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Abstract 

Hepatocellular carcinoma (HCC) has a high degree of malignancy and a poor prognosis. Immune infiltration-related 
genes have shown good predictive value in the prognosis of many solid tumours. In this study, we established and 
verified prognostic biomarkers consisting of immune infiltration-related genes in HCC. Gene expression data and clini-
cal data were downloaded from The Cancer Genome Atlas (TCGA) database. Differential gene expression analysis, uni-
variate Cox regression analysis and the least absolute shrinkage and selection operator (LASSO) regression algorithm 
were used to screen prognostic immune infiltration-related genes and to construct a risk scoring model. Kaplan-Meier 
(KM) survival plots and receiver operating characteristic (ROC) curve analysis were used to evaluate the prognostic 
performance of the risk scoring model in the TCGA-HCC cohort. In addition, a nomogram model with a risk score was 
established, and its predictive performance was verified by ROC analysis and calibration plot analysis in the TCGA-HCC 
cohort. Gene set enrichment analysis (GSEA) identified pathways and biological processes that may be enriched in 
the high-risk group. Finally, immune infiltration analysis was used to explore the characteristics of the tumour micro-
environment related to the risk score. We identified 17 immune infiltration-related genes with prognostic value and 
constructed a risk scoring model. ROC analysis showed that the risk scoring model can accurately predict the 1-year, 
3-year, and 5-year overall survival (OS) of HCC patients in the TCGA-HCC cohort. KM analysis showed that the OS of the 
high-risk group was significantly lower than that of the low-risk group (P < 0.001). The nomogram model effectively 
predicted the OS of HCC patients in the TCGA-HCC cohort. GSEA indicated that the immune infiltration-related genes 
may be involved in biological processes such as amino acid and lipid metabolism, matrisome and small molecule 
transportation, immune system regulation, and hepatitis virus infection. Immune infiltration analysis showed that 
the level of immune cell infiltration in the high-risk group was low, and the risk score was negatively correlated with 
infiltrating immune cells. Our prognostic model based on immune infiltration-related genes in HCC could help the 
prognostic assessment of HCC patients and provide potential targets for HCC inhibition.
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Introduction
Hepatocellular carcinoma (HCC) is the most common 
primary liver cancer [1]. It usually develops in the context 
of chronic liver disease and has a poor prognosis [2]. As 

HCC is not sensitive to radiotherapy and chemotherapy, 
HCCs that cannot be radically removed lack effective 
treatment methods [3]. The case fatality rate is second in 
the world, and the five-year survival rate is less than 15% 
[4]. In recent years, the incidence of liver cancer has con-
tinued to rise, and it is currently the sixth most common 
cancer in the world [5].Immune infiltration is an impor-
tant part of the tumour immune microenvironment, and 
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it has become a hot spot in tumour research in recent 
years [6]. Immune infiltration-related genes refer to the 
genes involved in the biological process of immune infil-
tration [7]. The expression of immune infiltration-related 
genes is closely related to the occurrence and develop-
ment of tumours. Many studies have confirmed the role 
of immune infiltration-related genes in solid tumours [8, 
9]. However, the prognostic value of immune infiltration-
related genes in HCC still needs to be further studied.

This study conducted a comprehensive analysis of 
immune infiltration-related genes in HCC. Immune infil-
tration-related genes were downloaded from the CIB-
ERSORTX (https://​ciber​sortx.​stanf​ord.​edu) database. 
The gene expression data and clinical data of 374 HCC 
samples and 50 control samples were obtained from The 
Cancer Genome Atlas (TCGA) database. The immune 
infiltration-related gene expression validation data sets 
GSE25097, GSE87630 and GSE89377 were obtained from 
the Gene Expression Omnibus (GEO) database. Based on 
the above data resources, we conducted a comprehensive 
bioinformatics analysis. By identifying genes related to 
immune infiltration, we constructed an HCC risk scor-
ing system and verified it in the TCGA data set. In addi-
tion, functional analysis and gene set enrichment analysis 
(GSEA) of immune infiltration-related genes were per-
formed to explore the potential functions and mecha-
nisms of these genes in HCC. Our results indicated that 
the signature of 17 immune infiltration-related genes 
could be used as an independent predictor of overall sur-
vival (OS) in HCC patients.

