cell proliferation in HCC 
was further investigated. Collectively, the γδ T cell-based 
risk nomogram was constructed to serve as a reliable 
predictive indicator and robust prognostic biomarker for 
clinical outcome prediction, thereby providing direction 
for clinical therapeutic strategies for HCC.

Materials and methods
Collection of multi‑omics data
The preparation and downloading of multi-omics 
data were implemented as described previously [12]. 
Sequencing profiles for HCC and normal tissue sam-
ples were obtained from TCGA-LIHC, ICGC-LICA-FR, 
ICGC-LIRI-JP, and GSE54236 datasets. The correspond-
ing clinical profiles were also downloaded from TCGA 
portal, as described previously. All included patients 
were diagnosed with HCC and had complete mRNA 
expression values. The gene expression profiles in the 
fragments per kilobase per million format were obtained 
from TCGA portal and the ICGC dataset and then 
transformed into transcripts per kilobase million. The 
series matrix file of the GSE54236 dataset in quantile-
normalized log2 signal intensity was downloaded from 
the Gene Expression Omnibus (GEO) database. A total 
of 616 HCC samples (161 from the ICGC-LICA-FR, 374 
from TCGA-LIHC, and 81 from the GSE54236 datasets) 
were collected for subsequent analysis. The R packages 
“limma” and “sav” were utilized to perform batch calibra-
tion and normalize the expression values among the three 
platforms. Principal component analysis (PCA) was used 
to validate the normalized results. Next, four categories 
of somatic mutation data of HCC patients were obtained 
from TCGA portal. We singled out the mutation files 
that were obtained through the “SomaticSniper variant 
aggregation and masking” platform for subsequent analy-
sis. All data were publicly available and had open access; 
therefore, it was not necessary to obtain ethics commit-
tee approval. Data were processed in accordance with the 
National Institutes of Health TCGA human subject pro-
tection (http://​cance​rgeno​me.​nih.​gov/​publi​catio​ns/​publi​
catio​nguid​elines) and related data access policies.

Landscape of infiltrating immune cells
In total, 616 HCC specimens were subjected to immune 
infiltration analysis from the HCC samples. Using the 
CIBERSORT algorithm (http://​ciber​sort.​stanf​ord.​edu/), 
the sequencing data of the samples were analyzed and 
calculated to determine the abundance of 22 tumor-infil-
trating immune cell (TIC) subtypes, which represent the 
cellular constituents of the TIME [26]. After removing 
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the CIBERSORT algorithm results with p < 0.05, 125 
CIBERSORT results were used for further analysis.

Weighted gene co‑expression network analysis
The sequencing data of the 16,421 genes of HCC patients 
were used to generate a weighted co-expression network 
using the WGCNA method. Correlations between sample 
traits and candidate modules were computed to determine 
the models highly correlated with traits, in which the genes 
were further analyzed to screen hub genes [27]. In the cur-
rent study, we used the immune-infiltrating cell profile, 
namely the CIBERSORT results, as sample phenotypes 
and then selected an appropriate soft threshold power (β) 
value to generate a scaleless network (index of scale-free 
topologies = 0.90). Then, similar genes were introduced 
into the same candidate module using the dynamic tree-
cutting algorithm with a minimum size of 60. Correlation 
analysis between module characteristic genes and sam-
ple traits was performed using Pearson’s correlation test 
(*p < 0.05). Finally, we focused on the γδ T cell populations 
and the module most significantly correlated with γδ T 
cells was extracted for subsequent analysis.

Functional enrichment analysis
Pathway enrichment analysis was performed as described 
previously [21]. Using the R package “org. Hs.eg.db” 
the Entrez Gene ID for each γδ T cell-related gene was 
obtained. To elucidate underlying mechanisms of the 
hub genes related to γδ T cells in biological processes, 
we implemented the Kyoto Encyclopedia of Genes and 
Genomes (KEGG) and Gene Ontology (GO) pathways 
annotation with the “clusterProfiler,” “enrichplot,” and 
“ggplot2” R packages and visualized the results.

Construction of γδ T cell‑related prognostic signatures
To explore the prognostic role of γδ T cell-associated 
genes, genes from the most significant module were used 
to assemble a prognostic risk signature for HCC. A total 
of 370 HCC samples from TCGA-LIHC project, with a 
definite report of survival status and duration data, were 
enrolled for further prognostic signature establishment. 
The “limma” R package with a false discovery rate < 0.05 
and|log2 fold change| > 1 was utilized to recognize dif-
ferentially expressed genes (DEGs) between normal and 
HCC samples. DEGs that met the selection criteria were 
extracted for further analyses. Altogether 370 HCC cases 
were stochastically assigned into the training and valida-
tion sets at a rate of 3:2 for systematic analysis using the 
project “caret” R package. Both training and validation sets 
had to comply with the following requirements: [1] cases 
were stochastically allocated to the training and valida-
tion groups and [2] samples in both groups had similar 

clinicopathological characteristics. Importantly, there were 
no statistically significant clinical differences between the 
two sets (Table S5). DEGs that were significantly corre-
lated with OS (P < 0.05) were identified using univariate 
Cox regression analysis in the training set. Next, the least 
absolute shrinkage and selection operator (LASSO) algo-
rithm using the “glment” R package was analyzed. Sub-
sequently, a multivariate Cox regression model was used 
to identify hub genes and compute their corresponding 
coefficients. Finally, a prognostic risk model including five 
hub γδ T cell-correlated genes was developed, and the risk 
score was calculated using the following formula:

Here, β is the regression coefficient in the multivariate 
Cox regression analysis, as described previously [28].

