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Abstract 

Background:  A malignancy of the liver, hepatocellular carcinoma (HCC) is among the most common and second-
leading causes of cancer-related deaths worldwide. A reliable prognosis model for guidance in choosing HCC thera-
pies has yet to be established.

Methods:  A consensus clustering approach was used to determine the number of immune clusters in the Cancer 
Genome Atlas and Liver Cancer-RIKEN, JP (LIRI_JP) datasets. The differentially expressed genes (DEGs) among these 
groups were identified based on RNA sequencing data. Then, to identify hub genes among signature genes, a co-
expression network was constructed. The prognostic value and clinical characteristics of the immune clusters were 
also explored. Finally, the potential key genes for the immune clusters were determined.

Results:  After conducting survival and correlation analyses of the DEGs, three immune clusters (C1, C2, and C3) were 
identified. Patients in C2 showed the longest survival time with the greatest abundance of tumor microenvironment 
(TME) cell populations. MGene mutations in Ffibroblast growth factor-19 (FGF19) and catenin (cadherin-associated 
protein),β1(CTNNB1) were mostly observed in C2 and C3, respectively. The signature genes of C1, C2, and C3 were 
primarily enriched in 5, 23, and 26 pathways, respectively.

Conclusions:  This study sought to construct an immune-stratification model for the prognosis of HCC by dividing 
the expression profiles of patients from public datasets into three clusters and discovering the unique molecular 
characteristics of each. This stratification model provides insights into the immune and clinical characteristics of HCC 
subtypes, which is beneficial for the prognosis of HCC.
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Background Despite the treatments and diagnostic methods that have 
emerged over time for hepatocellular carcinoma (HCC), 
the long-term survival of HCC patients remains poor [1]. 
Currently, Since the development of molecular biology and 
molecular immunology, immunotherapy has gained con-
siderable attention in cancer treatment. Safety and efficacy 
of nivolumab, an anti-PD-1 immune checkpoint inhibitor 
was previously evaluated in a clinical trial of advanced HCC 
patients and the outcome was promising [2]. Providing 
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novel insight into the prognosis of and treatment options 
for HCC was the purpose of the current study by establish-
ing an immune-stratification model by classifying the HCC 
tumor microenvironment (TME) into three subtypes.

Methods
Data collection and preprocessing
We obtained transcriptional profile and mutation spectrum 
of TCGA (The Cancer Genome Atlas) cohort from the 
TCGA website (https://​portal.​gdc.​cancer.​gov/​repos​itory). 
Survival information of the 377 HCC samples in TCGA 
cohort were downloaded from the TCGA Pan-cancer Clin-
ical Data Resource. 21 samples without survival data were 
excluded. We downloaded raw RNA-Seq read count data 
and clinical data of the LIRI_JP cohort from Liver Cancer-
RIKEN,JP (LIRI_JP) dataset of the International Cancer 
Genome Consortium (https://​dcc.​icgc.​org/​proje​cts/​LIRI-​
JP). In addition, we normalized all raw counts data into 
transcript per million (TPM) for downstream analyses.

Immune score, stromal score, and microenvironment cell 
population (MCP)‑counter
The Estimation of Stromal and Immune Cells in Malignant 
Tumour Tissues Using Expression Data (ESTIMATE) algo-
rithm was used to calculate immune and stromal scores. 
Based on transcriptomic data, MCP-counter evaluated the 
absolute abundance of eight immune and two non-immune 
stromal cell populations by using the MCPcounter pack-
age of the R software program (R Foundation for Statistical 
Computing, Vienna, Austria).

Consensus clustering for TME cell populations
Based on the NbClust and ConsensuClusterPlus R pack-
ages, the number of clusters was determined for the TCGA 
and LIRI_JP cohorts using a consensus clustering algo-
rithm. A 1000-times repetition of the process ensured the 
stability of classification.

Signature genes associated with different TME subtypes
According to the TME cell population–infiltrating patterns, 
patients were divided into three groups—namely, C1, C2, 
and C3. The expression differences between groups were 
characterized by log2 fold-change. Subsequently, path-
way enrichment analysis was performed using the Enrichr 
(http://​amp.​pharm.​mssm.​edu/​Enric​hr/) database and the 

top five pathways with values of p < 0.05 were added into 
bubble plots.

