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Abstract 

Background:  Gastric cancer (GC) is the fifth most common cancer and the third cause of cancer deaths globally, 
with late diagnosis, low survival rate, and poor prognosis. This case-control study aimed to evaluate the expression of 
cystatin B (CSTB) and deleted in malignant brain tumor 1 (DMBT1) in the saliva of GC patients with healthy individuals 
to construct diagnostic algorithms using statistical analysis and machine learning methods.

Methods:  Demographic data, clinical characteristics, and food intake habits of the case and control group were gath-
ered through a standard checklist. Unstimulated whole saliva samples were taken from 31 healthy individuals and 31 
GC patients. Through ELISA test and statistical analysis, the expression of salivary CSTB and DMBT1 proteins was evalu-
ated. To construct diagnostic algorithms, we used the machine learning method.

Results:  The mean salivary expression of CSTB in GC patients was significantly lower (115.55 ± 7.06, p = 0.001), and 
the mean salivary expression of DMBT1 in GC patients was significantly higher (171.88 ± 39.67, p = 0.002) than the 
control.

Multiple linear regression analysis demonstrated that GC was significantly correlated with high levels of DMBT1 after 
controlling the effects of age of participants (R2 = 0.20, p < 0.001).

Considering salivary CSTB greater than 119.06 ng/mL as an optimal cut-off value, the sensitivity and specificity of CSTB 
in the diagnosis of GC were 83.87 and 70.97%, respectively. The area under the ROC curve was calculated as 0.728. The 
optimal cut-off value of DMBT1 for differentiating GC patients from controls was greater than 146.33 ng/mL (sensitiv-
ity = 80.65% and specificity = 64.52%). The area under the ROC curve was up to 0.741.

As a result of the machine learning method, the area under the receiver-operating characteristic curve for the diag-
nostic ability of CSTB, DMBT1, demographic data, clinical characteristics, and food intake habits was 0.95. The machine 
learning model’s sensitivity, specificity, and accuracy were 100, 70.8, and 80.5%, respectively.

Conclusion:  Salivary levels of DMBT1 and CSTB may be accurate in diagnosing GCs. Machine learning analyses using 
salivary biomarkers, demographic, clinical, and nutrition habits data simultaneously could provide affordability models 
with acceptable accuracy for differentiation of GC by a cost-effective and non-invasive method.
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Introduction
Gastric cancer (GC) is the fifth most common malig-
nancy in the world. It is the third most common cause 
of cancer deaths [1]. This cancer is 2 - 3fold more preva-
lent in men than women and the death rate is more inci-
dent in men [2]. The incidence of GC varies according 
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to the geographical region and culture of each region. 
So that more than 50% of new cases occur in developing 
countries, including Iran [3]. The most common type 
of cancer incidence and cancer mortality in men of Ira-
nian people was GC [2, 3]. GC is a multifactorial disease 
caused by a combination of environmental factors and 
genetic changes [4, 5]. Environmental risk factors for 
this disease include smoking [6], alcohol [7], high salt 
intake [8], nitrite and nitrate in some foods [9], includ-
ing processed meats, high consumption of red meat 
smoked foods, low consumption of raw fruits and veg-
etables containing vitamin C and antioxidants [10, 11], 
overweight and obesity [12, 13], Helicobacter pylori [14, 
15] and low socioeconomic conditions [16], including 
low education and low income [17–19]. Approximately 
90% of gastric cancers are adenocarcinomas. Non-
Hodgkin lymphomas and leiomyosarcomas make up the 
remaining 10% [20, 21].

Photofluorography, serum pepsinogen concentration, 
serum ghrelin (low serum ghrelin may indicate a high risk 
of GC), gastrin 17, and gastric wall cell antibodies (asso-
ciated with an increased risk of atrophic gastritis, which 
may play a role in GC) are among the non-invasive ways 
of screening for stomach cancer to date [22]. Endoscopic 
screening is cost-effective in high-prevalence areas, but 
in moderate-risk populations, there is no evidence that it 
is effective or cost-effective [23]. In addition, endoscopy 
is an invasive procedure in which the risk of bleeding, 
mucosa perforation, and death has been reported. Imag-
ing is also used to diagnose this cancer. Including com-
puted tomography (CT), magnetic resonance imaging 
(MRI), and positron emission tomography (PET), each 
of which is used for a specific purpose [24]. The limita-
tions of these advanced imaging technologies are the lack 
of widespread access, training issues in the interpretation 
of these “advanced” images technique, selection of imag-
ing acquisition parameters, and their diagnostic accura-
cies [25, 26]. Although machine learning and artificial 
intelligence have led to advances in diagnostic imaging 
techniques, there are still challenges to the early detec-
tion of GC [27–29]. Prevention of GC may be achieved 
through primary prevention by reducing the incidence of 
GC or by using secondary prevention by early detection, 
identifying, and treating the disease in its early stages [22, 
30]. Despite significant improvements in the survival of 
GC patients in recent decades, GC is often diagnosed 
at an advanced stage and has a poor prognosis due to 
the high prevalence of recurrence [31–34]. Since GC is 
symptomatic at high levels, early detection using effective 
screening methods is important in reducing mortality.

Biomarkers are factors that are objectively measured 
and evaluated as indicators of natural biological pro-
cesses, pathogenic processes, or drug responses to a 

therapeutic intervention [32, 35–37]. Saliva is one of the 
most complex biological fluids in the body, reflecting a 
wide range of physiological conditions in the body [38, 
39]. Compared to blood sampling or biopsy, using saliva 
has advantages, including accessible collection and stor-
age, less invasiveness, cost-effectiveness, and no need for 
specialized equipment [40]. In various studies, salivary 
proteins have been used as potential diagnostic markers 
and monitor the prognosis of disease, patient survival, 
and treatment [41–43].