Validation of prognostic γδ T cell‑related signature
The prognostic γδ T cell-related signature was constructed 
as described previously [12]. HCC samples (n = 224) in the 
training group were stratified into low- and high-risk sub-
groups by setting the median risk score as the cutoff point. 
First, the Kaplan-Meier survival curve was plotted using 
the “survival” R package to identify the prognosis differ-
ences. Time-dependent receiver operating characteristic 
(ROC) curves were analyzed to validate the prognostic val-
ues. Univariate and multivariate Cox regression analyses 
were performed to validate the risk signature as an inde-
pendent prognostic factor. The predictive precision of the 
as-constructed risk-score model was further confirmed in 
the validation group (n = 146). To visualize the correlation 
of risk score with clinicopathological variables, the “pheat-
map” R package was used to compare the clinical charac-
teristics of low- and high-risk patients. The ICGC-LIRI-JP 
cohort with 231 HCC patients was used as an independ-
ent testing group and partitioned into high- and low-risk 
subgroups according to the median threshold of TCGA 
dataset. The prognosis prediction precision was further 
validated in the external testing group.

Correlation of risk score with TIME characterization
Immune infiltration was analyzed as described previously 
[21]. To uncover the correlation between risk score and 
tumor-infiltrating immune cells, we implemented seven 
methods, including the XCELL, TIMER, QUANTISEQ, 
MCPcounter, EPIC, CIBERSORT, and CIBERSORT-
ABS algorithms, to evaluate immune infiltration. Spear-
man correlation was analyzed to explore the relationship 
between risk score and immune infiltration status. We 

Risk score = � gene 1 × expression level of gene 1

+ � gene 2 × expression level of gene 2

+⋯ + � gene n × expression level of gene n
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compared the differences in the immune-infiltrating cell 
fractions between the low-and high-risk subgroups.

Role of risk score in immune checkpoint blockade 
treatment
According to previous studies, the expression patterns 
of ICB-related hub targets may contribute to the efficacy 
of immunotherapy administration [29]. In this study, we 
identified six hub genes of ICB therapy: PD-L1 (also known 
as CD274), PD-1 (also known as PDCD1), PD-L2 (also 
known as PDCD1LG2), CTLA-4, T-cell immunoglobulin 
domain and mucin domain-containing molecule-3 (also 
known as HAVCR2), and indoleamine 2,3-dioxygenase 1 
(IDO1) in HCC [30–32]. To further explore the potential 
role of the risk signatures in ICB immunotherapy, the cor-
relation of the prognostic signature with the expression 
values of six ICB hub genes was analyzed.

Gene set variation analysis
Gene Set Variation Analysis (GSVA) [33] with the 
“GSVA” R package was used to explore variations in bio-
logical processes between the distinct risk subgroups. 
Well-defined biological signatures were derived from the 
gene sets of “c2.cp.kegg.v7.4. symbols.gmt” and “h.all.
v7.4. symbols.gmt” (downloaded from the Molecular Sig-
natures Database).

Process of epigenetic mutation data
The corresponding somatic alteration information of 
TCGA-LIHC cohort was obtained from TCGA data-
set. TMB was defined as the number of somatic, cod-
ing, base replacement, and insert-deletion mutations per 
megabase of the genome examined using non-synony-
mous and code-shifting indels (insertions and deletions) 
under a 5% detection limit. The “maftools” R package [33] 
was employed to detect the number of somatic non-syn-
onymous point mutations within each sample. Somatic 
alterations in HCC driver genes were observed in sam-
ples with low- and high-risk scores.

Establishment and verification of nomogram
ROC analysis was performed to identify the optimal 
prognostic indicator, risk score, age, sex, tumor grade, 
and clinicopathological stage for 1-, 2-, and 3-year OS 
[34]. To develop a quantitative prognostic tool for HCC 
patients, a nomogram plot integrating risk score and 
other clinicopathological features was constructed to 
predict the 1-, 2-, and 3-year OS rates. A total of 235 
HCC samples with complete clinicopathological infor-
mation (survival status, survival time, tumor grade, clini-
cal staging, and TNM status) from TCGA-LIHC project 
were used to develop the nomogram. We then plotted the 
calibration curve to validate the prognostic validity of the 

nomogram. Finally, the prognosis prediction reliability of 
the nomogram was validated using the “predict” function 
of the R package “rms” in the ICGC-LIRI-JP cohort.

Experimental validation
WRL68 (human pancreatic cell line) and four human pan-
creatic cancer cell lines (MHCC-97H and HCC-LM3 cells) 
were purchased from the Cell Bank of the Type Culture Col-
lection of the Chinese Academy of Sciences, Shanghai Insti-
tute of Biochemistry and Cell Biology. The cell lines were all 
cultured in Dulbecco’s minimum essential media (DMEM) 
plus 10% fetal bovine serum (FBS; Invitrogen, Carlsbad, 
CA, USA). All cell lines were grown without antibiotics in a 
humidified atmosphere containing 5% CO2 and 99% relative 
humidity at 37 °C. Three different cell lines were subjected 
to quantitative real-time polymerase chain reaction (qRT-
PCR), which was performed as described previously [4]. All 
samples were analyzed in triplicate. Glyceraldehyde-3-phos-
phate dehydrogenase (GAPDH) levels were used as the 
endogenous control, and the relative expression of RFESD 
was calculated using the 2-ΔΔCt method. The sequences of 
the primers used for PCR were as follows:

RFESD, 5-TGA​TGG​ACG​ACC​GTG​TAT​AGT​TTG​
C-3 (forward) and 5-TTA​TTC​CTT​TGG​AGC​ACC​
ACT​TGG​G-3 (reverse);
GAPDH, 5-CAG​GAG​GCA​TTG​CTG​ATG​AT-3 
(forward) and 5-GAA​GGC​TGG​GGC​TCA​TTT​-3 
(reverse).

siRNA interference assay
The small interfering (si) RNAs designed to specifically 
silence RFESD were purchased from Qingke (Beijing, 
China). Scrambled siRNA served as the control. The 
siRNA sequence was as follows:

si-RFESD: CAC​UGG​AGA​CUU​CAA​AGU​AAU.
siRNA was transfected into HCC cells using 
Lipo8000™ Transfection Reagent (Beyotime, Shang-
hai, China). Total RNA was isolated 48 h after trans-
fection and assessed by qRT-PCR.

