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Abstract 

Background:  Current guidelines for mammography screening for breast cancer vary across agencies, especially for 
women aged 40–49. Using artificial Intelligence (AI) to read mammography images has been shown to predict breast 
cancer risk with higher accuracy than alternative approaches including polygenic risk scores (PRS), raising the ques-
tion whether AI-based screening is more cost-effective than screening based on PRS or existing guidelines. This study 
provides the first evidence to shed light on this important question.

Methods:  This study is a model-based economic evaluation. We used a hybrid decision tree/microsimulation model 
to compare the cost-effectiveness of eight strategies of mammography screening for women aged 40–49 (screening 
beyond age 50 follows existing guidelines). Six of these strategies were defined by combinations of risk prediction 
approaches (AI, PRS or family history) and screening frequency for low-risk women (no screening or biennial screen-
ing). The other two strategies involved annual screening for all women and no screening, respectively. Data used to 
populate the model were sourced from the published literature.

Results:  Risk prediction using AI followed by no screening for low-risk women is the most cost-effective strategy. It 
dominates (i.e., costs more and generates fewer quality adjusted life years (QALYs)) strategies for risk prediction using 
PRS followed by no screening or biennial screening for low-risk women, risk prediction using AI or family history fol-
lowed by biennial screening for low-risk women, and annual screening for all women. It also extendedly dominates 
(i.e., achieves higher QALYs at a lower incremental cost per QALY) the strategy for risk prediction using family history 
followed by no screening for low-risk women. Meanwhile, it is cost-effective versus no screening, with an incremental 
cost-effectiveness ratio of $23,755 per QALY gained.

Conclusions:  Risk prediction using AI followed by no breast cancer screening for low-risk women is the most cost-
effective strategy. This finding can be explained by AI’s ability to identify high-risk women more accurately than PRS 
and family history (which reduces the possibility of delayed breast cancer diagnosis) and fewer false-positive diagno-
ses from not screening low-risk women.
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Background
There is widespread debate among clinicians and 
researchers globally over what constitutes appropriate 
breast cancer screening, especially for women younger 
than age 50 [1]. Consequently, existing guidelines on 
mammography screening for breast cancer vary widely, 
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even within a country. In the United States (US), the 
American College of Obstetricians and Gynecologists 
(ACOG) and the American College of Radiology (ACR) 
recommend annual mammography starting at age 40 for 
all women [2]. Meanwhile, the most recent US Preventive 
Services Task Force (USPSTF) guidelines recommend 
biennial mammography between ages 50 to 74 years for 
women without family history of breast cancer while 
indicating that women with family history may benefit 
from starting screening between ages 40 and 49 [2]. In 
Canada, breast cancer experts have challenged the Cana-
dian Preventive Task Force which recommends against 
breast cancer screening for women aged between 40 and 
49 years who are not at high risk, arguing that these rec-
ommendations are “outdated and dangerous” and have 
called for annual screening of all women above age 40 [3].

Cost-effectiveness analyses can inform this debate by 
estimating and comparing the costs and effectiveness 
of alternative screening strategies to identify the most 
cost-effective screening strategy. However, despite sev-
eral cost-effectiveness analyses of alternative screening 
intervals and starting ages for mammography screening 
associated with current screening guidelines [4, 5], the 
results remain inconclusive. Earlier studies have found 
starting screening at age 40 was not cost-effective relative 
to starting at age 50 [4], which lends support to the exist-
ing USPSTF guidelines while more recent cost-effective-
ness analyses point to the value of extending screening 
to women younger than age 50 [5] as recommended by 
ACOG/ACR.

A key limitation of existing guidelines is that these do 
not fully account for heterogeneity in women’s risk of 
breast cancer. For instance, while risk assessment tools 
may consider family history or breast density as risk fac-
tors, these tools do not consider the full set of genetic 
markers now known to be associated with breast cancer. 
Furthermore, breast density measurements are also sub-
ject to radiologists’ assessment and discernment. From 
an economic perspective, a more rigorous risk stratifica-
tion can enable focusing health care resources on screen-
ing women with high risk while avoiding unnecessary 
screening and follow-up costs for those with low risk.

Two new risk prediction approaches have recently 
emerged, namely polygenic risk score (PRS) and artificial 
intelligence (AI). PRSs estimate a woman’s risk of breast 
cancer based on susceptibility loci identified through 
genome wide association studies [6]. AI algorithms, in 
contrast, identify discriminative image patterns from 
full-field mammograms to categorize a woman’s risk of 
developing breast cancer in the future [7].

To date, there is very little evidence on the cost-effec-
tiveness of using these new risk-stratification approaches 
to aid breast cancer screening. Only one study has 

examined the cost-effectiveness of PRS-based risk-
stratified mammography screening versus screening all 
women aged between 50 and 69 years and no screening 
for breast cancer. This study found that offering mam-
mography screening only to women above the 70th per-
centile of the PRS-based risk distribution is cost-effective 
relative to screening all women aged between 50 and 
69 years and no screening [8]. Notably, no study has com-
pared the cost-effectiveness of risk-stratified mammogra-
phy screening based on risk prediction using AI vs PRS. 
Our study fills this evidence gap.

In this study, we examine the cost-effectiveness of using 
AI or PRS to guide mammography screening for breast 
cancer compared with screening based exclusively on 
family history (similar to USPSTF guidelines), annual 
screening for all women (similar to ACOG/ACR guide-
lines) and no screening, among white women. As most 
of the debate over breast cancer screening centers on 
screening for women aged between 40 and 49 years and 
as data on predictive ability of AI has been validated only 
for the short-term [7], we consider AI and PRS for guid-
ing screening for only women in the 40 to 49 years age 
group, with screening for older women based on existing 
guidelines.