Materials and methods
Acquisition of immune infiltration‑related genes
The immune infiltration-related gene data were down-
loaded from the CIBERSORTX database. The data 
provided a set of gene expression characteristics of 22 
immune cell subtypes (LM22) [10]. The list of immune 
infiltration-related genes is shown in Table S1.

Data set acquisition and data processing
The gene expression data and clinical data of 374 HCC 
samples and 50 control samples were obtained from the 
TCGA database. The immune infiltration-related gene 
expression validation data sets GSE25097, GSE87630 
and GSE89377 were obtained from the GEO database. 
The DESeq2 algorithm was used for gene expression 
data processing [11]. HCC patients without prognostic 
information were excluded from the prognostic analysis 
of this study. As the data resources involved in this study 
were all obtained from online databases, ethics commit-
tee approval was not required.

Differentially expressed gene (DEG) screening 
and identification of immune infiltration‑related genes
First, we used the “DESeq2” package to analyse the 
DEGs between TCGA-HCC samples and normal liver 
samples. An adjP value < 0.05 and |log2-fold change| > 1 
were used to screen DEGs. The DEGs obtained in the 
above steps and 636 immune infiltration-related genes 
were analysed by Venn diagram. A total of 89 immune 
infiltration-related genes were identified for downstream 
analysis. The gene expression matrices of the GSE25097, 
GSE87630 and GSE89377 data sets were downloaded 
from the GEO database. The gene expression heatmap of 
the 89 immune infiltration-related genes was drawn by 
the “ComplexHeatmap” package for R software (version 
3.6.3). Functional enrichment analysis and visualization 
of 89 immune infiltration-related genes were performed 
by the “clusterProfiler”, “org.​Hs.​eg.db”, and “GOplot” 
packages [12, 13].

Construction and verification of the risk scoring system
First, univariate Cox regression analysis was performed 
on the 89 immune infiltration-related genes. A total of 
27 immune infiltration-related genes with a P value< 0.05 
were selected for subsequent analysis. Least absolute 
shrinkage and selection operator (LASSO) tenfold cross-
validation was performed on the 27 immune infiltra-
tion-related genes by using the “glmnet” and “survival” 
packages. The 17 most valuable predictive genes and risk 
score models were obtained through the above analy-
sis. Subsequently, the 17 obtained genes were integrated 
into risk characteristics, and the risk scoring system was 
established based on the standardized gene expression 
values and their coefficients. The risk scoring system 
was established based on the following formula: Risk 
score = ∑ n

i=1
 exprgenei × coefficientgenei [14]. Through the 

“edgeR” package, the TMM algorithm was used to calcu-
late the normalized gene expression levels. A risk factor 
plot was drawn by the “ggplot2” package. The “timeROC” 
package was used to draw receiver operating characteris-
tic (ROC) curves. According to the median risk score, the 
patients were divided into a high-risk group and a low-
risk group. The “survminer” package was used to draw 
survival curves. Dot plots were drawn using the “ggplot2” 
software package to determine the link between the risk 
score and clinical characteristics.

Construction and evaluation of the nomogram
To evaluate whether the risk scoring system can be used 
as an independent predictor, univariate and multivariate 
Cox regression analyses were performed on each clin-
icopathological parameter, including histologic grade, 
T stage, residual tumour, pathologic stage, vascular 
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invasion, and alpha-fetoprotein (AFP). All independent 
prognostic parameters were used to construct a nomo-
gram using the “rms” package to predict OS probabilities 
at 1, 3, and 5 years. The discriminative ability of the nom-
ogram was verified by ROC and calibration analyses.