Cell proliferation assay
For the CCK-8 assay, MHCC-97H cells were plated at 
2 × 103 cells per well in 96-well plates and incubated 
overnight in DMEM supplemented with 10% FBS. 
The cell proliferation index was measured using a Cell 
Counting Kit-8 (Beyotime, Shanghai, China) at 0, 24, 
48, and 72 h post-transfection according to the manu-
facturer’s instructions. The absorbance was measured 
at a wavelength of 450 nm.
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For the EdU assay, MHCC-97H cells were seeded into 
48-well plates (Corning). When the confluence of MHCC-
97H cells reached 80%, BeyoClick™ EdU-488 (Beyotime, 
Shanghai, China) was used to determine the proliferation 
rate of the cells. After staining, the cells were imaged using 
a confocal laser-scanning microscope (ZEISS, Germany).

Statistical analysis
The Wilcoxon test was used to compare two groups, 
whereas the Kruskal-Wallis test was used to compare 
more than two groups. Survival curves were analyzed 
using the Kaplan-Meier log rank test. The chi-square 
test was performed to correlate the risk score subgroups 
with somatic mutation frequency, and Spearman anal-
ysis was used to compute the correlation coefficient. 
The CIBERSORT algorithm results with p < 0.05 were 
included in further analyses. Statistical significance was 
defined as a two-tailed p-value < 0.05.

Results
Eliminating of batch effect
To remove the batch effect among the three distinct data-
sets, “limma” and “sav” algorithms (see Section Method) 

were performed. In total, 16,421 genes were extracted 
from the three HCC cohorts. Considering the batch 
effect, HCC samples were gathered in batches accord-
ing to the top two principal components of the non-
normalized mRNA sequencing (Fig.  1A). After removal 
of the batch effect, the scatter plot based on the PCA of 
the normalized expression matrix indicated successful 
removal of the batch effect by cross-platform normaliza-
tion (Fig. 1B).

Landscape of tumor immune microenvironment
The CIBERSORT algorithm was used to determine the 
comprehensive TIME context (Table S1). Figure  1C 
shows the relative abundance of the 22 TIC subpopu-
lations. The correlations between TIME patterns and 
clinical traits were investigated and are presented in a 
comprehensive heatmap (Fig.  1D). To further uncover 
the potential intrinsic interactions of infiltrating 
immune cells, correlation analysis was conducted to 
visualize the comprehensive landscape of the TIME 
(Fig.  1E). Notably, CD8+ T cells were the most nega-
tively correlated with resting CD4+ T memory cells, 
whereas CD8+ T cells were the most positively corre-
lated with activated CD4+ T memory cells.

Fig. 1  Principal component analysis (PCA) of the gene expression datasets. The points of the scatter plots visualize the samples based on the top 
two principal components (PC1 and PC2) of gene expression profiles without (A) and with (B) the removal of batch effect. The colors represent 
samples from three different datasets, respectively. Landscape of immune cell infiltration in tumor immune environment of HCC. Subpopulation of 
22 immune cell subtypes (C) and proportional heatmap of the 22 TICs in each HCC samples (D). (E) Intrinsic correlation of 22 infiltrating immune 
cells in HCC
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Construction of WGCNA co‑expression network
A gene matrix within 15,420 genes and relative sub-
populations of 22 immune infiltrations were included 
for further analyses of the WGCNA co-expression net-
work. The first power value [4] when the index of scale-
free topologies achieved 0.90 was set as the optimal soft 
threshold power (β) to construct the scaleless network 
(Fig.  2A). Similar expressed genes were assigned to the 
same candidate module using a dynamic tree-cutting 
algorithm (module size =60), thereby creating a hier-
archical 23-module clustering tree (Fig.  2B). The col-
umns represent 22 TIC abundances, whereas the rows 
represent the 23 modules with different traits (Fig. 2C). 
Notably, the brown module was significantly and posi-
tively correlated with γδ T cell infiltration (cor = 0.33, 
P = 1e-14). Our primary concern was the infiltration of 
γδ T cells; therefore, the 1755 genes (Table S2) from the 
brown module were included in the subsequent analysis.

GO and KEGG functional annotation
To further reveal the potential role of γδ T cell-specific 
genes in biological processes, GO and KEGG pathway 
enrichment analyses were performed (Tables S3 and 
S4, respectively). The GO pathway enrichment analy-
sis indicated that γδ T cell-specific genes were pre-
dominantly involved in T cell activation, regulation 
of lymphocyte activation, and regulation of immune 
effector processes in biological processes, and con-
centrated in the secretory granule membrane, external 
side of the plasma membrane, and endosome mem-
brane in cellular components. These genes are also 
involved in cytokine receptor binding, carbohydrate 
binding, and cytokine activity in molecular function 
(Fig. S1A-C). As for the KEGG terms analysis, the 
top three enriched pathways were cytokine-cytokine 
receptor interaction, Epstein-Barr virus infection, and 
tuberculosis (Fig. S1D).