Methods
Study cohort and risk of breast cancer
Our model simulated 100,000 white women aged 40 years 
with no previous history of breast cancer. Each woman 
had an underlying risk of developing breast cancer based 
on a recent risk distribution estimated for US white 
females using a comprehensive set of genetic and other 
non-modifiable and modifiable breast cancer risk fac-
tors [9]. As criteria for who is considered ‘high risk’ for 
screening purposes differ across guidelines, we conserva-
tively classified women into three categories: (i) ‘true’ low 
risk, defined as those with an underlying risk of breast 
cancer less than 1.1 times the average risk in the popu-
lation of 40 year old women (that is, relative risk (RR) 
is lower than 1.1); (ii) ‘true’ high risk, defined as those 
with RR between 1.1 and 4; and (iii) ‘true’ very high risk, 
defined as those with RR of 4 or higher. The RR threshold 
of 1.1 was chosen because it can capture a broad range of 
factors known for increasing risk of breast cancer, includ-
ing family history of breast cancer, reproductive risk 
factors, genetic variations and dense breast on mammog-
raphy [10]. Meanwhile, the RR threshold of 4 captures 
factors such as history of chest radiation and atypical 
hyperplasia [11, 12]. With these RR thresholds, 1% of 
our hypothetical study cohort was classified as ‘true’ very 
high risk, 42% as ‘true’ high risk and the remaining 57% 
as ‘true’ low risk.
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Screening strategies
We compared eight alternative screening strategies as 
shown in Fig.  1. The first two strategies involved no 
screening and annual screening for all women, respec-
tively. The remaining six strategies were defined by 
combinations of risk prediction approaches (AI, PRS 
or family history) and screening frequencies among 
low-risk women aged 40–49 (no screening or bien-
nial screening). We describe these strategies in detail 
below.

No screening
In strategy 1 (‘No screening’, hereafter), women were not 
screened at any age regardless of risk level.

Annual screening for all
In strategy 2 (‘Annual screening for all’, hereafter), all 
women (regardless of risk level) underwent annual mam-
mography starting at age 40, similar to recommendations 
by ACOG and ACR.

Screening guided by AI
Strategies 3 and 4 involved risk stratification based on AI 
reading of an index mammogram. All women underwent 
an index mammogram at age 40, which was interpreted 
using AI to predict risk of breast cancer. This mammo-
gram may or may not be part of standard screening ser-
vices. Women predicted to have high risk (RR > =1.1) 
underwent annual digital mammography starting at age 
40. In strategy 3 (‘AI + no screening for low-risk’, hereaf-
ter), women predicted to have low risk were not screened 
while in strategy 4 (‘AI + biennial screening for low-
risk’, hereafter), they underwent biennial screening. This 
screening pattern continued until age 49. Beyond age 
50, screening followed the existing USPSTF guideline as 
described below.

Screening guided by PRS
In strategies 5 (‘PRS + no screening for low-risk’, hereaf-
ter) and 6 (‘PRS + biennial screening for low-risk’, here-
after), screening pathways were the same as in strategies 
3 and 4; however, risk stratification was performed using 
PRS instead of AI. All women underwent genetic testing 
at age 40 in which 76 single nucleotide polymorphisms 
(SNPs) known to be associated with breast cancer were 
genotyped [6].

Screening guided by family history
In strategies 7 and 8, screening was guided by family his-
tory (similar to existing recommendations by the USP-
STF). For women aged between 40 and 49 years, existing 
USPSTF recommendation to screen women without 
family history is only a grade C recommendation (i.e., the 
net benefit of screening in this group is small) [11, 13]. 
Therefore, in strategy 7 (‘Family history + no screen-
ing for low-risk’, hereafter), we considered that women 
younger than age 50 without family history were not 
screened, while in strategy 8 (‘Family history + biennial 
screening for low-risk’, hereafter), they were screened 
biennially. The USPSTF guidelines indicate that women 
with family history may benefit from starting screening 
before age 50 [2] but do not specify frequency of screen-
ing for these women. Given that most other screening 
guidelines recommend annual screening for high-risk 
women [2], we considered that women with family his-
tory underwent annual mammography starting at age 40.

Beyond age 50, screening  in strategies 3-8 followed 
existing USPSTF guidelines. Therefore, women without 
family history were screened biennially [11]. Further-
more, as the USPSTF does not specify screening fre-
quency for those with family history, similar to younger 
women, women with family history underwent annual 
mammography. In all strategies (except ‘No screening’), 
screening ceased at age 74.

The eight strategies, thus, differed in the proportion 
of women subjected to aggressive screening. ‘Annual 
screening for all’ was the most aggressive as all women, 
including those at low risk, were screened annually 
starting at age 40. By contrast, in the remaining strate-
gies, low-risk women younger than age 50 were either 
not screened or screened only biennially while those 
aged over 50 were screened biennially. While screening 
frequencies were the same in strategies 3,5 and 7, and 
in strategies 4, 6 and 8, these strategies differed in their 
accuracy of risk prediction for women aged between 
40 and 49, which in turn determined the proportion of 
women screened prior to age 50.

Model structure
We developed a hybrid decision tree/microsimulation 
model to estimate the costs and effectiveness of the eight 
screening strategies. The analysis was conducted from 
the health care system’s perspective. Cycle length was 1 
year and lifetime horizon was used.

