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Abstract 

Objective:  Glioma was the most common type of intracranial malignant tumor. Even after standard treatment, the 
recurrence and malignant progression of lower-grade gliomas (LGGs) were almost inevitable. The overall survival (OS) 
of patients with LGG varied widely, making it critical for prognostic prediction. Small G Protein Signaling Modulator 1 
(SGSM1) has hardly been studied in gliomas. Therefore, we aimed to investigate the prognostic role of SGSM1 and its 
relationship with immune infiltration in LGGs.

Methods:  We obtained RNA sequencing data from The Cancer Genome Atlas (TCGA) to analyze SGSM1 expression. 
Functional enrichment analyses, immune infiltration analyses, immune checkpoint analyses, and clinicopathology 
analyses were performed. Univariate and multivariate Cox regression analyses were used to identify independent 
prognostic factors. And nomogram model has been developed. Kaplan–Meier survival analysis and log-rank test were 
used to estimate the relationship between OS and SGSM1 expression. The survival analyses and Cox regression were 
validated in datasets from the Chinese Glioma Genome Atlas (CGGA).

Results:  SGSM1 was significantly down-regulated in LGGs. Functional enrichment analyses revealed SGSM1 was 
correlated with immune response. Most immune cells and immune checkpoints were negatively correlated 
with SGSM1 expression. The Kaplan–Meier analyses showed that low SGSM1 expression was associated with a poor 
outcome in LGG and its subtypes. The Cox regression showed SGSM1 was an independent prognostic factor in 
patients with LGG (HR = 0.494, 95%CI = 0.311–0.784, P = 0.003).

Conclusion:  SGSM1 was considered to be a new prognostic biomarker for patients with LGG. And our study provided 
a potential therapeutic target for LGG treatment.
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Introduction
Gliomas were the most common primary intracranial 
malignant tumors which originated from glial cells [1–3]. 
According to the World Health Organization (WHO) 
grading system, grade II and III gliomas were classi-
fied as lower-grade gliomas (LGGs) [4–6]. The median 
overall survival (OS) of grade II and III glioma patients 

were 78.1  months and 37.6  months, respectively [7]. 
Although LGG was a more indolent precursor to glio-
blastoma (GBM) and less invasive, it caused consider-
able morbidity and raised a difficult challenge for therapy 
due to the heterogeneity of clinical behavior [8, 9]. The 
complete resection of LGG was considered to be still 
impossible due to the invasive nature. Despite the use 
of radiotherapy and chemotherapy, local recurrence and 
progress into GBM were almost inevitable, which led to 
the decrease in therapeutic effect and a poor prognosis 
[10–12]. Therefore, prognostic biomarkers were explored 
to provide a prediction on patients’ survival and response 
to individualized therapy.
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Small G Protein Signaling Modulator 1 (SGSM1), 
located on chromosome 22q11.2, was found to mainly 
express in brain tissue [13]. Previous research showed 
the strong association of  SGSM1  with neuronal func-
tion. SGSM1 protein was localized in the trans-Golgi 
network. Furthermore,  SGSM1  protein possessed RUN 
domain and TBC domain which was associated with 
RAP and RAB-mediated cellular signaling. SGSM1 medi-
ated the interaction between intracellular signaling path-
ways and vesicle transportation. A recent study has found 
that SGSM1 degradation led to the invasion and metas-
tasis of nasopharyngeal carcinoma [14]. Another parallel 
sequencing research has shown that SGSM1 was a poten-
tial candidate gene for schwannomatosis [15]. However, 
the role of SGSM1 has hardly been studied and its prog-
nostic value in LGGs remained unclear.

The data was obtained from TCGA. We investigated 
the expression patterns of  SGSM1  in LGGs and evalu-
ated its prognostic value.  SGSM1  was down-regulated 
with the increase of glioma grades, and its low expres-
sion indicated a poor prognosis in LGG patients. More-
over,  SGSM1  was associated with immune responses 
which provided a new sight for personalized treatment. 
Therefore, SGSM1 could be a prognostic indicator and a 
potential therapeutic target for LGGs.

Method
RNA‑sequencing data acquisition
We downloaded the pan-cancer RNA-seq data of TCGA 
and GTEx conducted by Toil process uniformly from 
UCSC XENA (https://​xenab​rowser.​net/​datap​ages/) [16, 
17]. For further analyses, we obtained level 3 HTSeq-
FPKM and HTSeq-Count data of 529 LGG samples from 
the TCGA database (https://​portal.​gdc.​cancer.​gov/). This 
study was entirely following the publication guidelines 
provided by TCGA and GTEx.