Fig. 2  Selection of the appropriate soft threshold (power) and construction of the hierarchical clustering tree. A Selection of the soft threshold 
made the index of scale-free topologies reach 0.90 and analysis of the average connectivity of 1–20 soft threshold power. B γδT cells-related genes 
with similar expression patterns were merged into the same module using a dynamic tree-cutting algorithm, creating a hierarchical clustering tree. 
C Heatmap of the correlations between the modules and immune-infiltrating cells (traits). Within every square, the number on the top refers to the 
coefficient between the cell infiltrating level and corresponding module, and the bottom is the P value. D Volcano plot was delineated to visualize 
the DEGs. Red represented upregulated and green represented downregulated. E LASSO coefficient profiles of 440 candidate genes. A vertical 
line is drawn at the value chosen by 10-fold cross-validation. F Ten-time cross-validation for tuning parameter selection in the lasso regression. The 
vertical lines are plotted based on the optimal data according to the minimum criteria and 1-standard error criterion. The left vertical line represents 
the 11 genes finally identified
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Construction of prognostic risk signature
In total, 448 γδ T cell-related hub genes (23 downregulated 
genes and 425 upregulated genes) were identified as DEGs 
between tumor and normal tissue samples (Fig.  2D). To 
explore the prognosis prediction capability of these genes, 
expression data and clinical data were extracted from TCGA-
LIHC project data. Using univariate Cox regression, 194 γδ T 
cell-specific genes were screened for prognostic significance 
(P < 0.05, Table S6). Next, the LASSO algorithm was per-
formed to identify 11 hub γδ T cell-related genes (Fig. 2E, F). 
Using a multivariate proportional hazards model, we identi-
fied five γδ T cell-specific genes (ATP1B3, PZP, ST6GAL-
NAC4, RFESD, and IFRD2) as the final hub genes, among 
which PZP was indicated as a favorable prognostic indica-
tor (all hazard ratios [HRs] < 1), whereas the other four genes 
(ATP1B3, ST6GALNAC4, RFESD, and IFRD2) were con-
sidered risk prognostic factors (all HRs > 1, Table S7). Gene 
expression values based on TCGA database showed that the 
expression levels of most genes were significantly and abnor-
mally regulated in HCC samples relative to normal tissues 
(Fig. S2A-E). In addition, survival analysis between the low- 
and high-gene expression subgroups showed that abnormal 
mRNA expression of most hub genes resulted in significantly 
distinct prognostic outcomes (most P < 0.05, Fig. S3A-E).

Finally, these five hub genes were introduced into the 
prognostic risk model for HCC. The risk score was calcu-
lated as follows:

Finally, each HCC sample, together with the corre-
sponding risk score, was stratified into low- and high-risk 
groups according to the median cutoff value.

Validation of prognostic risk signature

Figure 3A shows the distributions of the hub gene expres-
sion values in the patient and risk groups. In addition, risk 
score allocations and dot pot of survival status highlighted 
that high-risk HCC patients exhibited shorter OS times 
(Figure 3B, C). Kaplan-Meier survival analysis revealed that 
high-risk patients showed significantly poorer prognosis rel-
ative to low-risk patients (P < 0.001, Fig. 3D). Moreover, the 
area under the curve (AUC) was 0.747, 0.750, and 0.729 at 

Risk score = (0.3115 × expression level of ATP1B3)

+ (0.3777 × expression level of ST6GALNAC4)

+ (0.9482 × expression level of RFESD)

+ (0.3308 × expression level of IFRD2)

− (0.5348 × expression level of PZP)

Fig. 3  Establishment of the prognostic risk signature. A Heatmap presents the expression pattern of 5 hub genes in each patient, where the colors 
of red to blue represented alterations from high expression to low expression. B Distribution of multi-genes model risk score. C The survival status 
and duration of HCC patients. D Kaplan–Meier curve analysis presenting difference of overall survival between the high-risk and low-risk groups. 
E ROC analysis of the risk scores for overall prognosis prediction. The AUC was calculated for ROC curves, and sensitivity and specificity were 
calculated to assess score performance. F Univariate Cox regression results of overall survival. G Multivariate Cox regression results of overall survival
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1, 2, and 3 years, respectively (Fig. 3E). Next, the univariate 
Cox analysis determined the HR for the risk score was 1.446 
(95% confidence interval [CI]:1.310–1.595; Fig. 3F). Further-
more, multivariate Cox regression analysis (HR = 1.416, 95% 
CI:1.268–1.580; Fig. 3G) demonstrated that risk score is an 
independent prognosis prediction factor in HCC.

These results were further validated in the internal test-
ing group to demonstrate the prognostic performance of 
the constructed model. The distributions of gene expres-
sion patterns, survival status/time, and risk scores in 
the internal testing group and the entire HCC cohort 
are shown in Fig. 4A-C. Moreover, Kaplan-Meier curves 
were analyzed, and we found that low-risk HCC patients 
exhibited notably longer OS times compared with high-
risk patients in the internal testing group (Fig.  4D, P 
=0.013). The areas under the ROC curves were both 0.74 
or higher in the testing group (Fig.  4E), suggesting the 
robustness of this risk model for prognosis prediction in 
HCC. Likewise, risk score was as an independent progno-
sis prediction trait in both the univariable and multivari-
able regression analyses of the testing group (Fig. 4F-G).

The signature was applied to the ICGC-LIRI-JP cohort 
to validate the external prognosis prediction perfor-
mance. Fig. S4A-C shows the distributions of the six 
gene expression patterns, sample survival status, and 

corresponding risk score in the external validation 
cohort. Furthermore, survival analysis showed that high-
risk HCC patients had a poorer prognosis than low-risk 
patients (Fig. S4D, p = 0.003). The areas under the ROC 
values were more than 0.68 at 1, 2, and 3 years in the 
external testing cohort (Fig. S4E), which was consistent 
with our previous results in the training group. Taken 
together, our results confirm the external validity of the 
prognostic risk signature in distinct populations.

Clinical significance of risk score
Subsequently, the distribution of clinical variables in 
distinct risk subgroups was investigated (Fig.  5A). Fig-
ure  5B-D show the fraction of subgroups for clinico-
pathological grade, clinical staging, and T status in the 
low- and high-risk subgroups, respectively. We discov-
ered that with advanced pathological grade (4/6, P < 0.05, 
Fig.  5E), late tumor staging (2/6, P < 0.05, Fig.  5F), and 
higher T status (4/6, P < 0.05, Fig. 5G), the risk score sig-
nificantly increased.