(See figure on next page.)
Fig. 1  Screening strategies. In strategies 3–6, ‘High risk’ and ‘Low risk’ during age 40–49 refer to estimated high-risk and low-risk by AI or PRS, while 
beyond age 50 refer to presence or absence of family history, respectively. In strategies 7–8, ‘High risk’ and ‘Low risk’ refer to presence or absence 
of family history, respectively. Beyond age 50, in all strategies except strategies 1 and 2, women without family history undergo biennial screening; 
those with family history undergo annual screening. Screening in all strategies ceases at age 74
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Fig. 1  (See legend on previous page.)
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Figure 2 shows a simplified depiction of the model. The 
decision tree component of the model captured risk pre-
diction and stratification at age 40 based on AI, PRS or 
family history. Women entering the model had an under-
lying ‘true’ low, high or very high risk of breast cancer. 
As risk factors associated with very high risk (RR > =4) 
are likely known a priori, women with RR > =4 did not 
require risk prediction and underwent annual screening 
regardless of screening strategy (except in the ‘No screen-
ing’ strategy). Depending on risk-stratification strategy, 
AI, PRS or family history were used to predict the under-
lying risk for the remaining women; the extent to which 
the estimated risk category matched the underlying risk 
category was determined by the accuracy of each method 
(described below).

The microsimulation component, which was adapted 
from a previously published model [14], simulated the 
screening, diagnosis, disease progression and mortal-
ity from breast cancer. All women entering the micro-
simulation model had no tumor but could develop 

in-situ or invasive cancer over time based on observed 
age-specific incidence rates; in situ cancer could further 
progress to invasive cancer. Invasive cancers were classi-
fied into local, regional and distant stages [14]. Women 
who underwent mammography screening were more 
likely to be diagnosed with in situ cancer. However, more 
aggressive mammography screening also resulted in 
more cancers being diagnosed in earlier (instead of more 
advanced) stages [14]. Women who developed invasive 
breast cancer faced risk of death from cancer or from 
other causes.

Model inputs
Inputs used in our model are presented in Table  1 and 
described below. Further details are provided in the 
Online Supplementary Materials.

Accuracy of risk prediction
The key determinant of costs and effectiveness of each 
screening strategy was the accuracy of risk prediction. 

Fig. 2  Simplified depiction of model. Clinical pathways for strategies 4, 6 and 8 are the same as for strategies 3, 5 and 7, respectively, except that 
patients identified as low risk are screened biennially instead of no screening. Clinical pathways for progression to in situ or invasive cancer and 
to death follow the pathways described in Schousboe et al, 2011 [14]). Beyond age 50, in all strategies except strategies 1 and 2, women without 
family history undergo biennial screening; those with family history undergo annual screening
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Higher accuracy of risk prediction implied that fewer 
women with underlying high-risk were incorrectly pre-
dicted to be at low risk, resulting in timely diagnosis and 
treatment of cancer for high-risk women. It also meant 

that fewer low-risk women were incorrectly predicted 
to be at high risk, leading to reduction in screening and 
fewer false-positive diagnoses.

Table 1  Model Inputs

Variable Value Source

Risk prediction
  AI (AUC) 0.71 [7]

  PRS (AUC) 0.69 [6]

  Family history (proportion correctly identified as high risk) 0.37 Authors’ 
calculation 
based on 
[15, 16]

Stage distributions
  No screening
    Local 0.517 [17]

    Regional 0.436 (age < 50); 0.401 (age > =50)

    Distant 0.047 (age < 50); 0.082 (age > =50)

  Biennial screening
    Local 0.650 (age 40–49); 0.690 (age 50–59); 0.742 (age 60–69); 0.758 (age 70–74) [14, 18]

    Regional 0.341 (age 40–49); 0.303 (age 50–59); 0.252 (age 60–69); 0.237 (age 70–74)

    Distant 0.009 (age 40–49); 0.007 (age 50–59); 0.006 (age 60–69); 0.005 (age 70–74)

  Annual screening
    Local 0.683 (age 40–49); 0.696 (age 50–59); 0.732 (age 60–69); 0.772 (age 70–74) [14, 18]

    Regional 0.310 (age 40–49); 0.297 (age 50–59); 0.262 (age 60–69); 0.223 (age 70–74)

    Distant 0.007 (age 40–49); 0.007 (age 50–59); 0.006 (age 60–69); 0.005 (age 70–74)

Probabilities
  ER positive, HER2 negative 0.76 [10]

  ER positive, HER2 positive 0.1

  ER negative, HER2 positive 0.04

  ER negative, HER2 negative 0.1

Mortality hazard reduction
  Tamoxifen 0.67 [19]

  Trastuzumab 0.66 [19]

Sensitivity and specificity of mammography
  Sensitivity 0.824 (age 40–49); 0.805 (age 50–59); 0.899 (age 60–69); 0.86 (age 70–74) [20]

  Specificity 0.88 (age 40–49); 0.909 (age 50–59); 0.921 (age 60–69); 0.928 (age 70–74)

Costs ($)
  AI 112 (28) [21], 

Author’s 
calculation

  OncoArray genetic test 115 (29) [22]

  Genetic counseling (per session) 44 (11) [23]

  Mammography 152 (38) [24]

Additional diagnostic costs (true positive diagnosis)

  Age 40–49 2491 (623) [25]

  Age 50–64 2337 (584)

  Age 65–74 2350 (588)

Additional diagnostic costs (false positive diagnosis)

  Age 40–49 261 (65) [25]

  Age 50–64 309 (77)