Cystatin B (CSTB) is a protein structure encoded by 
the CSTB gene that acts as an intracellular thiol pro-
tease inhibitor [44]. This gene is located on chromosome 
21q22.3 [45]. This protein belongs to the large family of 
cystatins (type two), which can form dimers stabilized by 
non-covalent forces and inhibit Papain and Cathepsins L, 
H and B, and is thought to play a role in protecting pro-
tease leakage from lysozymes [46, 47]. Deleted in malig-
nant brain tumor 1 (DMBT1) is a tumor-inhibiting gene 
located on chromosome 10q25.3-q26.1 to its inactivation 
in several medulloblastoma cell lines in comparison with 
normal cells [48–51]. It plays an important role in some 
biological reactions, such as the innate immune system 
and inflammation and the recognition and accumula-
tion of bacteria by binding to various pathogens and host 
molecules. This protein may act as an epithelial differen-
tiating factor and contribute to the polarization of epithe-
lial cells. The DMBT1 protein is encoded by the DMBT1 
gene and is a scavenger receptor cysteine-rich (SRCR​) 
family [48, 52].

Nowadays, machine learning in healthcare is becom-
ing widely used [53]. Machine learning methods help us 
develop computer algorithms that can consider a set of 
variables and their complicated relationships to accom-
plish specific tasks such as modeling, classification, and 
regression. Despite efforts to use artificial intelligence in 
the image-based diagnosis of GC [28, 54], artificial intel-
ligence methods in the analysis and modeling of GC bio-
markers have been limited. This study aims to evaluate 
the application of salivary levels of CSTB and DMBT1 
in GC diagnosis, considering the importance of early 
diagnosis of GC through convenient and noninvasive 
methods. This paper purpose using statistical analysis 
and machine learning methods to construct a GC diag-
nostic algorithm based on the salivary levels of CSTB and 
DMBT1, demographic data, clinical characteristics, and 
food intake habits data.

Methods
Ethical statement
This study was approved by the Tehran University of 
Medical Sciences Ethical Committee (ethical code: 
IR.TUMS.DENTISTRY.REC.1398.003). After describing 
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the study objectives, all participants signed the informed 
consent before participating in this study. All methods 
were performed in accordance with the relevant guide-
lines and regulations.

Samples
This case-control study was undertaken on 31 healthy 
individuals and 31 GC (adenocarcinoma) patients in 
early stages, referred to Imam Khomeini Hospital in Teh-
ran. They have been diagnosed with GC by a gastroen-
terologist based on histopathological and endoscopic 
examination. The exclusion criteria for subjects were as 
follows: 1) Patients with known active dental and perio-
dontal infections. 2) Patients with a known history of any 
other tumors and malignancies and any obvious inflam-
matory diseases such as liver cirrhosis, chronic renal dis-
ease, diabetes mellitus, and also any systemic diseases. 
3) Patients with a known history of any surgical opera-
tions, chemotherapy, or radiotherapy before collecting 
saliva. 4) Patients with a history of receiving blood in 
the last 3 years. 5) Pregnant women. The control group 
was selected from healthy individuals referred to Imam 
Khomeini Hospital in Tehran for routine medical check-
ups. The enrolled people in control groups also had no 
active mouth infections, inflammation, malignancies, 
and systemic diseases. Pregnant women, people with a 
history of receiving blood in the last 3 years, and people 
with any history of cancer treatment were excluded from 
the control group. Gastric cancer patients and control 
were age- and sex-matched (Fig. 1).

All participants were asked to carefully respond to 
a valid, uniform, and standardized checklist to report 
their demographic characteristics (gender, age, educa-
tion level, and occupational stress) and habits that pos-
sibly affect GC progression. To ensure the validity and 
completeness of the responses, one of the trained authors 
supervised the completion of each questionnaire, which 
only explained items neutrally when necessary but did 
not offer any directive or indicative clues.

Participants’ occupation was classified into three 
groups; high-stress level, moderate stress level, and 
low-stress level [55]. Farmers, manual laborers, and the 
unemployed are categorized in high-stress level, because 
of low income, commercial stress, and physical stress. 
Sales clerks, workers in service industries, security 
guards, and workers in transportation or communication 
industries are categorized in the moderate-stress level 
group. Professionals, administrators, and office clerks are 
categorized into the low-stress level group [55]. Smoking 
habit is defined as current smokers who are intermittent 
smoker (1 > cigarettes per day (CPD)) or light smoker 
(1–10 CPD), moderate smoker (11–19 CPD), or heavy 
smoker (20 < CPD) [56]. All participants were further 

requested to report a positive history of gastroesopha-
geal reflux disease (GERD), gastric ulcer, anemia, type of 
patient care (inpatient or outpatient), history of abdomi-
nal radiotherapy, frequency score (FS) for intake of veg-
etables/fruit, fast food, salty fish, preference score for 
salty taste, sour taste and spicy taste. FS was defined as 0, 
never; 1, 1 ≥ time per month; 2, 2–3 times per month; 3, 
1–2 times per week; 4, 3–4 times per week; 5, 5–6 times 
per week; 6, 1 time per day; 7, 2 times per day; 8, 3 times 
per day; 9, 4 ≤ times per day. FS equal to 4 and higher 
were considered positive [55]. Preference score ranged 
from 1 (extremely dislike) to 7 (extremely like) with an 
increment of 1. Like and extremely like were considered 
positive [57].