GSEA
The above R software packages were used to identify 
the DEGs between the high-risk group and the low-risk 
group in the TCGA data set. The “clusterProfiler” pack-
age was used for GSEA. The “ggplot2” package was used 
for visualization.

Immune cell infiltration level analysis
The “GSVA” package was used to analyse the level of 
immune cell infiltration between the high-risk group and 
the low-risk group [15, 16].

Statistical analysis
All statistical analyses in this study were performed by 
R software (version 3.6.3). The log-rank test was used 
for Kaplan-Meier survival analysis. Hazard ratios (HRs) 
and 95% confidence intervals (CIs) were calculated in the 
regression analysis. Student’s t test and the Kruskal–Wal-
lis test were used for comparisons between groups. A 
two-tailed P value of < 0.05 was considered statistically 
significant.

Results
Identification of immune infiltration‑related genes in HCC 
patients
According to the criteria for DEGs, we used the DESeq2 
algorithm and identified 5010 DEGs between 374 TCGA-
HCC samples and 50 normal liver samples. The 5010 
identified DEGs and 636 immune infiltration-related 
genes obtained from the CIBERSORTX database were 
used for Venn diagram analysis. Through the above 
analysis, we obtained 89 immune infiltration-related 
genes in HCC (Fig.  1A). Then, we verified the expres-
sion of the 89 immune infiltration-related genes in the 
GSE25097, GSE87630 and GSE89377 data sets from the 
GEO database (Fig.  1B, Fig. S1, and Fig. S2). We con-
ducted further enrichment analysis to explore the func-
tions of the selected genes. The genes were significantly 
enriched in neutrophil chemotaxis, neutrophil migration, 
the external side of the plasma membrane, tertiary gran-
ule lumen, chemokine activity, and chemokine recep-
tor binding (Fig. 1C). Kyoto Encyclopedia of Genes and 
Genomes (KEGG) enrichment analysis showed that viral 
protein interaction with cytokine and cytokine receptor, 
cytokine-cytokine receptor interaction, and chemokine 
signalling pathway were all significantly enriched 

(Fig. 1D). The complete results of the enrichment analysis 
are shown in Table S2.

Construction and assessment of the risk scoring system
First, univariate Cox regression analysis was performed 
to explore the relationship between the expression levels 
of 89 immune infiltration-related genes and the OS times 
of patients in the TCGA-HCC cohort. Using the cut-off 
value of Cox P < 0.05, 27 potential predictive genes related 
to OS were screened out (Table S3). Then, LASSO regres-
sion analysis was used to refine the gene sets (Fig. 2A, B). 
Seventeen genes were identified as the most valuable pre-
dictive genes, and the risk scoring system was established 
based on the above formula (Table  1). Kaplan–Meier 
analysis of the 17 genes is shown in Fig. S3.

To observe the expression of these genes in HCC and 
normal liver tissues, we further conducted research using 
immunohistochemical data from the Human Protein 
Atlas (HPA) database. The results are shown in Fig. 3. The 
immunohistochemical data of some genes were tempo-
rarily unavailable from the HPA database.

The risk score of each patient in the TCGA-HCC data 
set was calculated based on the expression levels and 
regression coefficients of the 17 immune infiltration-
related genes. The distribution of risk scores in the 
TCGA-HCC data set is shown in Fig.  4A. According to 
the median risk score, the patients in the TCGA-HCC 
cohort were divided into high-risk and low-risk groups. 
In addition, the survival time distribution indicated that 
the higher the risk score was, the worse the prognosis 
(Fig. 4A). Figure 4A also shows the corresponding expres-
sion levels of the 17 immune infiltration-related genes. 
The performance of the risk scoring system according 
to the time ROC curves in terms of 1-year, 3-year, and 
5-year prognoses is shown in Fig. 4B. The areas under the 
time ROC curves (AUCs) were 0.766, 0.757, and 0.773 for 
the 1-year, 3-year, and 5-year OS times, respectively, in 
the TCGA-HCC cohort. Kaplan–Meier analysis and the 
log-rank test showed that the prognosis of the high-risk 
group was significantly worse than that of the low-risk 
group (P < 0.001; Fig. 4C).