  Age 65–74 310 (77)
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In our model, accuracy of  breast cancer risk predic-
tion using AI and PRS was measured using area under 
the receiver operating characteristic curve (AUC) 
obtained from published studies [6, 7]. As real-world 
clinical decisions will also likely utilize information on 
other demographic and personal risk factors (such as 
weight, family history and breast density) in addition to 
AI or PRS, we used AUC values for models based on 
both AI or PRS and other risk factors. Using data from 
digital screening mammograms read by deep learning 
algorithms (AI), information on other demographic 
and personal risk factors and breast cancer outcomes 
from tumor registries, Yala et  al. estimated an AUC 
of 0.71 for white females in the US [7]. We chose this 
study to obtain the AUC for AI owing to its large study 
sample of patients seen in the US (over 31,000 patients 
in the training dataset and over 3900 patients in the 
test set) [7]. Meanwhile, AUC for PRS was obtained 
from Vachon et  al., a recent, high-quality study that 

estimated the AUC for PRS combined with other risk 
factors for a large study sample primarily consisting of 
American women [6]. Vachon et al. estimated an AUC 
of 0.69 for a model that combined PRSs developed 
based on 76 SNPs and information from the Breast 
Cancer Surveillance Consortium (BCSC) five-year 
risk-prediction model [6]. We followed a previously 
published method to simulate distributions of RR esti-
mated using AI or PRS using these AUC values [29, 30]. 
Women with estimated RR of 1.1 or higher were then 
classified as high risk while those with estimated RR 
below 1.1 as low risk. We note that as AUC of both AI 
and PRS is below 1, not all ‘true’ high risk women will 
be correctly classified as such.

In strategies that involved risk prediction based 
on family history, as women with an underlying low 
risk will not have a family history of breast cancer, all 
low-risk women will be correctly classified as such. 
Among high-risk women, we assumed that 37% will be 

Table 1  (continued)

Variable Value Source

Treatment costs

  In situ, initial cost 11,543 (2886); 10,329 (2582) [14, 19]

  In situ, continuing cost 0

  Localized, initial cost 29,374 (7343); 18,995 (4749)

  Localized, continuing cost 1986 (497); 1267 (317); 1210 (303); 1446 (362); 1044 (261); 817 (204)

  Localized, terminal cost 51,800 (12950)

  Regional, initial cost 51,859 (12965); 35,365 (8841)

  Regional, continuing cost 6747 (1687); 4572 (1143); 4315 (1079); 3744 (936); 2662 (666); 2353 (588)

  Regional, terminal cost 58,172 (14543)

  Distant, initial cost 56,702 (14176); 43,543 (10886)

  Distant, continuing cost 23,581 (5895); 20,945 (5236); 20,162 (5040); 17,744 (4436); 13,094 (3274); 
13,478 (3370)

  Distant, terminal cost 73,970 (18493)

  Tamoxifen (5 years) 1519 (76) [19]

  Trastuzumab 81,717 (20429) [19]

Utilities
  Disutility from screening 0.006 (0.00003) for 1 week [25]

  Disutility from additional diagnosis 0.105 (0.00001) for 5 weeks

Health state

  Healthy 0.762–0.859 (depending on age and time since diagnosis) [14]

  In situ 0.689–0.777 (depending on age and time since diagnosis)

  Local 0.645–0.842 (depending on age and time since diagnosis)

  Regional 0.574–0.777 (depending on age and time since diagnosis)

  Distant 0.574–0.715 (depending on age and time since diagnosis)

All costs are in 2020 US dollars ($). Standard deviations used in probabilistic sensitivity analyses are in parentheses. Calculations by European Society of Radiology 
suggest fixed costs of €60,000 ($65,300 @ €1 = US$1.08 [26]) for AI technology in addition to €20,000 ($21,770) annually for the software license [21]. Assuming 
equipment is amortized in 10 years, and with 8695 mammogram facilities in the US [27] serving over 2 million women aged 40 years [28], cost of AI reading of each 
mammogram amounts to ~$112. Initial treatment costs for each stage are for age < 70 and age > =70, respectively, calculated as the weighted average of costs of 
different breast cancer treatments with proportion of patients receiving each type of treatment as the weight [19]. Continuing treatment costs for each stage are for 
1 to 5 and > =6 years after the year of diagnosis, respectively. AJCC stage-specific costs reported in [19] were converted to SEER stage-specific costs using proportions 
reported in Schousboe et al. [14]
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correctly classified. This proportion was calculated as 
the share of US women with first-degree family history 
of breast cancer (16% [15, 16]) among high-risk women 
(43% of our study cohort).

Incidence and stage distribution of breast cancer 
and mortality risk
To estimate a woman’s likelihood of developing in  situ 
or invasive breast cancer, we multiply age-specific breast 
cancer incidence rates per 100,000 white women in the 
US [31] (adjusted for increase in incidence rates due to 
mammography screening [14]) with the woman’s ‘true’ 
RR. The stage at cancer detection depended on screen-
ing frequency and sensitivity of mammography; the lat-
ter depended on patient age and was obtained from the 
published literature [20]. Women receiving more aggres-
sive screening were diagnosed at earlier stages than those 
receiving less frequent screening. Stage distribution at 
diagnosis in the absence of screening was calculated 
based on the proportions of local, regional and distant 
cancers observed among white women aged below or 
above 50 years during 1975–1979 (when mammography 
screening was not widespread in the US) [17]. Mean-
while, stage distributions with annual or biennial screen-
ing were obtained from more recent estimates based on 
1996–2012 Breast Cancer Surveillance Consortium data 
[18]. Patients diagnosed with invasive breast cancer faced 
risk of breast cancer mortality for up to 20 years after 
diagnosis. This risk was specific to age and stage at diag-
nosis as well as estrogen-receptor (ER) and human epi-
dermal growth factor 2 (HER2) status [32]. All women 
faced risk of mortality from non-breast cancer causes 
which was age-specific, and was obtained by subtracting 
age-specific breast cancer mortality from the 2017 US life 
tables [33].