Differential expression gene (DEG) analysis
The median SGSM1 expression was regarded as the 
cut-off value to identify DEGs between the two groups 
(low- and high-expression) of  SGSM1  in LGG samples 
(HTseq-Count), and we used the DESeq2 R package 
(1.26.0) for analysis [18].

Functional enrichment analysis
The threshold of DEGs performed for functional enrich-
ment analysis was defined for |logFC| over 2 and adjusted 
P-value less than 0.05. Gene Ontology (GO) comprising 
of biological process (BP), cellular component (CC), and 
molecular function (MF), as well as Kyoto Encyclopedia 
of Genes and Genomes (KEGG) analyses were imple-
mented with ClusteProfiler R package (3.14.3) [19, 20].

Gene set enrichment analysis (GSEA)
We used ClusteProfiler R package (3.14.3) to explore 
the functional and pathway differences between the 
two groups of different  SGSM1  expression [21]. For 
each analysis, the permutation number was set to 
1000 times. Enrichment results met the conditions of 
p.adj < 0.05 and FDR q-value < 0.25 were defined to be 
statistically significant.

Immune infiltration and immune checkpoint analyses
We conducted the immune infiltration analysis 
of  SGSM1  by single-sample Gene Set Enrichment 
Analysis (ssGSEA) with the GSVA R package (1.34.0) 
[22]. As mentioned previously, 24 types of infiltrating 
immune cells were included for analyses [23]. Then we 
further analyzed the correlation between  SGSM1  and 
immune checkpoints, including PD1, PD-L1, CTLA4, 
LAG3, TIM3, TIGIT, and CD48 [24].

Prognostic model development
We performed univariate and multivariate Cox regres-
sion analyses to evaluate whether SGSM1 could be used 
as an independent prognostic factor. We have involved 
clinical parameters, including age, gender, WHO grade, 
IDH status, and 1p/19q codeletion. Furthermore, nom-
ogram and calibration plot were generated by the RMS 
package (version 6.2–0) and survival package (version 
3.2–10) for predicting 1-year, 3-year, and 5-year OS 
[2, 25]. We have included the same variables as the 
Cox regression analyses. The calibration plot has been 
graphically evaluated by mapping the probabilities 
predicted by nomogram to observed rates. The diago-
nal was used as the best predictive value. Concordance 
index (C-index) was used to determine the discrimina-
tion. And the bootstrap method was used to calculate 
1000 resamples [26]. In addition, receiver operating 
characteristic (ROC) curve was used to evaluate the 
predictive accuracy of the nomogram.

Validation for survival analyses
Gene expression data and clinicopathological infor-
mation of 625 LGG samples were retrieved from two 
RNA-sequencing datasets of CGGA database (http://​
www.​cgga.​org.​cn/) [27]. It was selected as the valida-
tion set to verify the survival analyses and prognostic 
role of SGSM1.

Statistical analyses
All the statistical analyses and graphs were conducted 
by the R programming language (version 3.6.3). The 
expression of SGSM1 was analyzed by Wilcoxon rank-
sum test in unpaired samples. Cox regression analyses 
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assessed the hazard ratios (HRs) and 95% confidence 
intervals (CIs) of different clinical characteristics, and 
identified independent prognostic factors. Kaplan–
Meier survival analyses and log-rank tests were used to 
estimate the survival distributions. A two-sided P value 
less than 0.05 was set to be statistically significant.

Result
The expression of SGSM1 in pan‑cancers and LGG
Comparing  SGSM1  expression between normal tissues 
and tumor samples from TCGA and GTEx databases, we 
found that  SGSM1  was significantly down-regulated in 
most types of cancer (Fig. 1a), including LGG (P < 0.001, 
Fig. 1b).

Identification of DEGs with SGSM1 and functional 
enrichment analyses
A total of 836 DEGs were identified between two groups 
(low- and high-expression) of SGSM1 with the criterion 
of |logFC|> 2 and Padj < 0.05, including 454 up-regulated 
and 382 down-regulated genes (Fig. 2).