Identification of hub genes among signature genes 
of different subtypes
The WGCNA package in R was applied to calculate the 
correlation coefficient based on the RNA sequencing 
data (expression values were log-transformed). Then, 
correlation data were imported into the Cytoscape ver-
sion 3.0 software program (Cytoscape Consortium, San 
Diego, CA, USA; https://​cytos​cape.​org/) to construct 
the gene co-expression network. Co-expression network 
edges were specified to have correlation coefficients > 0.7 
for C2 and C3.

Statistical analysis
Normality was verifed using Kolmogorov–Smirnov and 
Shapiro–Wilk tests (p > 0.05 signifies the variables that were 
normally distributed). The cutoff values of absolute abun-
dance of TME cell populations and gene expression were 
evaluated using the survminer R package. A univariate Cox 
proportional hazards regression model was established to 
calculate the hazard ratios (HRs) for univariate analyses. All 
statistical and computational analyses were conducted by R 
programming (https://​www.r-​proje​ct.​org/) and GraphPad 
Prism version 8.0 (GraphPad, San Diego, CA, USA; https://​
www.​graph​pad.​com/), and a two-tailed value of p < 0.05 
was considered to be statistically significant.

Results
Landscape of TME cell populations in HCC
Our study was systematically described with a flowchart 
(Fig.  1a). Totals of 345 and 202 patients from the TCGA 
and LIRI_JP datasets, respectively, were enrolled in this 
study. Based on the gene-expression matrix of several dis-
tinct experimental groups, the MCP-counter was used to 
determine the abundance of different TME cell popula-
tions. Subsequently, a correlation heatmap of TME cell 
populations in the TCGA cohort (Fig. 1b) was constructed 
to investigate the relationship between the eight immune 
and two non-immune stromal cell populations. It has been 
shown that there is a significant correlation between the 
eight immune cell types and two stromal cell types in the 
heatmap, and the same result has also been confirmed in 
the LIRI_JP cohort (Fig.  1c). Based on the abundance of 
TME cells in the patients, two categories were created: 

Fig. 1  The landscape of immune infiltration in hepatocellular carcinoma (HCC). a Flowchart depicting the study design. Correlation heatmap of 
the tumor microenvironment (TME) cell populations in the Cancer Genome Atlas (TCGA) cohort b and Liver Cancer-RIKEN,JP (LIRI_JP) cohort (c). 
Kaplan–Meier curves of patients distinguished by the optimal cutoff of absolute abundance of TME cell populations in the TCGA cohort d and 
LIRI_JP cohort e. Log-rank tests were used to determine whether differences between groups are statistically significant

(See figure on next page.)
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Fig. 1  (See legend on previous page.)
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high or low abundance based on the optimal cutoff value 
determined by the cutpoint function in the survminer 
package. The results of survival analysis indicated that high 
infiltration by T-cells (HR = 0.65, 95% confidence inter-
val [CI] = 0.44–0.94, p = 0.036), cytotoxic lymphocytes 
(HR = 0.62, 95% CI = 0.43–0.90, p = 0.020), a B lineage 
(HR = 0.65, 95% CI = 0.45–0.94, p = 0.034), CD8+T-cells 
(HR = 0.60, 95% CI = 0.42–0.86, p = 0.005), and natural 
killer (NK) cells (HR = 0.70, 95% CI = 0.49–0.99, p = 0.046) 
correlated with a significantly favorable prognosis, whereas 
a monocytic lineage (HR = 1.47, 95% CI = 1.02–2.12, 
p = 0.043) was associated with a poorer outcome. In the 
LIRI_JP group, similar results were also observed in that 
the prognosis was improved in conjunction with the high 
infiltration of T-cells, cytotoxic lymphocytes, B lineage, 
CD8+T-cells, and NK cells. Different from the TCGA 
cohort, however, LIRI_JP patients with a high infiltration 
of myeloid dendritic cells, neutrophils, fibroblasts, and 
endothelial cells also had favorable outcomes. The Kaplan–
Meier curve for the above-identified cell populations and 
that for the rest of the TCGA and LIRI_JP cohorts are 
shown in Fig. 1d and e, respectively.