Saliva collection
In order to prevent the possible effects of circadian 
rhythm changes on salivary secretions, saliva sampling 
was performed from 9:00 to 11:00 am. Participants were 
asked to abstain from eating, drinking, smoking, and 
oral hygiene for 90 min before sampling to avoid sali-
vary irritation. After dental and periodontal examina-
tion, sampling of whole non-stimulated saliva without 
mechanical and chemical stimulation was performed 
by spitting method. The person was asked to collect his 
saliva for 5 to 15 min at 60-s intervals and pour saliva into 
pre-weighed sterile containers.

Determination of salivary CSTB and DMBT1 levels
Saliva samples were stored at − 80 °C until enzyme-linked 
immunosorbent assay (ELISA) examination based on the 
biotin double antibody sandwich technology. ELISA test 
was performed by 96-test ZellBio-GmbH human cys-
tatin B (CSTB) ELISA kit (Cat. ZB-2809–H9648, Zell-
Bio GmbH, Ulm, Germany) and 96 test ZellBio-GmbH 
human deleted in malignant brain tumors 1 (DMBT1) 
ELISA Kit (Cat. ZB-2955-H9648, ZellBio GmbH, Ulm, 
Germany) for measurement of the salivary level of CSTB 
and DMBT1, respectively, according to the manufac-
turer’s instructions. CSTB and DMBT1 proteins were 
added to the wells, precoated with anti-human CSTB and 
DMBT1 monoclonal antibodies. Then, anti- CSTB and 
DMBT1 antibodies were added and labeled with biotin 
to combine with streptavidin-HRP, forming an immune 
complex. The assay range of the ELISA kit for CSTB and 
DMBT1 was 50 ng/ml - 1600 ng/ml, and the sensitivity 
was 2.5 ng/ml. The absorbance of the samples was meas-
ured using Hyperion ELISA microplate reader. The con-
centrations of CSTB and DMBT1 were determined by 
spectrometer software based on standard curves, and all 
measurement procedures were repeated three times for 
each sample, and the mean value was reported.
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Statistical analysis methods
Statistical analysis was performed using statistical 
software SPSS 18.0.0. (SPSS Inc. Chicago, IL, USA). 
P-values (p) less than 0.05 were considered significant. 

Shapiro-Wilk test was used to examine the normality 
assumption of continuous variables. Descriptive statis-
tics were reported as mean ± SD for quantitative vari-
ables and were summarized by number and percentages 

Fig. 1  STARD flow diagram of the gastric cancer cases and control
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for qualitative variables. Quantitative variables were 
compared with students’ t-test between the two groups. 
Spearman and Pearson correlation tests were applied 
for examining the association between two quantitative 
variables.

Multiple linear regression analysis was used to deter-
mine the parameters most predictive of the salivary 
CSTB and DMBT1. A stepwise forward regression algo-
rithm was applied to select parameters to be entered in 
the final model. All variables which were significant in 
univariate analysis and biologically plausible to affect the 
continuous outcomes (salivary CSTB and DMBT1) were 
selected to be evaluated in the aforementioned algorithm. 
Only the variables that entered the model at p-values less 
than 0.1 were included in the final model. Univariate and 
multivariable logistic regression analyses were conducted 
to examine the association between the explanatory vari-
ables and the presence of GC.

Receiver operating characteristic (ROC) curve was 
constructed to assess the diagnostic values of salivary 
CSTB and DMBT1 for differentiating GC patients from 
healthy controls. MedCalc® Statistical Software version 
19.8 (MedCalc Software Ltd., Ostend, Belgium; https://​
www.​medca​lc.​org; 2021) was used to construct ROC 
curve and to find optimal cut-off value.

Machine learning method
To assess the effectiveness of CSTB and DMBT1 for GC 
prediction, we perform a set of machine learning analy-
ses. For this aim, we extract demographic data, clinical 
characteristics, and food intake status features in addi-
tion to CSTB and DMBT1. Also, we use another feature 
during the experiments, namely α which is derived as:

We used an artificial neural network as a supervised 
machine learning method to predict GC. A multi-layer 
fully connected feed-forward neural network method 
was constructed to predict the label of data samples. 
For implementing the proposed model, we used Python 
Software Foundation, Version 3.7, and the Keras library 
[58], which is a high-level neural network API. During 
the training phase of the constructed method, for each 
training data sample, the extracted features, including 
DMBT1, CSTB, alpha (α) besides demographics, clini-
cal characteristics and food intake status features, were 
normalized in the range of [0, 1] and were entered into 
the network. The output value indicates the label of the 
data sample. 80% of data samples were used during the 
training and validation phase, and 20% remaining were 

α =
DMBT1

CSTB

used during the test phase. We used the 4-fold cross-
validation method and the Adam optimizer [59] as the 
optimization algorithm. Data samples were labeled as fol-
lows; GC patients were labeled 1 and control cases were 
labeled 0. The constructed model has two hidden layers, 
and each hidden layer has 16 neurons. We used the ReLU 
activation function for the hidden layers, and the sigmoid 
activation function was used for the output layer. We also 
used binary cross-entropy as the loss function of the arti-
ficial neural network.

Results
Patient characteristics
Demographics, clinical characteristics, and laboratory 
findings of patients with GC and healthy controls are 
summarized in Table 1. The two groups differed signifi-
cantly according to educational level (p  < 0.0001), occu-
pational status (p  < 0.0001), positive history of GERD 
(p < 0.0001), positive history of gastric ulcers (p = 0.01), 
vegetable consumption (p = 0.02) and salty taste prefer-
ence (p = 0.02) (Table 1).