Stratification survival analyses were performed to 
explore whether the risk score maintained its progno-
sis prediction capability when HCC patients were par-
titioned into subgroups with different clinical features. 
Relative to patients with high-risk HCC, samples from 

Fig. 4  Confirmation of prognostic risk scores in the testing group. A–E presents testing cohort findings which are accordant with the training set 
results (Fig. 3). F Univariate Cox proportional hazards analyses of survival in the testing group. G Multivariate Cox proportional hazards analyses of 
survival in the testing group
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low-risk HCC patients showed higher OS probability in 
the ≤65- or > 65-year-old age subgroups (Fig. S5A, B). 
Similarly, the risk score showed great prognostic capa-
bility for both female and male patients (Fig. S5C, D), as 
well as tumor grades 1–2 or 3–4 (Fig. S5E, F), early- and 
late-stages (Fig. S5G, H), T1–2 or T3–4 categories (Fig. 
S5I, J), N0 status (Fig. S5K), and M0 category (Fig. S5L). 
These findings suggest that risk score may be an excellent 
prognostic predictor, independent of clinical traits.

Correlation of risk with immune infiltration 
and therapeutic estimation
As the γδ T cell-based risk signature was derived from 
immune infiltration profiling, the potential contribu-
tion of the risk score to immune infiltration was further 
explored. The results showed that risk score was signifi-
cantly and negatively associated with infiltration of rest-
ing natural killer (NK) cells, whereas it was positively 
correlated with an abundance of CD8+ T cells, cancer-
associated fibroblasts, monocytes, and M1 macrophages 
(Fig. 6A). The detailed results are presented in Table S8.

Subsequently, the possible roles of risk scores in immu-
notherapy were investigated. First, a correlation analysis 
of ICB hub targets (PDCD1, CD274, PDCD1LG2, CTLA-
4, HAVCR2, and IDO1) [33–35] and risk score was 

conducted. The risk score was significantly and positively 
associated with the expression levels of CD274 (r = 0.38; 
P = 4.9e-14), CTLA-4 (r = 0.22; P = 3.1e-05), HAVCR2 
(r = 0.33; P = 5.1e− 11), IDO1 (r = 0.16; P = 0.0028), 
PDCD1 (r = 0.19; P = 0.00027), and PDCD1LG2 (r = 0.28; 
P = 4e− 8; Fig. 6B-G), suggesting that risk score may act 
as a key driving factor in immunotherapeutic prediction 
of HCC.

Using the “pRRophetic” algorithm, the IC50 val-
ues of four chemotherapeutic drugs (cisplatin, gemcit-
abine, metformin, and nilotinib) were evaluated in HCC 
patients. Cisplatin and gemcitabine presented a lower 
IC50 trend in high-risk patients (both p < 0.05; Fig.  6H, 
I). Conversely, the IC50 of metformin and nilotinib was 
lower in HCC samples from low-risk patients (both 
p < 0.05; Fig.  6J, K). These findings demonstrate that 
patients from different risk subgroups were sensitive to 
distinct chemotherapeutic drugs.

Enrichment of signaling pathways in low‑ and high‑risk 
groups
To further reveal the biological roles of distinct risk 
groups in tumorigenicity and progression, GSVA 
was performed (Fig.  7A, B). The risk score was posi-
tively correlated with heightened activities of the 
Wnt-β-catenin, tumor necrosis factor (TNF)α/NF-κB, 

Fig. 5  Clinical significance of the prognostic risk signature. A Heatmap presents the distribution of clinical feature and corresponding risk score in 
each sample. Rate of clinical variables subtypes in high or low risk score groups. B WHO grade, C clinical stage, and (D) T status. E Correlation of risk 
score with WHO grade. F Correlation of risk score with clinicopathological stage. G Correlation of risk score with T categories
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transforming growth factor (TGF)-β, phosphatidylin-
ositol-3-kinase (PI3K)/AKT/mammalian target of 
rapamycin (Mtor), P53, Notch, interleukin (IL)6/Janus 
kinase (JAK)/signal transducer and activator of tran-
scription (STAT)3, IL2/STAT5, mitogen activated pro-
tein kinases (MAPK), and KRAS signaling pathways. 
These results suggest that high-risk patients may be 
more suitable for administration of targeted molecu-
lar inhibitors. The risk score was negatively correlated 
with gene sets enriched in bile and fatty acid metabo-
lism signaling pathways. To further reveal the underly-
ing mechanism in low-risk patients, an investigation of 
metabonomic data is required in the future.

Association between Risk and TMB.
Accumulating studies have provided strong evidence 
that TMB may act as a crucial indicator of sensitivity 
to anti-cancer treatment. Therefore, we investigated 
the intrinsic interaction of γδ T cell-based risk with 
TMB and elucidated the hereditary variations between 

risk subtypes. First, the TMB level of each HCC sam-
ple was measured. The TMB value showed a relatively 
lower trend in low-risk patients than in high-risk 
patients (p = 0.024, Fig.  8A). Subsequently, the HCC 
samples were divided into distinct subgroups based 
on the TMB value set point. Survival analysis further 
indicated that the TMB value can provide a significant 
prognostic difference (p < 0.001, Fig.  8B). Correlation 
analysis indicated that the TMB level was significantly 
and positively associated with risk score (R = 0.15, 
p = 0.0047, Fig.  8C). As revealed in the stratified sur-
vival curves, there was no interference of risk score 
with TMB value in prognosis prediction. The risk sub-
groups showed significant prognostic differences in 
both the low and high TMB value subtypes (p < 0.001, 
Fig.  8D). Furthermore, the multivariable regression 
analysis showed that TMB value was not an independ-
ent prognosis prediction factor for HCC (Fig.  8E, F). 
Our results suggest that risk score has the potential to 
predict anti-cancer therapy outcomes.