Identification of TME subtypes associated with prognostic 
subtypes
According to the optimal cluster number (k = 3, Fig. 2a) 
determined by the NbClust and ConsensusCluster-
Plus packages, patients in the TCGA cohort were clas-
sified into three groups (C1, C2, and C3). The details of 
K-means consensus clustering are shown in Fig. S1. A 
significant prognostic difference was observed (p = 0.004, 
Fig.  2b) among these three groups, for C2, the median 
survival time (MST) is longer (n = 58, MST = 3125 days) 
than C1 (n = 129, MST = 1508 days) or C3 (n = 167, 
MST = 1560 days). Another HCC dataset from the LIRI_
JP cohort was adopted to validate its prognostic value, 
though there was no statistical difference of the median 
survival time for the clusters in the LIRI-JP cohort, the 
similar trend that C2 has a longer median survival time 
for C2 than C1 or C3 can be observed (p = 0.2, Fig. 2b). 
To confirm the difference between the three subtype 
classifications, the absolute abundance of TME cell pop-
ulations for the TCGA cohort (Fig.  2c) was estimated, 
and results revealed that seven types of TME cells were 
involved (T-cells, CD8+ T-cells, NK cells, cytotoxic 
lymphocytes, myeloid cells, and monocytic cells; all 
p < 0.001) had the highest abundance in C2, while C3 
had the lowest abundance of these seven TME cell types. 
Additionally, As for neutrophils (p = 0.114), endothelial 
cells (p = 0.191), and fibroblasts (p = 0.268) there were 
no significant differences between C1 and C2. A similar 
result was also validated in the LIRI_JP cohort (Fig. 2d) 
in that the amounts of T-cells, CD8+ T-cells, cytotoxic 

lymphocytes, NK cells, B-cell lineage cells, and mono-
cytic lineage cells (all p < 0.001) were highest in C2 and 
lowest in C3, respectively. Additionally, ESTIMATION 
is used to determine immune and stromal scores, and 
significant differences between the three clusters were 
found (Fig. 2e). This provides powerful evidence for the 
validity of the subtype classification.

TME subtypes in the TCGA cohort: clinical characteristics
Clinical characteristics of different subtypes in the TCGA 
cohort, including age at diagnosis, gender, TNM stage, 
histologic grade, vascular invasion, and genetic changes 
(tumor protein p53[TP53],CTNNB1,and FGF19) are 
shown in Fig. 3a and Table 1. According to the results of 
the analysis, CTNNB1 and FGF19 had different genetic 
alterations among the three TME types. For example, the 
frequency of CTNNB1 gene mutations was higher in C3 
(37.7%) than C1 (13.2%) or C2 (24.1%), and the frequency 
of FGF19 genetic alterations was higher in C2 (20.7%) 
than C1 (3.9%) or C3 (4.2%). In addition, C3 had a higher 
number of somatic mutations per megabase (TMB) than 
C1 or C2. (p < 0.001), while between C1 and C2, TMB did 
not differ significantly (p = 0.990, Fig. 3b). Subsequently, 
a low-TMB and high-TMB group of patients was formed 
based on the median value of TMB, and there were sig-
nificant differences in the amounts of T-cells (p = 0.022), 
monocytic lineage cells (p < 0.001), myeloid dendritic 
cells (p < 0.001), neutrophils (p = 0.037), endothelial cells 
(p < 0.001), and fibroblasts (p < 0.001) between the two 
groups (Fig. 3c).

Clinical characteristics of TME subtypes in the LIRI_JP 
cohort
The clinical characteristics of different subtypes in the 
LIRI cohort, as well as age, gender, and stage of the tumor 
at diagnosis, are shown in Table 2. The results suggested 
that age, gender, and tumor stage showed no significant 
differences among the three TME subtypes.