However, no statistically significant difference was 
observed between patients with GC and healthy controls 
regarding gender, age, positive history of anemia, current 
smoking status, drug consumption, alcohol consumption, 
fast food consumption, salty fish consumption, and sour 
and spicy taste preferences (Table 1).

Salivary CSTB and DMBT1 concentrations
The mean salivary CSTB level was significantly lower 
in GC patients in comparison with healthy controls 
(p  = 0.001, Table  1). The mean DMBT1 concentration 
was significantly higher in GC patients compared with 
healthy controls (p = 0.002, Table 1).

Association between salivary CSTB levels and all evaluated 
variables
Table 2 summarizes the mean salivary CSTB concentra-
tions according to demographics, clinical characteris-
tics, and food intake status of participants in each study 
group. Spearman correlation test resulted in a significant 
positive association between age and salivary CSTB lev-
els in healthy controls (r = 0.36 and p = 0.046). However, 
no significant correlation was found between these two 
parameters in the patient group (r = 0.32 and p = 0.08). 
In both study groups, no association was observed 
between salivary CSTB levels and other evaluated param-
eters in Table  2. According to the results of multiple 
linear regression, GC was significantly associated with 
low levels of salivary CSTB after controlling the effects 
of age of participants (adjusted R2 = 0.21, F = 8.96, and 
p < 0.001).

https://www.medcalc.org
https://www.medcalc.org
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Association between DMBT1 level and all other evaluated 
variables
The mean DMBT1 levels according to demographics, 
clinical characteristics, and food intake status of partici-
pants in each study group are presented in Table  2. No 
significant correlation was observed between the age of 
participants and DMBT1 levels in both groups (r = 0.33 
and p = 0.07 in patients; r = 0.28 and p = 0.13 in con-
trols). In both groups, no association was found between 
DMBT1 concentration and each of the other explanatory 
variables in Table  2. Multiple linear regression analysis 

demonstrated that GC was significantly correlated with 
high levels of DMBT1 after controlling the effects of 
the age of participants (adjusted R2 = 0.20, F = 8.67, and 
p < 0.001).

Association between salivary CSTB and DMBT1 levels
There was no significant association between salivary 
CSTB and DMBT1 levels in patients with GC (r = − 0.04 
and p  = 0.85) and healthy controls (r  = − 0.18 and 
p = 0.33).

Association between evaluated variables and the risk 
of developing gastric cancer
Based on univariate binary logistic regression, par-
ticipants with higher educational level (odds ratio 
(OR) = 0.08; 95% confidence interval (CI) = 0.02 to 0.31), 
with lower stress jobs (OR = 0.04; 95% CI = 0.01 to 0.17) 
and with higher consumption of vegetables (OR = 0.26; 
95% CI = 0.08 to 0.80) were less likely to develop GC. 
Salty taste preference was significantly associated with 
risk of GC (OR = 4.26; 95% CI = 1.19 to 15.25). Indi-
viduals with a positive history of GERD were less likely 
to develop GC than those without a positive history 
of GERD (OR = 0.34; 95% CI = 0.12 to 0.97). However, 
developing GC did not significantly correlate with age, 
gender, current smoking status, and sour and spicy taste 
preferences (Table 3). Individuals had 7% reduction in the 
risk of GC per one-unit increase in salivary CSTB level 
(OR = 0.93; 95% CI = 0.88 to 0.97, Table  3). A 0.02-fold 
increased risk of GC was found per one-unit increase in 
the level of DMBT1 (OR = 1.02; 95% CI = 1.01 to 1.04, 
Table 3).

According to multivariable logistic regression analysis, 
salivary CSTB level (OR = 0.89; 95% CI = 0.81 to 0.98, 
p = 0.1), DMBT1 level (OR = 1.02; 95% CI = 1.00 to 1.05, 
p = 0.05), occupation status (OR (low vs. moderate-to-
high stress level) = 0.07; 95% CI = 0.01 to 0.40, p = 0.003) 
and educational level (OR (Diploma and higher vs. pri-
mary and secondary) = 0.03; 95% CI = 0.003 to 0.29, 
p = 0.003) were the significant determinants of develop-
ing GC.

The ROC curve for differentiating gastric cancer patients 
from healthy controls
ROC curve was constructed to estimate diagnostic values 
of DMBT1 for differentiating GC patients from healthy 
controls. The results showed that the area under the 
ROC curve was up to 0.741 (95% CI = 0.614 to 0.844; 
p < 0.001and Fig. 2). The optimal cut-off value for differ-
entiating GC patients from healthy controls was DMBT1 
levels greater than 146.33 ng/mL with which the sensitiv-
ity and specificity were 80.65 and 64.52%, respectively.

Table 1  Demographics, clinical characteristics, food intake 
status, and laboratory findings of patients with GC and healthy 
controls

Values are expressed as mean ± SD or No. (%).