Fig. 6  Estimation of Tumor-Infiltrating Cells and Immunotherapy significance. A Patients in the high-risk group were more positively associated 
with tumor-infiltrating immune cells such as macrophages, monocytes, and CD8+ T cells, whereas they were negatively associated with fibroblasts 
and CD4+ T cells, as shown by Spearman correlation analysis. Correlation between prognostic risk signature with hub immune checkpoint genes. 
B Correlation between prognostic risk signature and CD274, C Correlation between prognostic risk signature and CTLA4, D Correlation between 
prognostic risk signature and HAVCR2. E Correlation between prognostic risk signature and IDO1. F Correlation between prognostic risk signature 
and PDCD1. G Correlation between prognostic risk signature and PDCD1LG2. Estimation of Risk Score in Chemotherapeutic Effect. H Sensitivity 
analysis of Cisplatin in patients at high and low risk score. I Sensitivity analysis of Gemcitabine in patients at high and low risk score. J Sensitivity 
analysis of Metformin in patients at high and low risk score. K Sensitivity analysis of Nilotinib in patients at high and low risk score
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Fig. 7  Enrichment pathways of GSVA. A Heatmap showing the correlation of representative pathway terms of Hallmark with risk score. B Heatmap 
showing the correlation of representative pathway terms of KEGG with risk score

Fig. 8  The Correlation between the risk Score and TMB. A Difference of TMB between patients from the low−/high-risk score subgroups. B 
Kaplan-Meier curves for high and low TMB groups. C Scatterplots depicting the positive correlation between risk scores and TMB. D Kaplan-Meier 
curves for patients stratified by both TMB and risk score. E Univariate Cox regression results of overall survival. F Multivariate Cox regression results of 
overall survival. The oncoPrint was constructed using high risk score (G) and low risk score (H)
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Subsequently, the distribution of somatic variants 
was investigated in both the high- and low-risk sub-
groups. The comprehensive context of the gene muta-
tions showed the variation patterns and clinical traits 
of the top 20 driver genes with the most frequent 
alterations (Fig.  8G, H). The mutational landscapes 
showed that TTN experienced the highest somatic 
mutation rates in the low-risk score subtype, whereas 
TP53 possessed the highest somatic mutation rates in 
the high-risk score subgroup (Fig. 9A, D). In the high-
risk subgroup, missense mutation was the primary 
variant classification; most mutations belonged to sin-
gle nucleotide polymorphisms, and C > T was the most 
common variation, with the highest number of vari-
ations per sample and the median of variation types 
(Fig. 9B, C). Similar results were observed in the low-
risk subgroup (Fig. 9E, F). These results provide novel 
insights into the intrinsic interactions of somatic vari-
ants with γδ T cell patterns in HCC.

Development of novel prognostic nomogram
ROC curves were analyzed, and the AUC values for 1-, 
2-, and 3-year OS were 0.715, 0.741, and 0.754, respec-
tively, demonstrating the high predictive accuracy of the 
constructed risk model (Fig.  10A). To demonstrate that 
risk score was the best prognostic predictor among vari-
ous clinical characteristics, age, sex, tumor stage, clinical 
grade, and TNM category were considered as candidate 
prognostic factors. These clinicopathological variables 
were used to implement the AUC analysis for 1-, 2-, and 
3-year OS; risk score exhibited the highest AUC value 
(Fig.  10B-D). Subsequently, a novel nomogram, includ-
ing risk score and clinical stage, was established for OS 
probability prediction (Fig.  10E). Age, sex, and tumor 
grade were excluded from the nomogram because their 
AUC values were less than 0.6. Calibration curves were 
plotted, which suggested high prognostic accuracy of the 
risk-stage nomogram (Fig. 10F-H). In addition, this nom-
ogram was used in the ICGC-LIRI-JP cohort to confirm 

Fig. 9  Landscape of somatic mutation profiles in low−/high-risk samples. A A word cloud generated based on frequency of mutated genes in 
low-risk subgroup. The size of each gene is proportional to the total number of samples mutated / altered. B Cohort summary plot of low-risk 
subgroup displaying distribution of variants according to variant classification, type and SNV class. Bottom part (from left to right) indicates 
mutation load for each sample, variant classification type. A stacked barplot shows top ten mutated genes. C Transition and transversion plot 
displaying distribution of SNVs in low-risk subgroup classified into six transition and transversion events. Stacked bar plot (bottom) shows 
distribution of mutation spectra for every sample in the MAF file. D A word cloud generated based on frequency of mutated genes in high-risk 
subgroup. The size of each gene is proportional to the total number of samples mutated / altered. E Cohort summary plot of high-risk subgroup 
displaying distribution of variants according to variant classification, type and SNV class. Bottom part (from left to right) indicates mutation load for 
each sample, variant classification type. A stacked barplot shows top ten mutated genes. F Transition and transversion plot displaying distribution 
of SNVs in high-risk subgroup classified into six transition and transversion events. Stacked bar plot (bottom) shows distribution of mutation spectra 
for every sample in the MAF file
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its external prognostic ability. Figure 11A shows the AUC 
values for 1-, 2-, and 3-year OS of the risk scores in the 
external validation cohort. Moreover, risk and stage were 
good indicators with AUC values > 0.6 (Fig. 11B-D). The 
survival rates of HCC patients from the ICGC-LIRI-JP 
cohort were predicted using the constructed nomogram 
(Fig.  11E) and its prognostic robustness was validated 
(Fig.  11F). Finally, the ROC curve was analyzed to con-
firm the prognostic performance of the nomogram rela-
tive to other prognostic factors in TCGA-LIHC project 
(Fig. 11G).

Potential function of RFESD in prognosis prediction, 
mechanism of immune infiltration, and therapeutic 
estimation
The potential role of RFESD as a prognostic γδ T cell-
related gene has not yet been revealed yet in HCC. 
Thus, the biological roles of RFESD were further 
explored in subsequent analyses. The expression val-
ues of RFESD were compared between normal and 
tumor tissue samples based on TCGA dataset. For 
normal specimens and tumor tissues, RFESD expres-
sion levels showed a lower trend in normal compared 
with tumor tissue samples (Fig. 12A). Using qRT-PCR, 
the expression levels of RFESD in hepatic cell lines and 
two distinct hepatic cancer cell lines were investigated. 