Costs
The cost of each strategy included cost of risk predic-
tion (index mammogram read by AI technology or 
genetic testing as applicable), cost of screening with 
digital mammogram (if any), and cost of breast cancer 
treatment determined by the stage at cancer diagno-
sis (treatment costs were lower for cancers detected at 
an earlier stage). Cost of genetic test to determine PRSs 
was the cost of OncoArray test in US laboratories [22]. 
We assumed that patients underwent genetic counselling 
before and after the genetic test, and that each counsel-
ling session costed $44 [23]. While cost of AI-based risk 
prediction in clinical practice is not yet available, calcu-
lations by European Society of Radiology suggest fixed 
costs of €60,000 ($65,300) in addition to an annual cost 
of €20,000 ($21,770) for the software license [21]. Assum-
ing equipment is amortized in 10 years, and with 8695 

mammogram facilities in the US [27] serving nearly two 
million women aged 40 years [28], cost of AI reading of 
each mammogram amounts to ~$112. We varied cost 
of AI reading per mammogram over a wide range (up to 
$500) in the sensitivity analyses.

The cost of mammogram was obtained from Center 
for Medicare and Medicaid’s 2020 Physician Fee Sched-
ule [24]. Cost of diagnostic work-up following a positive 
diagnosis and cost of treatment of breast cancer were 
obtained from the published literature [19, 25]. All costs 
were estimated in 2020 US dollars and discounted at 3% 
per year [34].

Effectiveness
Effectiveness was measured in terms of Quality Adjusted 
Life Years (QALYs) that captured a person’s life expectancy 
adjusted by his/her health-related quality of life called 
utility. Screening entailed disutility of 0.006 QALYs for 1 
week and diagnostic workup following a positive screen-
ing result involved disutility of 0.105 QALYs for 5 weeks 
[25]. Utilities were specific to patient age and stage of can-
cer [14]. For all cancer stages, utilities in the first year after 
breast cancer diagnosis were lower than in later years [14]. 
All utility values were discounted at 3% per year [34].

Cost effectiveness analysis
We estimated the total costs and QALYs of the eight 
strategies. A strategy was considered cost-effective rela-
tive to another strategy if the Incremental Cost Effective-
ness Ratio (ICER), calculated as the difference between 
the overall costs of the two strategies divided by the dif-
ference between the total QALYs gained, was lower than 
the conventional willingness-to-pay threshold (WTP) of 
$100,000 per QALY. Meanwhile, a strategy was domi-
nated if it was both more costly and less effective than the 
other strategy or extended dominated if it achieved fewer 
total QALYs than a more costly strategy at a higher incre-
mental cost per QALY (i.e., its ICER relative to the next 
less costly strategy was higher than the ICER of a more 
effective strategy) [35].

In addition to the eight strategies examined in the main 
analysis, we conducted an augmented analysis which 
included 4 additional strategies. These additional strate-
gies were similar to strategies 3–6 above, except that risk 
prediction was performed exclusively using AI or PRS, 
i.e., without considering demographic and personal risk 
factors. Thus, AUC values in these additional strategies 
were 0.69 for AI [7] and 0.63 for PRS [36] (instead of 0.71 
and 0.69, respectively, in strategies 3-6).

Furthermore, we conducted several sensitivity analyses. 
First, we varied values of key costs and utilities in one-
way sensitivity analyses and addressed parameter uncer-
tainty using probabilistic sensitivity analyses (PSA). Next, 
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we varied AUCs of AI and PRS to 20% lower and higher 
values than those used in the main analysis.

We also examined the robustness of our findings to 
the choice of the RR threshold used to define estimated 
high risk. Following previous studies, we used alternative 
thresholds of 1.3 and 2 (instead of 1.1 used in the base 
case analysis) [37]. All analyses were performed using 
TreeAge Pro 2019 v2.1 [38].

Model validation
We assessed the validity of our model following the 
Assessment of the Validation Status of Health-Economic 
decision models (AdViSHE) tool [39] and guidelines of 
the International Society for Pharmacoeconomics and 
Outcomes Research [40]. First, we conducted trace analy-
sis and compared the modelled lifetime cumulative breast 
cancer incidence and mortality with screening to recently 
observed proportions. Next, while cost-effectiveness of 
AI-based screening has not been examined previously, we 
cross-validated the estimated incremental costs, QALYs 
and false-positive rates (compared with no screening) 
against previous studies for the strategy where risk pre-
diction is based on family history and those without fam-
ily history are screened biennially starting at age 50.

Results
Base case analysis
Table 2 summarizes the lifetime costs and QALYs gained, 
and breast cancer outcomes with each screening strat-
egy. ‘No screening’ involved the least lifetime total costs 
($1.75 billion per 100,000 women) but also generated 
the fewest QALYs (1,976,720 per 100,000 women). The 
strategies involving screening resulted in $77.8 million - 
$276.3 million higher lifetime costs (per 100,000 women) 
and 1521–4110 additional QALY (per 100,000 women) 
relative to ‘No screening’.