* P-value (p) for the comparison between patients with GC and healthy control 
groups

Characteristics GC patients
(n = 31)

Healthy controls
(n = 31)

p*

Gender 0.12

  Female 4 (12.90%) 9 (29.03%)

  Male 27 (87.10%) 22 (70.97%)

Age, years 63.42 ± 11.40 59.06 ± 7.78 0.08

Education levels < 0.0001

  Primary and secondary 28 (90.32%) 13 (41.94%)

  Diploma and BSc. 3 (9.68%) 13 (41.94%)

  MSc. and PhD. 0 (0.00%) 5 (16.13%)

Occupational stress levels < 0.0001

  Low stress level 6 (19.35%) 26 (83.87%)

  Moderate stress level 23 (74.19%) 3 (9.68%)

  High stress level 2 (6.45%) 2 (6.45%)

Positive history of disease

  GERD 13 (41.94%) 21 (67.74%) 0.04

  Gastric ulcers 7 (22.58%) 0 (0.00%) 0.01

  Anemia 2 (6.45%) 0 (0.00%) 0.49

Types of patient care – – –

  Inpatient 7 (22.58%) – –

  Outpatient 24 (77.42%) – –

Current smoking status 9 (29.03%) 10 (32.26%) 0.78

Drug consumption 3 (9.68%) 4 (12.90%) 1.00

Alcohol consumption 1 (3.23%) 1 (3.23%) 1.00

History of radiotherapy 0 (0.00%) 0 (0.00%) –

Vegetable consumption 16 (51.61%) 25 (80.65%) 0.02

Fast food consumption 0 (0.00%) 1 (3.23%) 1.00

Salty fish consumption 2 (6.45%) 0 (0.00%) 0.49

Salty taste preference 12 (38.71%) 4 (12.90%) 0.02

Sour taste preference 8 (25.81%) 6 (19.35%) 0.54

Spicy taste preference 9 (29.03%) 8 (25.81%) 0.78

Salivary CSTB level, ng/mL 115.55 ± 7.06 128.30 ± 18.06 0.001

Salivary DMBT1 level, ng/
mL

171.88 ± 39.67 139.76 ± 39.05 0.002
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Table 2  Salivary CSTB and DMBT1 levels according to demographics, clinical characteristics, and food intake status of study groups

Data are expressed as mean ± SD

# p-value (p) to compare the mean outcomes (salivary CSTB and DMBT1) between the categories of each characteristic in each study group

Salivary CSTB level (ng/mL) DMBT1 level (ng/mL)

Characteristics Patients with GC (n = 31) Healthy Controls (n = 31) Patients with GC (n = 31) Healthy Controls (n = 31)

Gender

  Female 113.52 ± 4.27 135.21 ± 20.07 166.50 ± 35.23 134.22 ± 28.52

  Male 115.86 ± 7.40 125.47 ± 16.84 172.68 ± 40.83 142.03 ± 43.01

p-value# 0.40 0.22 0.76 0.56

Education

  Primary and secondary 115.67 ± 7.41 134.35 ± 14.06 169.84 ± 40.05 149.13 ± 40.76

  Diploma and above 114.48 ± 2.37 123.92 ± 19.69 190.89 ± 36.69 133.00 ± 37.46

  p-value# 0.56 0.10 0.43 0.27

Occupation

  Low stress 114.74 ± 3.81 129.96 ± 17.32 179.72 ± 34.17 136.86 ± 39.31

  Moderate-to-high stress 115.75 ± 7.69 119.62 ± 21.44 170.00 ± 41.29 154.87 ± 37.95

  p-value# 0.56 0.36 0.56 0.37

History of GERD

  Yes 115.24 ± 4.22 130.12 ± 18.47 173.87 ± 31.89 145.95 ± 43.24

  No 115.78 ± 8.68 124.47 ± 17.47 170.44 ± 45.32 126.77 ± 25.52

  p-value# 0.56 0.42 0.81 0.13

History of gastric ulcers

  Yes 116.21 ± 7.80 – 168.86 ± 39.08 –

  No 115.21 ± 7.80 128.30 ± 18.06 172.76 ± 40.63 139.76 ± 39.05

  p-value# 0.48 – 0.82 –

Current smoking status

  Yes 115.66 ± 4.00 126.22 ± 17.78 177.56 ± 59.71 140.97 ± 33.38

  No 115.51 ± 8.08 129.29 ± 18.54 169.56 ± 29.50 139.19 ± 42.25

  p-value# 0.95 0.66 0.71 0.90

Drug consumption

  Yes 109.58 ± 19.24 124.38 ± 25.29 140.78 ± 58.58 160.33 ± 32.04

  No 116.19 ± 4.86 128.88 ± 17.31 175.21 ± 37.08 136.72 ± 39.58

  p-value# 0.61 0.75 0.42 0.25

Vegetable consumption

  Yes 114.57 ± 8.40 130.10 ± 18.21 169.42 ± 47.02 139.31 ± 41.73

  No 116.60 ± 5.40 120.78 ± 16.74 174.51 ± 31.45 141.67 ± 28.05

  p-value# 0.43 0.26 0.72 0.87

Salty taste preference

  Yes 116.88 ± 2.97 122.58 ± 28.86 163.97 ± 46.90 143.75 ± 21.21

  No 114.72 ± 8.71 129.14 ± 16.56 176.88 ± 34.79 139.17 ± 41.29

  p-value# 0.33 0.68 0.42 0.74

Sour taste preference

  Yes 114.92 ± 12.19 128.12 ± 20.83 163.67 ± 30.18 119.00 ± 40.65

  No 115.77 ± 4.54 128.34 ± 17.81 174.74 ± 42.70 144.75 ± 37.79

  p-value# 0.85 0.98 0.44 0.20

Spicy taste preference

  Yes 117.95 ± 5.61 120.59 ± 17.94 173.41 ± 45.27 126.88 ± 25.00

  No 114.57 ± 7.47 130.98 ± 17.70 171.26 ± 38.28 144.25 ± 42.42

  p-value# 0.18 0.18 0.90 0.18
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In addition, a ROC curve was constructed to estimate 
diagnostic values of salivary CSTB. The optimal cut-off 
point for differentiating GC patients from healthy con-
trols was salivary CSTB levels equal to or lower than 
119.06 ng/mL. At this cut-off point, the sensitivity and 
specificity were 83.87 and 70.97%, respectively. The 
area under the ROC curve was calculated as 0.728 (95% 
CI = 0.60 to 0.83; p = 0.002). Comparing the accuracy of 
salivary CSTB and DMBT1 in detecting GC indicated no 
significant difference between these diagnostic tests for 
differentiating the GC patients from healthy individu-
als (difference between areas = 0.01, 95% CI = − 0.170 
to 0.19; p = 0.89, Fig.  2). The optimal cut-off point of α 
(DMBT1/CSTB) for distinction GC patients from con-
trols was equal to or lower than 1.157 (Fig. 3). At this cut-
off point, the sensitivity and specificity were 90.00 and 
72.41%, respectively.