Likewise, hepatic cancer cells exhibited significantly 
higher RFESD values than normal liver cells (Fig. 12B). 
To estimate the prognosis prediction performance of 
RFESD, survival analysis was performed to compare 
HCC patients with low and high RFESD expression. 
These results showed that a higher expression value of 
RFESD was significantly associated with a shorter OS 
time (P = 0.00093, Fig. 12C).

To reveal the biological roles of RFESD in immune 
infiltration, the correlation between RFESD expres-
sion and the abundance of infiltrating immune cells 
was investigated using the TIMER database. Arm-level 
gain was the main mutation type in CD4+ T cells, mac-
rophages, and neutrophils (Fig.  12D). In addition, the 
expression level of RFESD was significantly correlated 
with neutrophil infiltration (r = 0.134; P = 1.26e− 02; 
Fig. 12E).

Next, the correlation of RFESD with key ICB genes 
adjusted by tumor purity was analyzed to investigate 
the potential functions of RFESD in immunotherapeu-
tic prediction. These results showed that RFESD had a 
significant positive association with two of the four key 
ICB genes, including CD274 (r = 0.136; P = 1.16e− 02) 
and PDCD1LG2 (r = 0.117; P = 2.97e− 02; Fig.  12F-I), 
indicating that RFESD is an indispensable regulator in 
HCC immunotherapy.

Fig. 10  Validation of prognostic efficiency of risk signature in TCGA-LIHC. A ROC analysis was employed to estimate the prediction value of the 
prognostic signature. B-D Areas under curves (AUCs) of the risk scores for predicting 1-, 2-, and 3-year overall survival time with other clinical 
characteristics. E Nomogram was assembled by stage and risk signature for predicting survival of HCC patients. F One-year nomogram calibration 
curves. G Two-year nomogram calibration curves. H Three-year nomogram calibration curves
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Downregulation of RFESD suppressed HCC cell 
proliferation
To further reveal the biological roles of RFESD, RFESD 
siRNA was used to silence RFESD protein expression. 
The transfection effect on HCC cells was first estimated 
by qRT-PCR, and we observed that the relative mRNA 
expression value of RFESD was significantly lower after 
transfection with siRNA (Fig.  13A, P = 0.023). To fur-
ther reveal the possible role of RFESD in cell prolifera-
tion, CCK-8 assays were performed to evaluate the effect 
of RFESD silencing on HCC cell growth. After RFESD 
knockdown, MHCC-97H cell proliferation was signifi-
cantly decreased relative to that in control cells (Fig. 13B, 
P < 0.05). The EdU assay results also suggested that RFESD 
silencing significantly repressed HCC cell proliferation 
(Fig.  13C). These findings highlight that RFESD knock-
down inhibits the proliferative abilities of HCC cells.

Discussion
HCC is one of the most prevalent malignant tumors 
and is characterized by increased mortality worldwide 
[1–3]. It is well acknowledged that alternative splic-
ing, TP53 mutation and regulation of non-coding RNA 

and DNA methylation play crucial roles in HCC pro-
gression [5, 35–40]. Recently, an increasing number of 
studies have provided evidence for the non-negligible 
functions of immune infiltration in the progression of 
cancer, including HCC [13, 41–43]. Immunotherapy has 
been designed to harness immune cells to annihilate can-
cer cells and has exerted encouraging therapeutic effects 
and promising clinical outcomes in anticancer therapy 
[44]. The results of previous clinical studies suggest that 
the administration of ICB in advanced HCC patients has 
observable benefits; however, only 20% of patients had 
an objective response to treatment (57). Biomarkers such 
as ICB-related hub targets are unreliable for therapeutic 
prediction. Therefore, it is imperative to predict clinical 
outcomes to optimize therapeutic benefits and individu-
alize treatment plans [31, 45, 46].

Upon review of the articles, we found that an increas-
ing number of studies have focused on immune infiltra-
tion in human HCC [47, 48], especially γδ T cells [49]. A 
previous study showed that incubation of γδ T cells with 
hepatic tumor cell lines resulted in a significant decrease 
in cancer cell viability [50]. Xi et  al.. reported HP1 and 
MSP as potential candidates for antigens recognized 

Fig. 11  Testing of prognostic value of risk signature. A ROC analysis was employed to estimate the prediction value of the prognostic signature 
in the ICGC-LIRI-JP cohort. B-D Areas under curves (AUCs) of the risk scores for predicting 1-, 2-, and 3-year overall survival time with other clinical 
characteristics in the ICGC-LIRI-JP cohort. E Nomogram was assembled by stage and risk signature for predicting survival of HCC patients from 
ICGC-LIRI-JP cohort. F 1-, 2-, and 3-year nomogram calibration curves in the ICGC-LIRI-JP cohort. G ROC analysis was employed to estimate the 
prediction value of the prognostic nomogram in the TCGA-LIHC project
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by γδ T cells in HCC [51]. It is well established that γδ 
T cells act as a bridge between the adaptive and innate 
immune systems and mediate various immune responses 
during tumor development [52]. Besides, γδ T cells with 
features of abundant cytokine secretion capacity and 
non-major histocompatibility complex restricted antigen 
recognition have attracted interest for their application 
in malignant tumor immunotherapy [53]. These results 
emphasize that γδ T cell patterns may play a central role 
in tumor progression and response to clinical treatment.

Herein, we gathered three distinct HCC cohorts from the 
GSE54236, TCGA-LIHC, and ICGC-LICA-FR datasets to 
investigate the possible functions of γδ T cell-specific genes 
in distinct populations. In total, 616 tumor tissues, 130 nor-
mal samples, and 16,421 corresponding genes were used in 
the subsequent analyses. First, the CIBERSORT algorithm 
was employed to estimate the relative abundance of 22 
immune infiltrates. The most significant modules (brown) 
with 1755 candidate genes were identified and labelled γδ 
T cell-specific genes using the WGCNA algorithm. In addi-
tion, the results of functional annotation showed that these 
key genes were predominantly enriched in immunological 
activity, especially T-cell activation. Moreover, we discov-
ered that abnormal expression levels of these hub genes sig-
nificantly affected the OS time in HCC patients.