Correlation between the risk score and clinical features
We also analysed the association between the risk score 
and the clinical features of patients in the TCGA-HCC 
cohort. We found significant differences between the 
risk score and the following clinical features (Fig. 5 A–F): 
histological grade (G1&2 vs. G3&G4, P < 0.001), T stage 
(T1&T2 vs. T3&T4, P < 0.01), residual tumour (R0 vs. 
R1&R2, P < 0.01), pathologic stage (stage 1 & stage 2 vs. 
stage 3&stage 4, P < 0.01), vascular invasion (no vs. yes, 
P < 0.05) and AFP (≤400 vs. > 400, P < 0.05).



Page 4 of 13Dai et al. BMC Cancer          (2022) 22:496 

Construction and verification of the nomogram
First, we performed univariate and multivariate Cox 
regression analyses of potential predictors, such as T 
stage, gender, age, residual tumour, histologic grade, 
AFP, vascular invasion, tumour status, and risk group, 
that may affect the prognosis of HCC patients (Table 2). 
The results showed that T stage, tumour status, and risk 
group were independent risk factors for OS in HCC 
patients. The independent predictors, including T stage, 

tumour status, and risk group, which affect the OS of 
HCC patients, were incorporated into the nomogram 
model (Fig. 6A). The C-index of the nomogram model we 
established was 0.692 (0.664–0.720). Then, we calculated 
the score of each HCC patient based on the nomogram 
and evaluated the predictive ability of the nomogram 
through ROC analysis. In the TCGA-HCC cohort, the 
nomogram AUCs for the 1-year, 3-year, and 5-year OS 
rates were 0.755, 0.781, and 0.832, respectively (Fig. 6B). 

Fig. 1  Identification and functional enrichment analysis of immune infiltration-related genes between the TCGA-HCC cohort and normal liver 
samples. A Venn diagram of the intersection between immune infiltration-related genes and DEGs identified by the DESeq2 algorithm. B Heat map 
of 89 DEGs related to immune infiltration in the data set GSE25097. Terms of Gene Ontology (GO) enrichment analysis (C) and KEGG pathways (D) 
related to the 89 immune infiltration-related genes
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Moreover, we used the calibration curve to evaluate the 
agreement of the nomogram. Compared with the ideal 
model, the calibration plots of the nomogram model 
showed good agreement for the 1-year, 3-year, and 5-year 
OS rates (Fig. 6C).

GSEA
To reveal the potential impact of immune infiltration-
related genes on the occurrence and development of 
HCC, we performed GSEA on the DEGs between the 
high-risk group and the low-risk group. GSEA showed 

that the DEGs between the high-risk group and low-risk 
group were mainly enriched in several pathways, includ-
ing disease, matrisome, haemostasis, innate immune sys-
tem, metabolism of lipids, transport of small molecules, 
infectious disease, metabolism of amino acids and deriv-
atives, vesicle-mediated transport, and adaptive immune 
system (Fig.  7). These findings suggested that immune 
infiltration-related genes may play a potential role in 
amino acid and lipid metabolism, matrisome and small 
molecule transportation, immune system regulation, and 
hepatitis virus infection in HCC.

Fig. 2  Demonstration of DEGs with univariate Cox regression P value < 0.05. A The LASSO regression model of the 27 immune infiltration-related 
genes performed by Lasso-ten-fold cross-validation. B The coefficient distribution in the LASSO regression model

Table 1  Seventeen immune infiltration-related genes identified by univariate COX regression analysis