Transcriptome feature of the TME subtypes
Differential expression analysis was conducted accord-
ing to the cutoff criteria of an adjusted p value of < 0.01 
and |log2 (fold-change)| of ≥1. Differentially expressed 
genes (DEGs) in C1 and C2, C2 and C3, and C1 and C3, 
respectively, were 400, 781, and 358 (Fig. 4a). Then, after 
combining the high-expression and low-expression genes 
and deleting the duplication genes, signature genes were 
identified, and the numbers of signature genes in C1, 
C2, and C3 were 64, 213, and 142, respectively (Figs.4b 
and 4c). A heatmap was then constructed to visualize 
the expression level of signature genes of C1, C2, and C3 
(Fig. 4d).
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Fig. 2  Unsupervised clustering of tumor microenvironment (TME) cell populations in the Cancer Genome Atlas (TCGA) cohort. a Consensus 
matrix heatmap from K-means consensus clustering identified 3 different clusters—namely, C1, C2, and C3. b Kaplan-Meier curves showed the 
overall survival rates for patients with hepatocellular carcinoma (HCC) in TCGA and Liver Cancer-RIKEN,JP (LIRI_JP) cohorts. Patients were divided by 
different TME subtypes. Violin plot of the absolute abundance of TME cell populations distinguished by different TME subtypes in the TCGA cohort 
(c) and LIRI_JP cohort d. Abbreviation: ns, no significance. *p < 0.05, **p < 0.01, ***p < 0.001, ***p < 0.0001). A log-rank test was used to determine the 
statistical significance of differences. e Immune and stromal scores were determined using ESTIMATION for patients of 3 TME subtypes in the TCGA 
cohort. Medians, interquartile ranges, and minimum/maximum are shown in boxplots, and the differences between each group were compared by 
using the Mann–Whitney U test
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To explore the functional implications of these signa-
ture genes of different subtypes, KEGG pathway enrich-
ment analysis was performed. The results of KEGG 
enrichment analysis revealed that the signature genes of 
C1, C2, and C3 were primarily enriched in five KEGG 
pathways (for C1, extracellular matrix–receptor interac-
tion, the Wnt/PI3K/Akt signaling pathway, focal adhe-
sion, and amoebiasis), 23 pathways (the top five for C2 
were primary immunodeficiency, cytokine–cytokine 

receptor interaction, intestinal immune network for 
immunoglobulin A production, hematopoietic cell line-
age, and cell-adhesion molecules), and 26 pathways (the 
top five for C3 are neuroactive ligand-receptor inter-
action, protein digestion and absorption, and pancre-
atic secretion, GABAergic synapse, and breast cancer), 
respectively (Table S1). The results are visualized in bub-
ble plots (Fig.  4e). Moreover, we investigated the cor-
relation of immune cells with mutations of TP53 and 

Fig. 3  Clinical characteristics of different TME subtypes. a Heatmap describing the absolute abundance of tumor microenvironment (TME) cell 
populations in TME subtypes C1, C2, and C3. Group information; mutation status of TP53, CTNNB1, and FGF19; vascular invasion; American Joint 
Committee on Cancer stage; histological grade; and gender are shown as patient annotations. b Boxplot of the tumor mutation burden in three 
TME subtypes. The differences were compared by using the Mann–Whitney U test. c Violin plot of the absolute abundance of TME cell populations 
between the low-TMB and high-TMB groups distinguished by median value. The differences between each subtype were compared using Student’s 
t-test
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CTNNB1, which are two representative genes in liver 
cancer. It was demonstrated that two types of immune 
cells (fibroblasts and cells of monocytic lineage) have 
different relative amounts of TME cell populations 
when comparing between TP53-mutant and TP53 wild-
type HCC cells. Analogously, eight immune cells also 
showed different relative amounts of TME cell popula-
tions between CTNBB1-mutant and CTNBB1 wild-type 
HCC cells. Furthermore, CTNNB1 wild-type HCC cells, 
compared to CTNBB1-mutant HCC cells, had greater 
relative amounts of TME cell populations across all eight 
immune cells (Fig. S2).

Identification of hub genes of 3 TME subtypes
The signature genes in the three TME subtypes were ana-
lyzed and identified by gene co-expression network anal-
ysis to determine the core genes for C1, C2, and C3. After 
excluding the gene pairs with correlation coefficients of 
< 0.7 in C2 and C3 and those with coefficients of < 0.3 in 
C1, 45 signature genes for C1, 57 signature genes for C2, 
and 40 signature genes for C3 were included to construct 
the co-expression network. Co-expression networks were 
constructed using Cytoscape (Fig. 5a). Genes were repre-
sented by nodes in the network, and interactions between 
genes were represented by edges.