To further demonstrate the prognostic validity of these 
hub genes, sequencing profiling and clinical data were 
obtained from TCGA-LIHC project. Univariate, LASSO, 
and multivariate COX analyses were conducted to deter-
mine the final five hub genes, the risk score was com-
puted, and a prognostic risk signature was constructed. 
The prognostic value of the as-constructed risk model 
was demonstrated using Kaplan-Meier analysis and ROC 
curves. The risk signature was found to perform well as 
an independent prognosis prediction factor in both the 
univariate and multivariate regression analyses. Fur-
ther validation was performed using an external dataset 
(ICGC-LIRI-JP cohort). Subsequently, we observed that 
the risk score was positively correlated with the clinical 
grade, tumor stage, and T category. In addition, the risk 
signature still held powerful prognostic capability in the 
clinical feature-stratified survival analyses. A novel risk 
stage nomogram was established for further clinical prac-
tice. Finally, the prognosis prediction performance of our 
nomogram was validated in an external testing group.

Given the risk signature derived from immune infil-
trating status, the potential role of the risk score in the 
mechanism of immune infiltration and therapeutic evalu-
ation were further investigated. The results showed that 
risk score was negatively correlated with infiltration 

Fig. 12  The clinical significance of RFESD in HCC. FAM53B are upregulated in HCC samples based on TCGA datasetA and cell lines (B), and lower 
RFESD expression level was significantly correlated with improved prognosis (C). (D) Copy number of immune cells in HCC. E Correlation analysis of 
RFESD with infiltrating B cells, CD4 + T cells, CD8 + T cells, Macrophages, Neutrophils and Dendritic cells using TIMER. The association between the 
expression levels of RFESD with CD274 (F), PDCD1LG2 (G), CTLA4 (H), and PDCD1 (I) using TIMER
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of dysfunctional immune cells (i.e., resting NK cells), 
whereas it was positively correlated with the abundance 
of activated immune cells (i.e., CD8+ T cells), highlight-
ing that tumors with a high-risk score could be termed 
the immune-activated phenotype. Additionally, the risk 
score was positively and significantly correlated with 
the expression levels of key ICB targets (i.e., CD274), 
indicating that high-risk HCC samples might be more 
affected by ICB pathways, thereby inhibiting anti-tumor 
immune activation and deteriorating prognosis accord-
ingly. Because there were no immunotherapy data for the 
HCC cohort, we were unable to further investigate the 

potential correlation between risk score and immuno-
therapeutic response.

It is worth mentioning that the GSVA results indi-
cated that bile acid and fatty acid metabolism signaling 
pathways were activated in the low-risk group, whereas 
the Wnt-β-catenin, TNFα/ NF-κB, TGF-β, PI3K/AKT/
mTOR, P53, Notch, IL6/JAK/STAT3, IL2/STAT5, 
MAPK, and KRAS signaling pathways were activated 
in the high-risk group. These results showed that the 
underlying molecular mechanisms varied significantly 
between different risk samples. In addition, the risk-scor-
ing scheme revealed that the sensitivity of chemotherapy 

Fig. 13  The clinical significance of RFESD in HCC and in vitro study. A Transfection efficiency was verified after transfection of RFESD or negative 
control siRNA. B HCC cell viability was evaluated with CCK-8 assays at 0, 24, 48, and 72 h post-transfection. C The growth of HCC cells was estimated 
by EdU assays after RFESD knockdown
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drugs was associated with risk score. Therefore, HCC 
patients might be more suitable for a distinct combina-
tion of targeted molecular therapy and chemotherapeutic 
agents according to risk stratification.

Several recent clinical studies have reported a correla-
tion between genetic alterations and immunotherapeu-
tic sensitivity [54, 55]. Our results showed that TMB, a 
predictive indicator of immunotherapeutic responsive-
ness, increased significantly as the risk score increased. 
Subsequent stratified survival analyses supported that 
risk scores remain a powerful prognosis predictor inde-
pendent of TMB values, indicating that TMB level and 
risk score represent distinct aspects of immunobiology 
in HCC. Moreover, risk score together with mutation 
information revealed significant differences in gene vari-
ant frequency between the low- and high-risk subgroups. 
Interestingly, the low-risk subgroup shared a similar 
SNPs status to the high-risk subgroup.

According to the reviewed articles, studies focusing 
on the biological functions of RFESD in cancer have not 
yet been published. Herein, its prognosis prediction per-
formance and effects on TIME context and cell growth 
were explored. RFESD was significantly overexpressed 
in HCC cell lines and served as a poor prognosis predic-
tion indicator of HCC. Additionally, RFESD exhibited a 
notable correlation with the infiltration of immune cells 
(i.e., neutrophils) in HCC. Additionally, RFESD may play 
a role in promoting the proliferation of HCC cell lines. 
Furthermore, the expression of RFESD was significantly 
positively correlated with immunotherapeutic hub genes 
(i.e., CD274, PDCD1LG2). However, the potential molec-
ular mechanisms of RFESD in HCC progression remain 
elusive and require further experimental validation.

Conclusions
In summary, the comprehensive landscape of TIME 
was delineated using distinct datasets and multiple bio-
informatics analyses. Additionally, the distinction of 
the γδ T cell patterns was found to contribute to dif-
ferences in clinical outcomes and TIME feature het-
erogeneity. The potential mechanism pathways and 
chemotherapeutic drugs were investigated under differ-
ent risks. In addition, the synergistic effect of the risk 
score and TMB value was demonstrated in the progno-
sis prediction. To our knowledge, this is the first study 
to investigate the biological role of RFESD in HCC. 
Finally, a novel and robust nomogram was developed 
for quantitative estimation of patient risk. However, 
subsequent experimental and clinical validation at dif-
ferent centers with larger cohorts are required to vali-
date our results.
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