Annotation: HR Hazard Ratio, 95%CI 95% confidence interval

Gene Description HR (95% CI) P value

ORC1 origin recognition complex, subunit 1 1.842 (1.314–2.613) 0.001
VNN2 vanin 2 1.862 (1.228–2.837) 0.003
STEAP4 STEAP family member 4 0.459 (0.341–0.707) < 0.001
SKA1 spindle and kinetochore associated complex subunit 1 2.094 (1.482–2.964) < 0.001
BRSK2 BR serine/threonine kinase 2 1.628 (1.127–2.341) 0.009
MSC musculin 1.683 (1.164–2.417) 0.006
CCR3 chemokine (C-C motif ) receptor 3 2.426 (1.687–3.491) < 0.001
IGHM immunoglobulin heavy constant mu 0.673 (0.465–0.964) 0.029
CYP27A1 cytochrome P450, family 27, subfamily A, polypeptide 1 0.469 (0.339–0.697) < 0.001
DACH1 dachshund family transcription factor 1 1.461 (1.032–2.064) 0.032
TNFRSF4 tumor necrosis factor receptor superfamily, member 4 1.788 (1.264–2.537) 0.001
RPL10L ribosomal protein L10-like 1.762 (1.239–2.487) 0.002
CDC25A cell division cycle 25A 2.096 (1.485–2.977) < 0.001
REN renin 0.639 (0.448–0.906) 0.014
BACH2 BTB and CNC homology 1, basic leucine zipper transcription factor 2 1.485 (1.053–2.114) 0.024
MMP9 matrix metallopeptidase 9 1.953 (1.306–2.891) 0.001
CD4 CD4 molecule 0.694 (0.491–0.981) 0.037
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Fig. 3  Immunohistochemical analysis of HCC and normal liver tissue determined by HPA database. A CCR3; B CD4; C CYP27A1; D DACH1; E IGHM; F 
ORC1; G RPL10L; H SKA1; I TNFRSF4
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Immune cell infiltration level analysis
We also calculated the correlation between this prog-
nostic model based on patients in the TCGA-HCC 
cohort and immune cell infiltration. The results 
showed that the high-risk group showed lower levels 
of immune cell infiltration, such as B cells (P < 0.01), 
CD8 T cells (P < 0.001), neutrophils (P < 0.001), DCs 
(P < 0.001), Tregs (P < 0.01), and NK cells (P < 0.001) 
(Fig. 8A). Moreover, the risk score was negatively cor-
related with infiltrating immune cells, including B 
cells, CD8 T cells, neutrophils, DCs, Tregs, and NK 
cells (Fig. 8B-G).

Discussion
The onset of HCC is insidious, and clinical symptoms 
often occur when the disease has progressed to the mid-
dle and late stages [17]. Because of its high malignancy 
and insensitivity to radiotherapy and chemotherapy, the 
prognosis of HCC patients is poor [2]. As an impor-
tant part of the tumour immune microenvironment, 
tumour immune infiltration has been proven to have 
good prognostic value in many solid tumours [18–20]. 
Immune infiltration-related genes are the molecular 
basis of tumour immune infiltration, and their impor-
tance in elucidating the mechanism of tumorigenesis and 

Fig. 4  The risk score analysis, prognostic performance and survival analysis of the risk scoring model based on the differential expression of the 
17 immune infiltration-related genes in TCGA-HCC patients. A The risk score, survival time distributions and gene expression heat map of immune 
infiltration-related genes in the TCGA-HCC cohort. B The ROC curves of the risk scoring model predicting OS of 1-year, 3-year, and 5-year in the 
TCGA-HCC cohort. C Kaplan–Meier survival analysis of the OS between the risk groups in the TCGA-HCC cohort
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development has been confirmed in a number of studies 
in recent years [8, 9]. However, the prognostic value of 
immune infiltration-related genes in HCC still needs to 
be further studied.