Network degrees, which describe the number of genes 
that regulate each other, represented the size and the 
color shades of the cycle node. Each node in the net-
work represented the number of enriched genes in the 
gene set, and different colors and sizes represented dif-
ferent degrees of closeness, with the most central genes 
in the network having the largest degree values. Subse-
quently, the cytoHubba plugin in Cytoscape was applied 
to identify hub genes among signature genes of C1 (the 
top three genes were PNCK, SOHLH1, and CT45A1), 
C2 (the top three genes were SLAMF7, CD27, and A T 
cell immunoreceptor with immunoglobulin and ITIM 
domains [TIGIT]), and C3 (the top three genes were 
MOXD1, LUM, and CCDC80), respectively. Also, lolli-
pop plots were used to visualize the correlation between 
hub gene expression and total number of TME cells. The 
results show that there was a weak correlation between 
hub genes of C1 and all TME cell populations (correla-
tion coefficient < 0.3), hub genes correlate strongly with 
C2 and the eight immune cell populations (correlation 
coefficient > 0.5), and a strong correlation exists between 
hub genes for C3 and the two stromal cell populations 
(correlation coefficient > 0.5) (Fig.  5b). This result was 
reproduced in the LIRI_JP cohort (Fig. 5c).

Prognostic value of hub genes
The prognosis of the four hub genes was further ana-
lyzed and is shown in Fig. S2. The results of survival 

Table 1  Clinical characteristics of patients of different subtypes 
in the Cancer Genome Atlas cohort

Variable C1 C2 C3 p value

Gender 0.561

  Female 47 19 51

  Male 82 39 116

Age (years) 0.371

   < 60 56 31 77

   ≥ 60 73 26 90

Grade 0.330

  I 17 9 25

  II 69 25 75

  III 39 20 58

  IV 1 3 8

AJCC stage 0.896

  I 55 29 82

  II 31 14 36

  III 27 13 42

  IV 3 0 2

Vascular invasion 0.752

  None 71 32 93

  Micro 33 11 45

  Macro 6 3 5

TP53 0.447

  Mutant 35 21 52

  Wild-type 94 37 115

CTNNB1 < 0.001

  Mutant 17 14 63

  Wild-type 112 44 104

FGF19 < 0.001

  Amplification 5 12 7

  Wild-type 124 46 160

Table 2  Clinical characteristics of patients of different subtypes 
in the LIRI_JP cohort

Variable C1 C2 C3 p value

Gender 0.208

  Female 24 11 14

  Male 63 25 65

Age (years) 0.163

   < 60 22 6 11

   ≥ 60 65 30 68

Grade 0.279

  I 16 5 9

  II 41 19 37

  III 27 7 26

  IV 3 5 7
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Fig. 4  Identification of signature genes of three tumor microenvironment (TME) subtypes and functional annotation. a Volcano plots of the 
differentially expressed genes between C1 and C2, between C2 and C3, and between C1 and C3, respectively. b Diagram depicting the process 
of identification of the signature genes of three TME subtypes. c Venn diagram showing the signature genes of three TME subtypes with no 
duplication. d Three different subtypes of signature genes shown as a heatmap. Abbreviation: FPKM, fragments per kilobase of exon per million 
reads mapped. e Bubble plots of Kyoto Encyclopedia of Genes and Genomes pathway analysis of TME subtypes’ signature genes

Fig. 5  Identification of hub genes from signature genes of different subtypes. a Co-expression network of signature genes of different subtypes. 
The correlation between genes (expression values were log-transformed and verified to be normally distributed) were estimated by Pearson’s 
correlation analysis. Genes are represented by cycle nodes, whose size represents how many genes are connected to the node, and in gene 
networks, edges represent interactions between genes. Lollipop plots show the correlation between the expression levels of hub genes and the 
absolute abundance of TME cell populations in the Cancer Genome Atlas cohort b and Liver Cancer-RIKEN,JP cohort c. The size of nodes represents 
the power of the interrelation between genes and TME cell populations, and the shade of nodes represents the significance of the correlation