The results of GO functional analysis and KEGG 
enrichment analysis have been shown below. BP included 
humoral immune response, lymphocyte mediated 
immunity, regulation of humoral immune response, 

Fig. 1  The expression pattern of SGSM1 in different samples. *P < 0.05; **P < 0.01; ***P < 0.001. a SGSM1 expression between normal tissues and 
pan-cancer samples; (b) SGSM1 expression between normal tissues and LGGs
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Fig. 2  A total of 454 up-regulated and 382 down-regulated genes 
were identified as being statistically significant between SGSM1 high 
expression and low expression groups
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phagocytosis, and regulation of immune effector process. 
CC included immunoglobulin complex, synaptic mem-
brane, synaptic vesicle, ion channel complex, and trans-
membrane transporter complex. MF included antigen 
binding, immunoglobulin receptor binding, neurotrans-
mitter receptor activity, passive transmembrane trans-
porter activity, and ion channel activity (Fig. 3a). KEGG 
included neuroactive ligand-receptor interaction, retro-
grade endocannabinoid signaling, synaptic vesicle cycle, 
GABAergic synapse, cAMP signaling pathway, and cal-
cium signaling pathway (Fig. 3b).

We performed GSEA analysis for further identifica-
tion in biological functions involved in LGGs with differ-
ent SGSM1 expression level using the MSigDB collection. 
Among the significantly enriched gene sets, five GO 
categories, including lymphocyte mediated immunity, 
phagocytosis, humoral immune response, immunoglobu-
lin production, and immune response regulating signal-
ing pathway, showed significantly differential enrichment 
in  SGSM1  low expression phenotype (Fig.  4a); five GO 
categories, including neurotransmitter transport, neu-
rotransmitter secretion, synaptic vesicle membrane, 
synaptic vesicle exocytosis, and regulation of synaptic 
plasticity, showed significantly differential enrichment 
in  SGSM1  high expression phenotype (Fig.  4b). Five 
KEGG categories, including pathways in cancer, B cell 
receptor signaling pathway, natural killer cell mediated 

cytotoxicity, leukocyte transendothelial migration, and 
T cell receptor signaling pathway, showed significantly 
differential enrichment in SGSM1 low expression pheno-
type (Fig. 4c); five KEGG categories, including neuroac-
tive ligand receptor interaction, long term potentiation, 
calcium signaling pathway, gap junction, and phosphati-
dylinositol signaling system, showed significantly differ-
ential enrichment in SGSM1 high expression phenotype 
(Fig. 4d). Five hallmark items, including epithelial mesen-
chymal transition, IL6-JAK-STAT3 signaling, TNFα sign-
aling via NFκB, inflammatory response, and IL2-STAT5 
signaling, showed significantly differential enrichment 
in  SGSM1  low expression phenotype; none in SGSM1 
high expression phenotype  (Fig.  4e). These results indi-
cated the potential role of SGSM1  in tumor microenvi-
ronment and immune responses which were critically 
important in LGG patients.

Immune infiltration analyses in LGG
Tumor immune infiltration played an important role 
in the prediction of OS rates. The proportions of 24 
subtypes of immune cells in different  SGSM1  expres-
sion groups have shown that mast cells (P = 0.011), NK 
CD56bright cells (P < 0.001), TFH (T follicular helper, 
P < 0.001), Th1 cells (P = 0.042), TReg (P < 0.001), and 
pDCs (plasmacytoid dendritic cells, P = 0.001) were 

Fig. 3  Functional enrichment analyses. a GO enrichment analysis; BP biological process, CC cellular component, MF molecular function. b KEGG 
pathway annotation [20]



Page 5 of 14Li et al. BMC Cancer          (2022) 22:466 	

Fig. 4  Enrichment analyses from GSEA (A-E)
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Fig. 5  Association between SGSM1 expression and immune infiltration in LGG. a The infiltrating levels of 24 subtypes of immune cells in high 
and low SGSM1 expression groups. b Correlation between SGSM1 expression and 24 immune cells. c Correlation between SGSM1 expression and 
immune infiltration levels. d Heatmap of 24 immune infiltration cells in LGGs
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significantly increased in high SGSM1 group, while aDCs 
(activated DCs, P < 0.001), cytotoxic cells (P < 0.001), 
eosinophils (P < 0.001), iDCs (immature DCs, P < 0.001), 
macrophages (P < 0.001), neutrophils (P < 0.001), NK 
CD56dim cells (P = 0.001), NK cells (P < 0.001), T cells 
(P < 0.001), Tgd (T gamma delta, P < 0.001), T helper cells 
(P < 0.001), Th17 cells (P < 0.001), and Th2 cells (P < 0.001) 
were significantly decreased (Fig. 5a).