Machine learning analysis
In order to analyze the DMBT1, CSTB and α features, we 
constructed five models with various input feature vec-
tors, in which the values of each feature vector were nor-
malized using the robust scaler method as follows:

Normalized value =
value −median of feature vector (i)

IQR of feature vector (i)
, 1 ≤ i ≤ 19

Table 3  Results of univariate binary logistic regression analysis 
of the association between evaluated variables and the risk of 
developing GC

a  There was insufficient data for statistical analysis

Characteristics Crude OR (95% CI for OR) p

Age 1.05 (0.99 to 1.10) 0.09

Gender (Female vs. male) 0.36 (0.10 to 1.34) 0.13

Education (Diploma and higher 
vs. primary and secondary)

0.08 (0.02 to 0.31) < 0.001

Occupation (Low vs. moderate-
to-high stress level)

0.04 (0.01 to 0.17) < 0.0001

Positive history of GERD 0.34 (0.12 to 0.97) 0.04

Positive history of gastric ulcersa – –

Positive history of anemiaa – –

Current smoking status 0.86 (0.29 to 2.53) 0.78

Drug consumption – –

Alcohol consumptiona – –

Vegetable consumption 0.26 (0.08 to 0.80) 0.02

Fast food consumptiona – –

Salty fish consumptiona - –

Salty taste preference 4.26 (1.19 to 15.25) 0.03

Sour taste preference 1.45 (0.44 to 4.81) 0.54

Spicy taste preference 1.18 (0.38 to 3.60) 0.78

Salivary CSTB, ng/mL 0.93 (0.88 to 0.97) 0.003

Salivary DMBT1, ng/mL 1.02 (1.01 to 1.04) 0.005

Fig. 2  ROC curve for DMBT1 (AUC = 0.741, sensitivity = 80.65%, specificity = 64.52%) and ROC curve for salivary CSTB (AUC = 0.728, 
sensitivity = 83.87%, specificity = 70.79%)
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IQR is the range between the first quartile and the 
third quartile. The input feature vector of the model 
(1) includes all the extracted features including gender, 
age (years), education levels, occupational stress levels, 
positive history of disease, types of patient care, current 
smoking status, drug consumption, alcohol consump-
tion, history of radiotherapy, vegetable consumption, 
fast food consumption, salty fish consumption, salty 
taste preference, sour taste preference, spicy taste prefer-
ence, salivary CSTB level, salivary DMBT1 level (listed in 
Table 1), and α; The input feature vector of the model (2) 
includes all the extracted features, except DMBT1 and α; 
The input feature vector of the model (3) includes all the 
extracted features, excluding CSTB and α; The input fea-
ture vector of the model (4) includes all the extracted fea-
tures, excluding DMBT1, CSTB, and α; The input feature 
vector of the model (5) merely includes DMBT1, CSTB, 
and α. ROC curve analysis of all models is depicted in 
Fig. 4.

The area under ROC curve (AUC) of the models 
revealed that model (1) achieves the highest AUC with 
the value of 0.95. Elimination of DMBT1, CSTB, and α 
in the input feature vector causes the AUCs of models 
(2) and (3) to be reduced by 0.02 and 0.09, respectively. 
The AUC of the model (4), wherein the DMBT1, CSTB, 
and α features have been removed from the input fea-
ture vector, is 0.89. Our analysis shows that the AUC 
of the model (5), in which the input feature vector is 

composed of DMBT1, CSTB, and features compared to 
the first model, merely reduces by 0.04, which indicates 
the effectiveness of these three features in GC diagnos-
ing. Figure  5 compares the sensitivity and specificity of 
constructed models on different cut-off point values.

Table 4 summarizes the sensitivity, specificity, positive 
predictive value (PPV), negative predictive value (NPV), 
accuracy, and AUC measures of constructed models. For 
this experiment, we set the cut-off point value for all the 
models to 0.3 to increase the sensitivity and reduce the 
prediction error of patient cases.

Discussion
GC is one of the major health problems in the world. 
Most cases of GCs are diagnosed in the later stages of the 
disease and become symptomatic in an advanced stage, 
while there is no formal screening program for the dis-
eases. Although several screening approaches have been 
proposed, such as detecting gastric mucosal atrophy by 
measuring pepsinogens in the bloodstream, none of 
these methods are usually applied due to the nature of 
the disease and the deterioration of patients [60, 61]. 
Despite potential preventive measures and screening 
methods such as PET-CT and endoscopy, no effective 
method has been proposed for future clinical trials to 
reduce GC [62, 63]. Endoscopy and biopsy of the gastric 
remain the standard diagnostic criteria for GC [62, 64]. 
Due to the invasiveness of this method and the high cost 

Fig. 3  A Salivary CSTB levels in GC patients and control (p < 0.001), B salivary DMBT1 levels in GC patients and control (p < 0.001), and C salivary 
DMBT1/CSTB levels in GC patients and control (p < 0.001)
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and difficult access to this diagnostic method, endoscopy 
cannot be considered a suitable method for screening GC 
[65].