(See figure on next page.)
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Fig. 5  (See legend on previous page.)
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analysis indicated that all three hub genes of C1 (PNCK: 
HR = 1.84, 95% CI = 1.29–2.64, p = 0.001; SOHLH1: 
HR = 1.71, 95% CI = 1.18–2.48, p = 0.002; and CT45A1: 
HR = 2.36, 95% CI = 1.27–4.40, p < 0.001), two of the 
three hub genes for C2 (SLAMF7: HR = 0.63, 95% 
CI = 0.42–0.94, p = 0.041 and CD27: HR = 0.62, 95% 
CI = 0.42–0.90, p = 0.019), and one of the three hub 
genes for C3 (MOXD1: HR = 1.61, 95% CI = 1.09–2.39, 
p = 0.032) had significant prognostic value.

Discussion
Based on this analysis, three subtypes of immune micro-
environment were identified for HCC (C1, C2, and C3). 
With the highest absolute abundance of TME cell popu-
lations and the longest survival time, the potential prog-
nostic value of the PD-1/programmed death ligand 1 
(PD-L1) blockade for the C2 patients is worth further 
investigation. The present analysis showed that patients 
in C2 had the best prognosis with the largest number 
of TME cells. This result is in accordance with that of 
another study on HCC classification, which showed that 
the patients with the immune-high subtype of TME had a 
significantly better prognosis [3]. The efficacy of immune 
checkpoint inhibitors (ICIs) is associated with the level 
of immune infiltration. Greater infiltration of cytotoxic 
T-cells is directly related to a better clinical response [4]. 
It has been demonstrated in previous studies [5–7] that 
the immune-high subtype correlates with PD-L1 expres-
sion in tumor and immune cells (mainly macrophages) 
and PD1 positivity in CD8+ T cells. In clinical trials for 
HCC, only CTLA-4 and PD-1/PD-L1 inhibitors have 
been tested to date. In the body, by interacting with PD-1 
and PD-L1 on antigen-presenting cells, PD-L1 maintains 
self-tolerance and inhibits T cell activation [8, 9]. ICIs 
boost the immune response by depleting the tumor’s 
cytotoxic T-cells [10]. Hence, it is valuable to study the 
potential efficacy of ICIs in HCC patients in C2 further.
CTNNB1 and TP53 are two major mutation genes in 

HCC [11]. Previous studies [12] have shown that HCC 
with a CTNNB1 mutation is generally well differenti-
ated. As a therapeutic biomarker, therapies targeting 
CTNNB1 in HCC have reached promising outcomes 
[13]. In this analysis, the lowest infiltration of immune 
cells together with the highest mutations of CTNNB1 
may indicate a lack of response to ICIs. Simultaneously, 
in this current study, though the TMB in C3 was high-
est among the three subtypes, this result may not indi-
cate a better response to ICIs [14]. Bagaev et  al. [15] 
previously showed that TMB predicts the immuno-
therapy effect unsatisfactorily in a pan-cancer analysis 
(area under the receiver operating characteristic curve 
[AUC] for TME = 0.82, AUC of TMB = 0.56). An analy-
sis based on TCGA data also found that a higher TMB 

in HCC is associated with a poorer survival prognosis 
and negative immune checkpoint activity; the infiltration 
level of immune cells was higher in the low-TMB group 
than the high-TMB group, and the heavy mutation load 
may inhibit immune cell infiltration in HCC. Consistent 
results were also observed in the C3 group of this study, 
i.e., a high TMB (Fig. 3b) and a low level of immune cell 
infiltration (Figs.  2c and 2d). For further verification, 
we divided patients into two groups according to their 
level of TMB, and the results showed that the high-TMB 
group had lower immune cell infiltration (Fig.  3c). This 
result may contradict the universal notion that high TMB 
might yield numerous neo-antigens that will activate the 
anti-tumor immune response, therefore more experi-
ments are necessary.
FGF19 amplification was found in C2 patients in this 

analysis, which is reported to be overexpressed in a sub-
type of HCC patients [16]. FGF19 signals sent through 
its receptor, fibroblast growth factor receptor 4 (FGFR4), 
can induce hepatocyte proliferation as well as glyco-
gen synthesis. FGFR4 inhibitors, including BLU-554 
and FGR401, have been studied as potential treatments 
for HCC patients that act by interfering with FGF19–
FGFR4 signaling and have achieved promising results in 
phase I and II clinical trials [17]. Hence, further studies 
in this regard are desirable, as are clinical trials designed 
to ascertain the therapeutic value of combining immuno-
therapy and molecular-targeted therapy for C2 patients.