The cost-effectiveness plane in Fig. 3 shows the results 
from stepwise comparisons with the next less costly strat-
egy. Among the eight strategies, only ‘No screening’ and 
‘AI + no screening for low-risk’ strategies lay on the cost-
effectiveness efficiency frontier. The ‘Family history + no 
screening for low-risk’ strategy was extended dominated 
while the remaining 5 strategies (that involved either risk 
prediction using PRS and/or biennial or annual screening 
for low-risk women) were dominated by ‘AI + no screen-
ing for low-risk’. Excluding these dominated and extended 
dominated strategies, ‘AI + no screening for low-risk’ was 
the most cost-effective strategy. It cost $97.6 million (per 
100,000 women) more than ‘No screening’ but generated 
4110 additional QALYs (per 100,000 women). The ICER 
compared with ‘No screening’ was $23,755 per QALY 

Table 2  Lifetime Costs, QALYs and Breast Cancer Outcomes by Screening Strategy

All costs are in 2020 US dollars ($). Costs and effectiveness are calculated per 100,000 women. All strategies (except ‘No screening’) involve annual screening for 
women identified as high-risk. ‘AI’ refers to risk prediction accounting for both AI and other risk factors. ‘PRS’ refers to risk prediction accounting for both PRS and 
other risk factors. Beyond age 50, women without family history are screened biennially and those with family history are screened annually in all strategies except 
‘No screening’ and ‘Annual screening for all’ strategies. ‘No. of false positive diagnoses’ refers to total number of false positive diagnoses among all mammograms 
performed during the lifetimes of 100,000 women. As specificity of each mammogram is < 100%, a woman can have more than one false-positive diagnosis in her 
lifetime

Strategy Cost (in 1000 $) Effectiveness 
(in QALYs)

No. (%) of true 
high risk women 
classified as high 
risk

No. (%) of true 
low risk women 
classified as low risk

No. of breast 
cancer deaths (per 
100,000 women)

No. of false positive 
diagnoses (per 
100,000 women)

No screening 1,745,808 1,976,720 – – 3367 0

Family history + no 
screening for low risk

1,823,664 1,978,241 15,461 (36.0) 56,444 (100) 2988 121,737

AI + no screening for 
low risk

1,843,441 1,980,830 24,525 (57.0) 49,122 (87.0) 2956 141,339

PRS + no screening 
for low risk

1,852,227 1,980,713 24,381 (56.7) 48,805 (86.4) 2936 141,443

Family history + 
biennial screening for 
low risk

1,879,254 1,980,731 15,461 (36.0) 56,444 (100) 2916 170,917

PRS + biennial 
screening for low risk

1,909,968 1,978,418 24,381 (56.7) 48,805 (86.4) 2885 180,219

AI + biennial screen-
ing for low risk

1,910,153 1,978,604 24,525 (57.0) 49,122 (87.0) 2903 180,163

Annual screening 
for all

2,022,120 1,978,717 – – 2778 290,325
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gained which was lower than the conventional WTP 
threshold of $100,000 per QALY gained.

The superior cost-effectiveness of ‘AI + no screening 
for low-risk’ compared with other screening strategies 
is explained by the combination of: (i) higher accuracy of 
AI in identifying high-risk women compared with fam-
ily history and PRS; and (ii) prevention of costs and disu-
tility of screening and additional diagnostic work-up for 
low-risk women. As shown in Table 2, AI correctly classi-
fies 57% of true high-risk women as such, compared with 
36% with family history. Consequently, even though total 
costs of ‘AI + no screening for low risk’ are higher than 
‘Family history + no screening for low risk’ (because more 
women are screened during ages 40 to 49), more high-risk 
women would benefit from this screening, as reflected 
in fewer breast cancer deaths (2956 vs 2988 per 100,000 
women). While risk prediction using AI is also more costly 
than genetic testing, its higher accuracy justifies the higher 
cost: 57% vs 56.7% high-risk women and 87% vs 86.4% of 
low-risk women are correctly classified with AI and PRS, 
respectively. The lower accuracy of PRS implies that more 
low-risk women incorrectly undergo annual screening 
between ages 40 and 49 compared with AI, leading to more 
false-positive diagnoses (141,443 per 100,000 women with 

‘PRS + no screening for low risk’ vs 141,339 per 100,000 
women with ‘AI + no screening for low risk’).

Meanwhile, no screening for low-risk women aged 40–49 
explain the lower costs and higher effectiveness of this strat-
egy relative to strategies involving biennial or annual screen-
ing for low-risk women. Even though breast cancer deaths 
are higher as not all women are screened during age 40–49, 
there are 17–51% fewer false-positive diagnoses. Thus, not 
screening women identified as low-risk saves both costs and 
disutility of screening and additional diagnostic work-up.

The results from the augmented analysis (that included 
the 4 additional strategies for risk prediction using AI or 
PRS without other risk factors) supported our base case 
findings. As shown in Table  A1 (Online Supplementary 
Materials), ‘AI + no screening for low risk’ remained the 
most cost-effective strategy. In particular, it dominated 
the strategies involving risk prediction based exclusively 
on AI or PRS.

Sensitivity analyses
The results from one-way sensitivity analyses are presented 
in a tornado diagram in Fig. 4. They indicate that the ICER 
is most sensitive to cost of mammography and health state-
specific utilities and costs. For all values of these costs and 
utilities in the ±25% range, however, ‘AI + no screening for 

Fig. 3  Cost-effectiveness plane. ICER: Incremental Cost-Effectiveness Ratio
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low-risk’ remains cost-effective vs no screening. In particu-
lar, it remains the most cost-effective screening strategy as 
long as cost of AI reading is below $318 per mammogram 
(Fig.  5). The cost-effectiveness acceptability curve shows 
that, at the WTP threshold of $100,000/QALY, ‘AI + no 
screening for low risk’ is cost-effective in 96% of iterations 
(Fig. 6).