Biomarkers may serve as a non-invasive diagnosis in 
the early detection of GC, but due to the nature of GC, 
no specific and sensitive biomarkers are yet available [66]. 
It is possible to determine these biomarkers in blood, 
urine, and saliva that saliva can provide the appropriate 
way to detect patients, better prognosis, prevent recur-
rence, and control patient mortality [67]. Several studies 
have used salivary proteins as potential diagnostic mark-
ers to monitor disease, prognosis, patient survival, and 
treatment [68–70]. It has also been shown that there are 
blood transfusions in saliva; therefore, it is almost equal 
to serum [71, 72].

CSTB is a protease inhibitor of cathepsin that is 
increased in cancer and acts as an intracellular thiol 
protease inhibitor [73, 74]. Evidence suggests the role of 
CSTB in various diseases [46, 75]. Animal models have 
been shown to increase the expression of CSTB inhib-
iting GC metastasis by involving biological processes 
involved in proliferation, apoptosis, and migration [76]. 
Overexpression of CSTB suppresses activation of the 
PI3K/Akt/mTOR pathway. PI3K/Akt/mTOR pathway 
is widely involved in regulating cell processes, includ-
ing angiogenesis, cell proliferation and metabolism [46, 
77]. CSTB Downregulation promotes the development 
and progression of GC by affecting cell proliferation 
and migration. Previous studies have shown that CSTB 

plays different roles in ovarian cancer [78, 79], colon 
cancer [44], and myoclonic epilepsy [80].

This study indicated that salivary CSTB in GC 
patients was significantly lower than in the control 
group. Furthermore, this biomarker had an acceptable 
sensitivity (83.87%) and specificity (70.97%) in GC dif-
ferentiation from the healthy control. Previous studies 
have shown that CSTB downregulates both protein and 
mRNA levels in GC and can be used as a marker in GC 
diagnosis [25]. Xiao et  al. examined the salivary pro-
teome of patients with GC. Five proteins were selected 
for further study, including interleukin-1 receptor 
antagonist (ILIRA), CSTB, isomerase triphosphate 
(TPI1) and DMBT1. ELISA examination of these pro-
teins showed that their expression varied significantly 
in GC patients and healthy individuals with 85% sensi-
tivity and 80% specificity in diagnosing GC [81].

The DMBT1 gene encodes a protein involved in cell 
proliferation and is considered a tumor suppressor for 
the brain and epithelial cancer [82–85]. Some studies 
have shown conflicting results in reducing or increas-
ing the expression of DMBT1 in various cancers [86, 
87]. Preliminary studies have shown that DMBT1 
is eliminated or reduced in a variety of tumors [88]. 
DMBT1 mucosal levels increase significantly (2.5-fold) 
in patients with gastric mucosal dysplasia and atrophic 
gastric mucosa [48]. An increase was seen in advanced 
gastritis associated with Helicobacter pylori infection. 
In addition, the increased expression of DMBT1 was 

Fig. 4  ROC curve analysis of five machine learning models
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observed in precancerous lesions of the gastric mucosa 
and the role of DMBT1 in gastric carcinogenesis was 
complex [48, 89]. Conde et  al. showed that DMBT1 
downregulates mRNA levels in 38% of GC patients and 

upregulates in 62% of GC patients. Loss of DMBT1 is 
likely to occur in differentiated GCs, while DMBT1 
upregulation occurs in all types of GC [90]. Increased 
expression of DMBT1 in GC was shown in several 

Fig. 5  ROC curve analysis of five machine learning models
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studies, which confirms our results. Considering the 
acceptable sensitivity and specificity of salivary DMBT1 
in GC detection, DMBT1 may be suggested as a nonin-
vasive marker in GC detection.

Our results showed a significant relationship between 
consumption of a diet containing fruits and vegetables 
with GC. Thus, low consumption of vegetables and 
fruits is associated with an increased risk of GC. These 
results are in line with Wang et al., who stated that high 
fruit intake might decrease the risk of non-cardia GC 
[91]. According to ours, there is a relationship between 
salty taste preference and GC. Lin et al., in their study, 
stated that salt taste preference in the diet showed a 
dose-response relationship with GC. Reducing salt 
and salt processed food in diets might be one practi-
cal measure to preventing GC [57]. Yang et  al. stated 
a significant relationship between salt taste sensitivity 
threshold and GC [92]. Excessive consumption might 
act as a gastric mucosa stimulant, leading to atrophic 
gastritis, increased DNA synthesis, and cell prolifera-
tion, thereby providing the basis for GC incidence [4]. 
Our study indicated that higher consumption of veg-
etables was less likely to develop GC; this result is con-
firmed in several studies [93–96].

According to our results, a higher educational level 
is associated with a lower incidence of GC. Lower edu-
cational level is accompanied by risk factors such as 
Helicobacter pylori infection and lifestyle factors such 
as dietary habits, obesity, and cigarette smoking, which 
may increase the risk of GC [97–99]. These results are 
in line with Rota et al. and Lagergren et al. showed that 
the high level of education was associated with a mod-
est decrease in the GC rate [100, 101].

Individuals with a positive history of GERD were less 
likely to develop GC than those without a positive his-
tory of GERD. These results are in contrast to other 
studies. They stated that a history of GERD is a risk fac-
tor for cardiac GC, which arises from dysplastic intesti-
nal metaplasia, and one potentially involving dysplasia of 
the cardiac-type mucosa [22, 102–104]. One reason for 

the difference is the type of cancer examined in the pre-
sent study and the low sample size compared with other 
studies.