Moreover, the results have shown positive corre-
lations between  SGSM1  expression and infiltrating 

levels of mast cells (r = 0.190, P < 0.001), NK CD56bright 
cells (r = 0.483, P < 0.001), pDC (r = 0.134, P = 0.002), 
TFH (r = 0.262, P < 0.001), and Th1 cells (r = 0.136, 
P = 0.002). The negative correlations were found 
between the SGSM1 expression and infiltrating levels of 
aDCs (r =  − 0.347, P < 0.001), CD8 T cells (r =  − 0.108, 
P = 0.013), cytotoxic cells (r =  − 0.329, P < 0.001), 
eosinophils (r =  − 0.354, P < 0.001), iDCs (r =  − 0.273, 
P < 0.001), macrophages (r =  − 0.491, P < 0.001), neu-
trophils (r =  − 0.448, P < 0.001), NK CD56dim cells 
(r =  − 0.164, P < 0.001), NK cells (r =  − 0.293, P < 0.001), 
T cells (r =  − 0.271, P < 0.001), T helper cells (r =  − 0.403, 
P < 0.001), Tgd (T gamma delta, r =  − 0.237, P < 0.001), 
Th2 (r =  − 0.242, P < 0.001), Th17 (r =  − 0.287, P < 0.001), 
and Treg (r = 0.185, P < 0.001) (Fig. 5b, 5c). We assessed 
the possible correlations between the 24 types of immune 
cells. The heat map has shown that the ratios of different 
tumor-infiltrating immune cells subtypes were weakly to 
moderately correlated (Fig. 5d).

Furthermore, the association between  SGSM1  expres-
sion and immune checkpoints, including PD1, PD-L1, 
CTLA4, LAG-3, TIM3, TIGIT, and CD48 were analyzed 
(Fig.  6a). The expression level of PD1, PD-L1, CTLA4, 
LAG-3, TIM3, and CD48 was negatively correlated 
with SGSM1 expression (P < 0.001 for all). And the expres-
sion level of PD1, PD-L1, CTLA4, LAG-3, TIM3, and CD48 
was higher in low  SGSM1  expression group than that in 
high SGSM1 expression group (P < 0.001 for all, Fig. 6b).

Association between SGSM1 expression and clinical 
features
The main clinical features between low and 
high SGSM1  expression groups in LGGs were analyzed 
(Table  1). In high-expression group, the ratio of WHO 
grade II (P < 0.001), IDH mutation (P < 0.001), and 1p/19q 

Table 1  Association between SGSM1 expression and clinicopathologic 
features in LGGs

WT Wild type, Mut Mutant, Codel Codeletion, Non-codel Non-codeletion
* P < 0.05, significant difference

Characteristic Low SGSM1 
expression

High 
SGSM1 
expression

P value

Age, n (%) 0.338

 ≤ 40 126 (47.7%) 138 (52.3%)

 > 40 138 (52.3%) 126 (47.7%)

Gender, n (%) 0.861

Female 118 (44.7%) 121 (45.8%)

Male 146 (55.3%) 143 (54.2%)

WHO grade, n (%)  < 0.001*
G2 86 (36.9%) 138 (59.0%)

G3 147 (63.1%) 96 (41.0%)

IDH status, n (%)  < 0.001*
WT 80 (30.4%) 17 (6.5%)

Mut 183 (69.6%) 245 (93.5%)

1p/19q codeletion, 
n (%)

 < 0.001*

Codel 33 (12.5%) 138 (52.3%)

Non-codel 231 (87.5%) 126 (47.7%)

Fig. 7  Association between SGSM1 expression and clinical features
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codeletion (P < 0.001) cases was significantly higher than 
low-expression group.

Moreover, we evaluated the  SGSM1  expression level 
with different clinical characteristics (Fig. 7). The results 
showed that SGSM1 was significantly down-regulated in 
WHO grade III group (P < 0.001), IDH wild-type group 
(P < 0.001), and 1p/19q non-codeletion group (P < 0.001).

Relationship between SGSM1 expression and prognosis
We analyzed the potential predictors by Cox regression 
analyses, including age, gender, WHO grade, IDH1 sta-
tus, 1p/19q status, and  SGSM1  expression level. The 
univariate analysis showed that age, WHO grade, IDH1 
status, 1p/19q status, and SGSM1  expression level were 
significantly associated with the OS (P < 0.001 for all, 
Table  2). These risk factors were further included in 
multivariate Cox regression (Fig.  8). The results sug-
gested that SGSM1 was an independent prognostic fac-
tor (HR = 0.494, 95%CI = 0.311–0.784, P = 0.003). Then 
we analyzed the correlation between risk score, survival 
time, and SGSM1 expression profiles (Fig. 9).