Table  3 presents results from additional sensitivity 
analyses. It shows that ‘AI + no screening for low risk’ 
remained the most cost-effective strategy even when we 
used AUC values for AI and PRS that were 20% lower or 
higher than that in the base case.

Alternative RR thresholds
In our base case analysis, we used an RR threshold of 1.1 
to define estimated high risk with AI or PRS. However, 
this RR threshold is likely to itself be a policy alternative 
to be determined by decision-makers. We, therefore, con-
ducted additional analyses in which we used alternative 
thresholds of 1.3 and 2 (instead of 1.1 used in the base 
case analysis) (Table  4) [37]. We found that, for higher 
RR thresholds, ‘PRS + no screening for low risk’ strat-
egy generated higher QALYs but it also resulted in higher 
total costs than ‘AI + no screening for low-risk’, yielding 

an ICER that exceeded the WTP threshold of $100,000/
QALY. Thus, ‘AI + no screening for low risk’ was still the 
optimal strategy.

Model validation
Trace analysis indicated that the modelled lifetime 
cumulative breast cancer incidence and mortality were 
16% and 2.9% with screening. These proportions were 
similar to the proportions observed for white women in 
2016–18 reported by SEER (13% and 2.5%, respectively) 
[41]; the slight difference can be explained by < 100% 
adherence to screening guidelines in the real world 
[10]. Cross-validation against previous studies showed 
that our estimated incremental costs and QALYs for 
the ‘Family history + no screening for low risk’ strategy 
were similar to those estimated in a recent, high-quality 
cost-effectiveness analysis [19]: $778 vs $682 (in 2020 
$) incremental costs and 0.015 vs 0.017 incremental 
QALYs. Furthermore, estimated number of false positive 
diagnoses for this strategy (121,737 per 100,000 women) 
fell within the range indicated by USPSTF (830–1325 per 
1000 women) [11].

Fig. 4  Tornado Diagram. Costs and utilities are varied in a range of ±25% of base case values. ICER: Incremental Cost-Effectiveness Ratio
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Fig. 5  Threshold analysis for cost of AI

Fig. 6  Cost-effectiveness acceptability curve
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Table 3  Sensitivity analyses

ICER: Incremental Cost-Effectiveness Ratio. All costs are in 2020 US dollars ($). Costs and effectiveness are calculated per 100,000 women. All strategies (except ‘No 
screening’) involve annual screening for women identified as high-risk. ‘AI’ refers to risk prediction accounting for both AI and other risk factors. ‘PRS’ refers to risk 
prediction accounting for both PRS and other risk factors. Beyond age 50, women without family history are screened biennially and those with family history are 
screened annually in all strategies except ‘No screening’ and ‘Annual screening for all’ strategies. In Panel A, ICER for ‘AI + no screening for low risk’ is calculated relative 
to ‘PRS + no screening for low risk’. In Panel B, ‘Family history + no screening for low risk’ is extended dominated. Hence, ICER for ‘AI + no screening for low risk’ is 
calculated relative to ‘No screening’

Strategy Cost (in 1000 $) Effectiveness (in QALYs) ICER ($/QALY)

Panel A: AUC 20% lower than base case
  No screening 1,745,808 1,976,720 –

  Family history + no screening for low risk 1,823,664 1,978,241 Ext. dominated

  PRS + no screening for low risk 1,839,375 1,980,821 22,819

  AI + no screening for low risk 1,841,639 1,980,909 25,752

  Family history + biennial screening for low risk 1,879,254 1,980,731 Dominated

  PRS + biennial screening for low risk 1,914,138 1,978,829 Dominated

  AI + biennial screening for low risk 1,920,087 1,978,752 Dominated

  Annual screening for all 2,022,120 1,978,717 Dominated

Panel B: AUC 20% higher than base case
  No screening 1,745,808 1,976,720 –

  Family history + no screening for low risk 1,823,664 1,978,241 Ext. dominated

  AI + no screening for low risk 1,841,419 1,981,155 21,558

  PRS + no screening for low risk 1,851,053 1,980,534 Dominated

  Family history + biennial screening for low risk 1,879,254 1,980,731 Dominated

  PRS + biennial screening for low risk 1,916,570 1,978,280 Dominated

  AI + biennial screening for low risk 1,918,578 1,978,684 Dominated

  Annual screening for all 2,022,120 1,978,717 Dominated

Table 4  Alternative RR thresholds

Note: ICER: Incremental Cost-Effectiveness Ratio. All costs are in 2020 US dollars ($). Costs and effectiveness are calculated per 100,000 women. All strategies (except 
‘No screening’) involve annual screening for women identified as high-risk. ‘AI’ refers to risk prediction accounting for both AI and other risk factors. ‘PRS’ refers to risk 
prediction accounting for both PRS and other risk factors. Beyond age 50, women without family history are screened biennially and those with family history are 
screened annually in all strategies except ‘No screening’ and ‘Annual screening for all’ strategies. In Panel A, ‘Family history + no screening for low risk’ is extended 
dominated. Hence, ICER for ‘AI + no screening for low risk’ is calculated relative to ‘No screening’

Strategy Cost (in 1000 $) Effectiveness (in QALYs) ICER ($/QALY)

