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Abstract 

Background:  Adult T-cell Leukemia/Lymphoma (ATLL) is a cancer disease that is developed due to the infection by 
human T-cell leukemia virus type 1. It can be classified into four main subtypes including, acute, chronic, smoldering, 
and lymphoma. Despite the clinical manifestations, there are no reliable diagnostic biomarkers for the classification of 
these subtypes.

Methods:  Herein, we employed a machine learning approach, namely, Support Vector Machine-Recursive Feature 
Elimination with Cross-Validation (SVM-RFECV) to classify the different ATLL subtypes from Asymptomatic Carriers 
(ACs). The expression values of multiple mRNAs and miRNAs were used as the features. Afterward, the reliable miRNA-
mRNA interactions for each subtype were identified through exploring the experimentally validated-target genes of 
miRNAs.

Results:  The results revealed that miR-21 and its interactions with DAAM1 and E2F2 in acute, SMAD7 in chronic, 
MYEF2 and PARP1 in smoldering subtypes could significantly classify the diverse subtypes.

Conclusions:  Considering the high accuracy of the constructed model, the identified mRNAs and miRNA are pro-
posed as the potential therapeutic targets and the prognostic biomarkers for various ATLL subtypes.
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Background
Adult T-Cell Leukaemia/Lymphoma (ATLL) is a type of 
cancer disease which is developed due to the infection 
by Human T-Cell Leukemia Virus type 1 (HTLV-1). It 
provides the aggressive malignant of CD4+ T lympho-
cytes [1]. In fact, the infection by HTLV-1 can lead to the 
progression of two main diseases including ATLL and 
HTLV-1-Associated Myelopathy/Tropical Spastic Para-
paresis (HAM/TSP).

HTLV-1 is an endemic virus with the prevalence 
of more than 20 million people worldwide in several 

regions, including, the East North of Iran, some parts of 
South America, the Caribbean, and Japan. ATLL devel-
ops in about 5% of the infected patients after a long dor-
mancy period which are called Asymptomatic Carriers 
(ACs) [2].

Two main viral proteins are the viral transactivating 
protein Tax-1 and HTLV-1 bZIP factor / HTLV-1 basic-
zipper factor (HBZ) which have critical roles in the devel-
opment of diseases. Tax-1 implicates the transformation 
and the proliferation of the infected T cells. However, 
ATLL cells often lose the Tax expression because of the 
epigenetic and genetic alterations in the proviral genome. 
Furthermore, HBZ protects the proliferation of ATLL 
cells [3, 4].
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ATLL is categorized into four main subtypes accord-
ing to Shimoyama classification: acute, chronic, smold-
ering, and lymphoma [5, 6]. The acute and lymphoma 
subtypes are characterized by aggressive behavior and 
poor prognosis. While the chronic and smoldering 
subtypes are specified by an indolent clinical course 
and different clinicopathologic features. The hepato-
splenomegaly and elevated lactate dehydrogenase are 
observed in the acute type and also less frequently in 
the lymphoma type [7]. In addition, the acute type is 
identified by unusual lymphocytes in the peripheral 
blood and the blood circulating. The chronic sub-
type usually causes leukocytosis with absolute lym-
phocytosis, skin rash, hypercalcemia, and moderate 
lymphadenopathy [8, 9]. The smoldering subtype is 
asymptomatic which is specified by less than 5% circu-
lating irregular lymphoid cells without organomegaly 
or hypercalcemia [10].

Several studies explored the possible pathogenesis 
mechanisms of the HTLV-1 infection in ACs toward 
ATLL and/or HAM/TSP [2, 11–15]. However, some 
of them considered ATLL disregarding the subtypes. 
In addition, the subtypes of ATLL have poor prog-
nosis due to the inherent chemoresistance and the 
intense immunosuppression. Moreover, the manifesta-
tions and cycles of the disease are heterogeneous [16]. 
Therefore, for identifying the subtypes of ATLL with 
the highest accuracy and also for selecting the con-
ventional treatments, the computational classification 
methods could be beneficial.

In this investigation, we utilized a machine learning 
method for classifying three subtypes of ATLL. It led 
to finding the powerful  mRNAs and miRNA classi-
fiers  between these subtypes and ACs. The identified 
classifiers could determine the pathogenesis routes 
from the infected HTLV-1 toward the development of 
each ATLL subtype.

Materials and methods
Dataset collection and preprocessing
We downloaded four microarray datasets, from the Gene 
Expression Omnibus (GEO) repository website. The 
datasets including GSE55851 [17] and GSE33615 [18] 
contain the genes expression in the whole blood or the 
Peripheral Blood Mononuclear Cells (PBMCs) of three 
subtypes including acute, chronic, and smoldering.