Kaplan–Meier analyses showed the relationship 
between  SGSM1  expression and OS of LGG patients 
(Fig.  10). Patients with high  SGSM1  expression 
had a significantly better prognosis than those with 
low SGSM1 expression (P < 0.001). We further performed 
Kaplan–Meier analysis in the subgroups of WHO grade, 
and the results showed that high SGSM1 expression was 
correlated with better prognosis in grade II (P = 0.026) 
and grade III (P < 0.001), respectively.

Table 2  Univariate Cox regression analysis of OS in LGGs

WT Wild type, Mut Mutant, Codel Codeletion, Non-codel Non-codeletion, HR 
Hazard ratio, CI Confidence interval
* P < 0.05, significant difference

Characteristics Univariate Analysis

HR (95% CI) P value

Age

   ≤ 40 Reference  < 0.001*
   > 40 2.889 (2.009–4.155)

Gender

  Female Reference 0.499

  Male 1.124 (0.800–1.580)

WHO grade

  G2 Reference  < 0.001*
  G3 3.059 (2.046–4.573)

IDH status

  WT Reference  < 0.001*
  Mut 0.186 (0.130–0.265)

1p/19q codeletion

  non-codel Reference  < 0.001*
  codel 0.401 (0.256–0.629)

SGSM1

  Low Reference  < 0.001*
  High 0.286 (0.193–0.425)

Characteristics

Age

<=40

>40

WHO grade

G2

G3

IDH status

WT

Mut

1p/19q codeletion

non−codel

codel

SGSM1

Low

High

HR(95% CI)

Ref

3.048 (1.983−4.684)

Ref

2.028 (1.308−3.145)

Ref

0.359 (0.226−0.570)

Ref

0.687 (0.399−1.186)

Ref

0.494 (0.311−0.784)

P value

<0.001*

0.002*

<0.001*

0.178

0.003*

1 2 3 4

Fig. 8  Multivariate Cox analysis of SGSM1 and other clinicopathological variables
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The clinical features were integrated into the nomo-
gram model (Fig.  11a), and the C-index was 0.804 
(95%CI = 0.779–0.828). We have developed time-
dependent ROC curves and calibration plots predict-
ing the probability of 1-year, 3-year, and 5-year OS rates 
(Fig.  11b). The AUCs in terms of 1-year, 3-year, and 
5-year were 0.685, 0.742, and 0.636, respectively. The 
predicted probability of calibration plots was consistent 
with the observed results (Fig. 11c).

Validation of survival analyses
Using the CGGA database, we validated that SGSM1 was 
an independent prognostic factor for LGG prognosis with 
Cox regression analyses (HR = 0.597, 95%CI = 0.451–0.791, 
P < 0.001, Table  3). We performed the Kaplan–Meier sur-
vival analyses in CGGA database (Fig.  12). The results 
showed that patients with low SGSM1 expression were cor-
related with poor outcome in LGG (P < 0.001), WHO grade 
II (P < 0.001) and grade III (P = 0.001), respectively.
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Discussion
Glioma was the most common type of intracranial 
malignant tumor [1]. Although LGG was less invasive, 
the recurrence and malignant progression were almost 

inevitable even after standard treatment [28]. Thus 
immunotherapy, gene therapy, and other new therapies 
have become a promising hope for LGG treatment [29]. 
It has been necessary to identify prognostic factors to 
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optimize treatment for patients.  SGSM1  was mainly 
expressed in brain, and it was considered to correlate 
with small G protein-mediated signal transduction 
pathway [13].  There were few studies on the potential 
prognostic role of  SGSM1  in LGGs. Our results have 
shown  SGSM1  expression was significantly associated 
with immune infiltration and OS in patients with LGG.

In this study, we first compared SGSM1  expression in 
different tumors. The expression of SGSM1  was signifi-
cantly down-regulated in most types of cancer, including 

LGG. Then we analyzed the gene function of SGSM1 with 
enrichment analyses. It indicated that SGSM1 was related 
to immune response. With the development of tumor 
microenvironment research, immune cells were consid-
ered to play a complex and important role in tumor pro-
gression [30–33].