In our research, we downloaded gene expression data 
and clinical information from the TCGA database. After 
DEG screening and immune infiltration-related gene 
comparison, we selected 89 immune infiltration-related 
DEGs. Among them, 17 genes were identified as potential 
prognostic markers through univariate Cox regression 
analysis and LASSO regression analysis. Subsequently, 
we used these 17 immune infiltration-related genes to 
construct a prognostic model. Among them, the expres-
sion levels of 12 genes (ORC1, VNN2, SKA1, BRSK2, 
MSC, CCR3, DACH1, TNFRSF4, RPL10L, CDC25A, 
BACH2, and MMP9) were negatively correlated with OS, 
and the expression levels of 5 genes (STEAP4, IGHM, 
CYP27A1, REN, and CD4) were positively correlated 
with OS (Fig. S3). By multivariate Cox regression analy-
sis, we also verified the effectiveness and stability of the 
model in TCGA-HCC patients and its reliability as an 
independent predictor of OS in HCC patients. Moreover, 

HCC patients with high histological grade, high T stage, 
residual tumour, high pathological stage, vascular inva-
sion, and AFP > 400 had higher risk scores; these char-
acteristics often indicate that the disease is more serious 
in HCC patients. Studies have shown that the tumour 
immune microenvironment of HCC patients with rapid 
progression is often associated with poor immune cell 
infiltration. This result strongly confirms the above 
conclusion.

Studies have shown that immune infiltration-related 
genes are involved in the pathological process of HCC. 
ORC1 is an important origin recognition complex 
subunit. Wang XK et  al. found that ORC1 was highly 
expressed in HCC and played an important role in the 
survival prediction and recurrence monitoring of HCC 
[21]. VNN2 is mainly involved in hydrolase activity, and 
its product is a member of the Vanin protein family. Li 
W et  al. determined the prognostic value of a predic-
tive six-gene model including VNN2 in HCC by means 
of bioinformatics analysis [22]. MSC can encode tran-
scriptional inhibitors and is the downstream target of 
the B-cell receptor signal transduction pathway. Zhang 

Fig. 5  Correlation between clinical features and the immune infiltration risk score in the TCGA-HCC data set. A Histologic grade (G1&2 vs G3&G4), B 
T stage(T1&T2 vs T3&T4), C Residual tumor (R0 vs R1&R2), D Pathologic stage (Stage1&Stage2 vs Stage3&Stage4), E Vascular invasion (No vs Yes), F 
AFP(≤400 vs > 400). *P < 0.05, **P < 0.01, ***P < 0.001
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FP et  al. demonstrated that HCC patients might ben-
efit from individualized immunotherapy by establish-
ing an eight-gene risk score model including MSC [23]. 
CCR3 can encode C-C chemokine receptors and is highly 
expressed in eosinophils and basophils. A study showed 
that tumour necrosis factor-α (TNF-α) can significantly 
induce IL-8 production in HCC cells by inhibiting CCR3. 
Therefore, CCR3 might be a potential target for the treat-
ment and prognostic guidance of HCC patients [24]. 
DACH1 encodes a chromatin-related protein, and its 
expression is lost in some forms of metastatic cancer and 
is associated with poor prognosis. Research by Qi Cheng 
et  al. showed that DACH1 can affect the proliferation 
and apoptosis of HCC by regulating p53 [25]. The protein 
encoded by TNFRSF4 is a member of the TNF receptor 
superfamily. The receptor has a wide range of biological 
functions. Research by Xiaoyun Chen et al. showed that 
TNFRSF4 plays an important role in predicting the early 

response of HCC to immunotherapy [26]. CDC25A is a 
member of the CDC25 phosphatase family. CDC25A is 
necessary for the cell cycle to enter the S phase from the 
G1 phase. A study showed that inhibiting the activity of 
CDC25A may provide a new treatment for the control of 
liver cancer [27]. MMP9 is an important member of the 
matrix metalloproteinase family, and mouse studies have 
shown that this enzyme plays a role in tumour-related tis-
sue remodelling. Yujie Ji et al. used nanofibres to deliver 
chemotherapeutic drugs to inhibit MMP9 to achieve the 
goal of controlling the progression of HCC [28].