A more thorough understanding of the complex mech-
anism of TME may stimulate further investigation into 
combination therapies [18]. The top three hub genes 
(PNCK, SOHLH1, and CT45A1) identified in C1 cor-
related with patient prognosis. Human breast cancers 
overexpress PNCK compared to benign breast tissues as 
PNCK plays an important role in mammary development 
[19]. Furthermore, CT45A1 overexpression has been 
confirmed in various cancers with a weak tumorigenic 
effect [20]. Studies have shown that [21, 22] overexpres-
sion of CT45A1 in breast cancer cells significantly upreg-
ulates several oncogenic and metastatic genes, indicating 
that CT45A1 may be a promising biomarker for targeted 
tumor therapy [21].

The top three hub genes (SLAMF7, CD27, and TIGIT) 
identified in C2 have great potential to be biomarkers of 
immunotherapy. SLAMF7 has been regarded previously 
as a target for immunotherapy in multiple myeloma [23]. 
CD27 belongs to the TNF (tumor necrosis factor) recep-
tor superfamily and it is expressed exclusively on lym-
phocytes, and CD27 signaling involving its ligand, CD70, 
promotes T-cell expansion, survival, and differentiation 
as well as B-cell and NK cell activation [24]. Varilumab, a 
CD27 agonist, has already been tested in multiple early-
phase clinical trials, either alone or in combination with 
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antiPD-1 therapy. Mouse models treated with CD27 ago-
nists have also revealed these drugs’ preventive role in 
tumor formation or progression [25]. For cancer immu-
notherapy, T-cell immunoglobulin and TIGIT, as well as 
CTLA-4, PD-1, T-cell immunoglobulin 3 and lympho-
cyte activation gene 3, are the most commonly targeted 
checkpoints [26]. In melanoma and colon cancer mouse 
models, anti-TIGIT therapy results in tumor regression 
and improved survival. Although the development of 
TIGIT inhibitors is still in its early phase, several clini-
cal trials of TIGIT inhibitors are now ongoing [27]. The 
synergistic effect of combination therapy involving PD-1 
inhibitors and TIGIT inhibitors in mouse models sug-
gests that it may be possible to treat lung cancer patients 
with upregulation of both PD-1 and TIGIT [28]. In sum-
mary, molecular-targeted therapy alone, immunotherapy 
alone, or a combination of both may be a potential thera-
peutic strategy for C2 HCC patients.

Among the top three hub genes detected in C3, the 
expression of LUM was found to be regulated during liver 
fibrogenesis. Though LUM is considered to be essential 
for hepatic fibrosis, its function in hepatocarcinogenesis 
has not yet been determined [29, 30]. The signature genes 
of C1 were primarily enriched in five KEGG pathways 
(extracellular matrix–receptor interaction, Wnt signaling 
pathway, Focal adhesion, PI3K–Akt signaling pathway, 
and amoebiasis). Thus, the therapies targeting molecules 
in these signaling pathways may be interesting items to 
explore further in the future.

In general, this study classified the TME of HCC 
according to varied immune compositions, gene expres-
sion levels, and prognoses. On the one hand, it is hoped 
that this study can develop a deeper understanding of 
HCC tumor biology and therapeutic response. On the 
other hand, the new patient-stratification method pro-
posed in this study is expected to provide some guidance 
for the management of HCC patients in the future and 
may contribute to precision medicine;however, we still 
recognize the limitations of our study. To reduce the bias, 
we analyzed and constructed an immune-stratification 
model based on the TCGA dataset and validated it in the 
LIRI_JP dataset. However, all data in this study originate 
from online datasets, so further experimental validation 
and patient tumor sample validation are necessary.

Conclusion
Immunotherapies and/or FGFR4 inhibitors for HCC 
patients in C2, CTNNB1-targeted therapies for those in 
C3, and therapies targeting the molecules Wnt–β-catenin 
pathway and/or the PI3K pathway for those in C1, may 
be potential therapeutic strategies that warrant further 
investigation.
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