Based on the results of enrichment analy-
ses, we explored the immune infiltration levels by 
ssGSEA. We found a substantial negative connection 
of  SGSM1  expression with most immune cells. These 

Table 3  Validation on Cox regression analyses of OS in LGGs from CGGA database

WT Wild type, Mut mutant, Codel Codeletion, Non-codel Non-codeletion, HR Hazard ratio, CI Confidence interval
* P < 0.05, significant difference

Characteristics Univariate analysis Multivariate analysis

HR (95%CI) P value HR (95%CI) P value

Age

   ≤ 40 Reference

   > 40 1.256 (0.978–1.612 0.074

Gender

  Female Reference

  Male 0.840 (0.654–1.080) 0.174

WHO Grade

  G2 Reference Reference

  G3 2.808 (2.141–3.682)  < 0.001* 2.789 (2.082–3.734)  < 0.001*
IDH status

  WT Reference Reference

  Mut 0.428 (0.327–0.561)  < 0.001* 0.706 (0.528–0.944) 0.019*
1p/19q codeletion

  non-codel Reference Reference  < 0.001*
  codel 0.256 (0.179–0.364)  < 0.001* 0.338 (0.230–0.497)

SGSM1

  Low Reference Reference  < 0.001*
  High 0.425 (0.327–0.551)  < 0.001* 0.597 (0.451–0.791)

Fig. 12  Validation on Kaplan–Meier survival analyses of LGGs, WHO grade II, and III from CGGA database
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immune cells were high infiltrated in low SGSM1 expres-
sion tumors. We considered the excessive immune 
response and disorganized immune microenvironment 
contributed to the short survival of these patients [34–
36]. Among the immune cells, macrophages (P < 0.001) 
had the highest correlation with SGSM1 expression, and 
the infiltration level indicated the prognosis. Increased 
infiltration of macrophages in low SGSM1 expression 
tumors suggested that immune microenvironment was 
driven from anti-tumor state to immunosuppressive state 
due to the phenotypic transformation of tumor-associ-
ated macrophages, indicated a higher risk of tumor inva-
sion [37]. NK CD56bright cells (r = 0.483, P < 0.001) were 
positively correlated with  SGSM1  expression; thus, the 
infiltration of NK CD56bright cells in tumors was low. NK 
CD56bright cell had a strong ability to produce cytokines 
and mainly played an immunomodulatory role [38, 39]. 
This might lead to the dysregulation of tumor immuno-
surveillance and anti-tumor effect. Moreover, we revealed 
the negative correlation between SGSM1 expression and 
immune checkpoints, including PD1, PD-L1, CTLA4, 
LAG-3, TIM3, and CD48. SGSM1 potentially influenced 
tumor immunology, and could be a potential therapeutic 
target for immunotherapy rather than a simple prognos-
tic biomarker. The ratio of WHO grade II, IDH muta-
tion, and 1p/19q co-deletion were significantly higher in 
the high SGSM1 expression group. SGSM1 enhanced in 
subsets of WHO grade II, IDH mutation, and 1p/19q co-
deletion groups. It suggested that SGSM1 played a poten-
tial role in positive prognostic prediction in some way.

Then we analyzed the prognostic role of  SGSM1  in 
LGG patients. Cox regression analyses showed 
that  SGSM1  was an independent prognostic factor for 
LGGs in addition to traditional risk factors, includ-
ing age, WHO grade, and IDH status. By Kaplan–Meier 
survival analyses, we found that  SGSM1  expression 
was correlated to the OS. Low  SGSM1  expression was 
related to a poor outcome in LGGs, WHO grade II and 
grade III, respectively. The survival analyses and Cox 
regression were validated in the CGGA database. The 
nomogram prognosis model based on  SGSM1  expres-
sion level was further established to predict the 1-year, 
3-year, and 5-year OS of LGG. The C-index was 0.804 
(95%CI = 0.779–0.828). Time-dependent ROC curves 
and calibration plots illustrated the reliable predictive 
ability of the nomogram. Our model could provide a new 
point in outcome prediction and personalized assessment 
of LGG patients. However, there were still some limita-
tions in this study. Clinical samples should be included 
for validation. The regulatory mechanism and signaling 
pathway related to SGSM1 needed further investigation. 
The prediction model should be verified in future multi-
center studies.

Conclusion
In summary, SGSM1 was low expressed in LGGs, and the 
down-regulation was related to a poor prognosis. Our 
study has raised a new point of view that SGSM1 was a 
promising prognostic factor and a potential therapeu-
tic target for LGGs. Our future study will focus on the 
mechanism of SGSM1 in LGGs.
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