STEAP4 functions as a metalloreductase and may be 
involved in adipocyte development and metabolism. A 
study showed that STEAP4 is significantly hypermethyl-
ated in HCC tumours, and its epigenetic silencing may 
be related to HCC [29]. IGHM is an antigen recogni-
tion molecule of B cells. The study of Sajjad Karim et al. 
showed that radiotherapy in cancer patients can cause 

Table 2  Univariate and multivariate Cox regression analysis between the clinical features and OS in the TCGA-HCC cohort

Annotation: HR Hazard Ratio, 95%CI 95% confidence interval

Characteristics Total(N) Univariate analysis Multivariate analysis

Hazard ratio (95% CI) P value Hazard ratio (95% CI) P value

T stage 370

T1&T2 277 Reference

T4&T3 93 2.598 (1.826–3.697) < 0.001 2.021 (1.389–2.941) < 0.001
Gender 373

Female 121 Reference

Male 252 0.793 (0.557–1.130) 0.200

Age 373

<=60 177 Reference

> 60 196 1.205 (0.850–1.708) 0.295

Residual tumor 344

R0 326 Reference

R1&R2 18 1.604 (0.812–3.169) 0.174

Histologic grade 368

G1 55 Reference

G2 178 1.162 (0.686–1.968) 0.577

G3&G4 135 1.222 (0.710–2.103) 0.469

AFP (ng/ml) 279

<=400 215 Reference

> 400 64 1.075 (0.658–1.759) 0.772

Vascular invasion 317

No 208 Reference

Yes 109 1.344 (0.887–2.035) 0.163

Tumor status 354

Tumor free 202 Reference

With tumor 152 2.317 (1.590–3.376) < 0.001 1.832 (1.242–2.701) 0.002
riskgroup 373

Low 186 Reference

High 187 2.924 (2.014–4.244) < 0.001 2.672 (1.800–3.968) < 0.001
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the downregulation of IGHM expression [30]. CYP27A1 
encodes a member of the cytochrome P450 enzyme 
superfamily. It can catalyse many reactions involving 
drug metabolism and the synthesis of cholesterol, ster-
oids and other lipids. A study showed that CYP27A1 

can be used as a biomarker for HCC progression and a 
molecular target for the treatment of HCV-related HCC 
[31]. CD4 encodes the membrane glycoprotein of T 
lymphocytes and is expressed in T lymphocytes, B cells, 
macrophages and granulocytes. Its main function is to 

Fig. 6  Prognostic nomogram for the 1-year, 3-year, and 5-year OS of HCC patients. A The independent risk factors that affect the OS of HCC patients 
screened by multiple Cox regression were incorporated into the nomogram model. B The ROC curves for predicting the nomogram of 1-year, 
3-year, and 5-year OS in the TCGA-HCC cohort. B The nomogram calibration curves for predicting the 1-year, 3-year, and 5-year OS of the TCGA-HCC 
cohort

Fig. 7  GSEA analysis of the DEGs between the high-risk group and the low-risk group in the TCGA-HCC cohort. Top 10 terms of GSEA analysis 
(Reactome disease, NABA matrisome, Hemostasis, Innate immune system, Metabolism of lipids, Transport of small molecules, Infectious disease, 
Metabolism of amion acids and derivatives, Vesicle mediated transport, Adaptive immune system)
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initiate or enhance the early stages of T-cell activation. A 
study showed that a high CD4 percentage and high CD4/
CD8 ratio affect the OS of HCC patients [32].

The conclusions of the above studies are consistent 
with the conclusions of this study, highlighting the role 
of immune infiltration-related genes in the progno-
sis of HCC. In this study, immune infiltration-related 
genes were comprehensively analysed, and a risk score 
model was constructed and validated in the TCGA-HCC 
cohort. The results showed that the risk scoring model 
could accurately predict the 1-, 3-, and 5-year OS of HCC 
patients in the TCGA-HCC cohort.