Panel A: RR threshold 1.3
  No screening 1,745,808 1,976,720 –

  Family history + no screening for low risk 1,823,664 1,978,241 Ext. dominated

  AI + no screening for low risk 1,845,197 1,980,697 24,994

  PRS + no screening for low risk 1,861,378 1,980,799 157,870

  Family history + biennial screening for low risk 1,879,254 1,980,731 Dominated

  PRS + biennial screening for low risk 1,921,493 1,978,380 Dominated

  AI + biennial screening for low risk 1,936,713 1,978,375 Dominated

  Annual screening for all 2,022,120 1,978,717 Dominated

Panel B: RR threshold 2
  No screening 1,745,808 1,976,720 –

  AI + no screening for low risk 1,813,821 1,980,868 16,398

  Family history + no screening for low risk 1,823,664 1,978,241 Dominated

  PRS + no screening for low risk 1,830,198 1,980,922 299,464

  Family history + biennial screening for low risk 1,879,254 1,980,731 Dominated

  AI + biennial screening for low risk 1,906,031 1,979,063 Dominated

  PRS + biennial screening for low risk 1,914,734 1,978,709 Dominated

  Annual screening for all 2,022,120 1,978,717 Dominated
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Discussion
Our study provides the first cost-effectiveness analysis 
of using AI or PRS to risk-stratify 40–49 year old white 
women for breast cancer screening versus screening based 
on family history, annual screening for all women, and no 
screening. We found that risk prediction using AI followed 
by no screening for low-risk women is the most cost-effec-
tive strategy with an ICER of $23,755 per QALY gained.

Our results reveal several interesting patterns. We find 
that with both the AI and PRS algorithms, there exists a 
negative dose response relationship between screening 
frequencies and effectiveness, i.e., no screening is more 
effective than biennial screening. However, this pattern is 
reversed: (i) when risk prediction is based on family his-
tory; and (ii) when we compare ‘Annual screening for 
all’ with ‘AI/PRS + biennial screening for low risk’. These 
opposite patterns highlight how the accuracy of a risk 
prediction tool may reinforce or attenuate the effects of 
screening frequency on outcomes. The relatively lower 
accuracy of risk prediction using family history compared 
with AI/PRS means that more true high-risk women, who 
are incorrectly predicted as low risk based on family his-
tory, benefit from biennial screening. If these benefits 
outweigh the disutility from more frequent screening for 
low-risk women, effectiveness of ‘Family history + biennial 
screening for low risk’ can still be higher than ‘Family his-
tory + no screening for low risk’.

Meanwhile, under ‘Annual screening for all’, all high-risk 
women are correctly classified. In addition, some low-risk 
women who still develop cancer also benefit from annual 
screening. As a result, fewer cases are missed compared 
with ‘AI/PRS + biennial screening  for low risk’. Even 
though ‘Annual screening for all’ also carries the burden 
of more frequent screening for low-risk women, the total 
effectiveness can still be higher than ‘AI/PRS + bien-
nial screening for low risk’ if the utility gains from fewer 
missed cases more than offset the disutility from more 
frequent screening.

Our study provides useful insights to inform the ongo-
ing debate over appropriate breast cancer screening 
practices for women aged between 40 and 49 years. We 
find that using AI to risk-stratify women and targeting 
screening at only high-risk women can generate greater 
economic value than existing screening guidelines. Com-
pared with family history-based screening (which reflects 
current USPSTF guidelines), this AI-based strategy can 
help alleviate existing concerns about delayed diagnoses 
as more high-risk women would be accurately identi-
fied and screened. At the same time, it can reduce false-
positive diagnoses from screening all women over age 40 
annually (as recommended by ACOG/ACR guidelines).

Our study has several limitations. First, randomized 
controlled trials that directly compare AI with PRS or 

existing screening criteria are lacking. Thus, data on effi-
cacy of AI and PRS had to be obtained from different 
studies and demographic and personal risk factors con-
sidered in addition to AI and PRS differed slightly in the 
two studies. Second, cost of using AI for breast cancer risk 
prediction in clinical practice is not yet known and was 
not available from existing literature. Therefore, for our 
analysis, we had to rely on cost estimates from the Euro-
pean Society of Radiology [21] to estimate this cost. Nev-
ertheless, we varied the cost of AI in one-way sensitivity 
analyses and our results continued to hold for all costs 
of AI as high as $318 per mammogram. Finally, in our 
model, AI was used to guide breast cancer screening over 
a 10-year duration (i.e., between ages 40 and 49) while 
existing data could validate the accuracy of AI-based risk 
prediction only for 5 years post risk-assessment [7]. How-
ever, these existing data provide suggestive evidence that 
AI is able to detect features associated with long-term risk 
[7]. As deep learning models improve in the future and 
long-term data become available, future studies could re-
examine the cost-effectiveness of using AI to guide breast 
cancer screening not just among women aged 40–49 but 
in women across the entire candidate age range, including 
those over age 50.

Despite these limitations, our study can serve as a useful 
starting point to stimulate and inform future research and 
policy choices about breast cancer screening guided by 
novel AI technologies. Furthermore, it provides a general 
framework that can be easily updated (when new data on 
AI risk prediction become available) or adapted to study 
cost-effectiveness of using AI in other disease domains.

Conclusions
This study finds that using AI to risk-stratify women for 
breast cancer screening between ages 40 and 49 (followed 
by screening based on existing guidelines beyond age 50) 
is cost-effective compared with screening based on PRS 
or family history, annual screening for all women and no 
screening. By accurately identifying and screening more 
high-risk women and avoiding screening for low-risk 
women, this cost-effective AI-based screening strategy 
can help address existing concerns about delayed diagno-
ses as well as false-positive diagnoses that could arise with 
conventional screening strategies.
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