Participants were classified regarding occupation in 
three groups; low-stress level, moderate-stress level, 
high-stress level. Participants with lower stress jobs were 
less likely to develop GC. These results were in line by 
Kuwahara et al. results [55]. Also, Eguchi et al. stated that 
individuals working in coal and tin mining, metal pro-
cessing (particularly steel and iron), and rubber manu-
facturing industries had increased risks of GC [105]. 
Yoshinaga revealed that occupations and industries still 
impact men’s and women’s health in terms of mortality 
due to GC in Japan [106].

The sensitivity of CSTB in GC diagnosis is 83.87%, and 
its specificity is 70.97%. AUC is close to one, and it can 
be concluded that this protein has an acceptable func-
tion in diagnosing GC. Yang et al. examined serum mark-
ers for the diagnosis of GC. They showed COPS2, CTSF, 
NT5E, and TERF1 biomarkers with 95% diagnostic sensi-
tivity and 92% specificity for differentiating GC patients 
from healthy individuals. They concluded that these four 
serum biomarkers could be used as a non-invasive diag-
nostic indicator for GC, and a combination of them could 
potentially be used as a predictor of overall GC survival 
[107].

In this study, in addition to studying demographic 
information and salivary level of CSTB and DMBT1, the 
relationship between demographic data by taking the Sal-
ivary CSTB and DMBT1 into account was investigated to 
diagnose GC. Applying the information mentioned above 
to a set of machine learning methods confirmed our 
achieved findings. Utilizing machine learning methods in 
cancer diagnosis improves diagnostic accuracy and intro-
duces novel and complex cause-and-effect relationships, 
which is not easily possible by examining and receiving 
a patient’s history [108–110]. Hirasawa et al. used a neu-
ral network for detecting GC in endoscopic images. They 
correctly diagnosed GC lesions with a sensitivity of 92.2% 
and a positive predictive value of 30.6% [54]. Although 
several studies have used machine learning and artificial 
intelligence to interpret patients’ images to diagnose GC, 
the use of machine learning to analyze biomarkers as well 
as patient demographics has been limited.

Machine learning methods do not cause crucial factors 
to diagnose GC but help us develop computer algorithms 
that can consider a set of variables and their complicated 
relationship. Machine learning is known as the most com-
mon engine of artificial intelligence. By taking advan-
tage of machine learning in clinical issues, many useful 
facilities in public health are provided. The best model of 
Liu et al. exactly predicted the risk of early GC with the 
accuracy of 77.84% and the AUC of 0.66 by data mining 

Table 4  Comparison of sensitivity, specificity, PPV, NPV, accuracy, 
and AUC machine learning models

Measure Model (1) Model (2) Model (3) Mode (4) Model (5)

Sensitivity 100% 100% 85.7% 100% 88.8%

Specificity 70.8% 65.2% 86.3% 68.4% 61.1%

PPV 63.0% 6.01% 80.0% 73.9% 69.5%

NPV 100% 100% 90.4% 100% 84.6%

Accuracy 80.5% 77.0% 86.1% 83.3% 75.0%

AUC​ 0.95 0.93 0.86 0.89 0.91
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method of patients’ demographic data using C5.0 decision 
tree algorithm [111]. Zhu et  al. used machine learning 
analysis of demographic data in the diagnosis of GC. They 
stated that machine learning is a non-invasive method 
with a sensitivity of 87.0, specificity of 84.1, and AUC 
equal to 0.91 for GC diagnosis, reducing medical costs 
[112]. These results are in accord with ours, indicating the 
ability of machine learning to analyze demographic data.

Aslam et  al. showed that using machine learning and 
support vector machine (SVM) for analyzing the results 
of high-performance liquid chromatography-mass spec-
trometry (HPLC-MS) of saliva led to an overall accuracy 
of 97.18%, specificity of 97.44%, and sensitivity of 96.88% 
for the diagnosis of GC [113]. In this study, in addition 
to statistical analysis of the salivary CSTB and DMBT1, 
using various machine learning methods, we simultane-
ously analyzed the CSTB and DMBT1 salivary levels as a 
non-invasive method as well as demographic data, clini-
cal characteristics, and nutrition habits of patients and 
control group.

Conclusion
This study was designed to evaluate the salivary expres-
sion levels of CSTB and DMBT1 in GC patients with 
healthy individuals. Using statistical analysis and various 
machine learning models based on the salivary CSTB and 
DMBT1 concentrations, demographic, clinical character-
istics data, and nutrition habits, differentiation criteria 
for detecting GC patients from healthy control were pro-
posed. This study showed a significant difference between 
salivary expression levels of CSTB and DMBT1 proteins 
in healthy individuals and GC patients. The expression of 
CSTB in the saliva of patients with GC decreased signifi-
cantly compared to its expression in the saliva of healthy 
individuals. The salivary expression levels of DMBT1 
increased in GC cases rather than healthy control sig-
nificantly. These two diagnostic biomarkers expressed in 
saliva can probably be used as a non-invasive method in 
GC’s early diagnosis and prognosis. Among the demo-
graphic factors, education levels, and occupational stress 
levels; Among the clinical characteristics data, history 
of GERD and the history of gastric ulcers; Among the 
food intake habits, vegetable consumption, and salty 
taste preference, there is a significant difference between 
GC case and control. Various machine learning analyses 
using biomarkers, demographic, clinical and nutrition 
habits data could provide affordability offer models with 
acceptable accuracy for differentiation of GC and control 
by a cost-effective and non-invasive method.
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