In addition, to predict the OS of HCC patients, we con-
structed a prognostic nomogram model based on the 

immune infiltration-related genes. We incorporated T 
stage, tumour status and risk group into the nomogram 
model. The ROC analysis and calibration plots showed 
that the OS nomogram of the TCGA-HCC cohort has 
reliable predictive value. The nomogram model we built 
can be used for the prognostic evaluation and follow-up 
guidance of HCC patients.

The GSEA results indicated that these immune infiltra-
tion-related genes may play a potential role in amino acid 
and lipid metabolism, matrisome and small molecule 
transportation, immune system regulation, and hepatitis 
virus infection in HCC. Avlant Nilsson et al. linked gluta-
mate excretion and nucleotide synthesis to quantitatively 
analyse amino acid metabolism in HCC and pointed out 

Fig. 8  Analysis of immune cell infiltration in TCGA-HCC cohort. A The box plot showed the levels of immune cell infiltration between the high-risk 
group and low-risk group in HCC patients. Scatter plots of correlation between immune cell infiltrations and risk score (B, B cells; C, CD8 T cells; D, 
Neutrophils; E, DC; F, TReg; G, NK cells). **P < 0.01, ***P < 0.001, ns, not significant
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potential drug targets for HCC [33]. A study showed that 
dual modification with liposomes provides a potential 
advantage strategy for the treatment of liver cancer or 
other liver diseases [34]. Manny D Bacolod et  al. found 
that the activation of T cells and other immune signalling 
pathways is related to the good prognosis of HCC [35]. 
Hepatitis B virus (HBV) infection is most likely to con-
tribute to HCC. Yuqin Tang et al. identified new tumour 
biomarkers with potential targeted therapy effects related 
to HBV-related HCC by bioinformatics analysis [36]. The 
above studies have well confirmed the reliability of our 
findings, but the specific mechanism of each pathway in 
HCC still needs to be further studied.

The immune cell infiltration analysis showed that the 
level of immune cell infiltration in the high-risk group in 
the TCGA-HCC cohort was low, and the risk score was 
negatively correlated with infiltrating immune cells. Shao-
qing Liu et  al. found that the infiltration levels of B cells 
and CD8+ T cells are related to the improvement of OS 
in HCC patients [37]. HCC usually develops in the con-
text of chronic inflammation [38]. Dalong Ni et al. found 
that reducing the recruitment and infiltration of neutro-
phils can inhibit the inflammatory response of the liver, 
which may reduce the occurrence of HCC [39]. A phase I/
IIa study conducted by Jeong-Hoon Lee et al. showed that 
the adjuvant DC vaccine for HCC is safe and well tolerated 
and can effectively improve the prognosis of LICH patients 
[40]. A study found that the infiltration levels of Treg cells 
and NK cells in HCC tumour tissues are low and are sig-
nificantly related to the prognosis of HCC patients [41]. It 
is well known that changes in the immune microenviron-
ment are closely related to the occurrence and develop-
ment of tumours. The above studies all proposed the effect 
of immune infiltrating cells on HCC through the study of 
a certain immune cell. Our study systematically evaluated 
the infiltration of immune cells in HCC through immune 
infiltration-related genes, which provides new ideas and 
methods for the study of immune infiltration in HCC.

Conclusion
In summary, we created and validated a risk scoring sys-
tem based on immune infiltration-related genes that 
was derived from the TCGA data set for the prognostic 
assessment and risk stratification of HCC patients. A 
nomogram model for 1-year, 3-year and 5-year OS pre-
dictions was established, and it had good predictive accu-
racy. The 17 genes in the risk score we established might 
become potential targets for understanding the biologi-
cal mechanisms of HCC. In addition, GSEA and tumour 
immune infiltration analysis indicated that immune 
infiltration-related genes may be involved in biologi-
cal processes such as amino acid and lipid metabolism, 
matrisome and small molecule transportation, immune 

system regulation, and hepatitis virus infection. These 
results might provide new ideas for HCC research. How-
ever, the above conclusions were all drawn from bioin-
formatics analysis and still need to be verified by a large 
sample of prospective studies.
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