The GSE29332 [19] and GSE29312 [19] include the 
gene expression in the PBMCs of AC carriers. A total of 
29 acute, 23 chronic, and 10 smoldering ATLL subjects, 
as well as 37 ACs samples containing 15,565 common 
genes, were used for further analysis. Moreover, to find 
the miRNA classifiers, the datasets were employed with 
the accession numbers GSE46345 [20] and GSE31629 
[18]. They contain the miRNA expressions of ACs and 
ATLL subjects. A total of 12 ACs and 40 ATLL samples 
including the expression of 549 miRNAs were involved 
in the analysis. The characteristics of the datasets are 
specified in Table  1. To remove the batch effect among 
the datasets, the function of removeBatchEffect in the 
Limma package was employed [21]. The data were ran-
domly divided into the train and test sets in Python 
(65/35).

Support vector machine‑recursive feature elimination 
with cross‑validation (SVM‑RFECV)
Here, to determine the specific features that can clas-
sify the various ATLL subtypes, SVM-RFECV based on 
the tenfold cross-validation was  employed [22]. RFE is 
a wrapper variable selection approach that utilizes the 
interior filter-based variable selection. SVM-RFE is prin-
cipally a backward elimination manner, in which the 
top-ranked features are the most relevant conditional var-
iables on the special ranked subset in the model. The top-
ranked features in the final iteration of SVM-RFE are the 
substantial informative variables and the bottom-ranked 
features are the insubstantial ones that can be removed 

Table 1  Characteristics of datasets included in the analysis

Dataset ACs Number of Samples
GSE29312 Illumina HumanHT-12 V3.0 expression beadchip ACs: 20

GSE29332 Illumina HumanWG-6 v3.0 expression beadchip ACs: 17

GSE46345 Agilent-021827 Human miRNA Microarray (V3) ACs: 12

ATLL
GSE33615 Agilent-014850 Whole Human Genome Microarray 4x44K G4112F Acute: 26

Chronic: 20
Smouldering: 4

GSE55851 Agilent-026652 Whole Human Genome Microarray 4x44K v2 Acute: 3
Chronic: 3
Smouldering: 6

GSE31629 Agilent-019118 Human miRNA Microarray 2.0 G4470B ATLL: 40
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[23].  SVM-RFECV comprises five steps: 1) Training the 
train set by the tenfold cross-validation SVM; 2) Order-
ing the variables using the weights of the obtained classi-
fier; 3) Eliminating the variables with the smallest weight; 
4) Updating the training dataset according to the chosen 
variables; 5) Repeating the steps with the training set lim-
ited to the remaining variables [24]. We employed SVM-
RFECV algorithm in Python 3.9.

Identification of differentially expressed genes (DEGs)
To determine differentially expressed genes between each 
ATLL subtype and the AC samples, the Limma pack-
age in R environment programming was employed [25]. 
Benjamini-Hochberg FDR adjusted p-values < 0.05 and 
logFC = |5| were chosen as the criteria for exploring the 
remarkable DEGs.

Determination of target genes of miRNAs
To find the experimentally validated target genes of 
miRNAs, miRTarBase database [15, 26] was used. 
The network of miRNA-target genes was visualized  
by Cytoscape 3.6.1.

Pathway enrichment analysis
In order to pathway enrichment analysis of the identified 
classifier genes for each subtype, the ToppGene database 
was employed [27]. The terms with adj.P.value < 0.05 were 
determined as statistically remarkable.

Results
Determination of DEGs
A total of 5327, 5525, and 5185 DEGs were found among 
ACs with ATLL_acute, ATLL_chronic, and ATLL_
smoldering, respectively (Supplementary data file 1). 
Afterward, the unique DEGs belonging to each subtype 
were explored. The Venn diagram shows 521, 594, and 
187 unique DEGs for ATLL_chronic, ATLL_acute, and 
ATLL_smoldering, respectively (Fig.  1). These DEGs 
were considered the selected variables for each subtype 
(Supplementary data file 2). Therefore, the matrices con-
taining the expression values of the selected features for 
each sample were constructed for machine learning.

Classification of ATLL subtypes using SVM‑RFECV
The SVM-RFECV analysis was utilized to find the fea-
tures that could classify the various ATLL subtypes 
from ACs. For this purpose, unique DEGs for each 

Fig. 1  Venn diagram containing DEGs of acute, chronic, and smoldering ATLL subtypes
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subtype were used in the train data. To validate the SVM 
model, the test sets were under-investigated. The accu-
racy results and the selected features are mentioned 
in Table 2. A total of 27, 9, and 32 genes were found as 
the best classifiers for ATLL_acute, ATLL_chronic, and 
ATLL_smoldering, respectively. Furthermore, the con-
fusion matrix and the classification reports for the test 
sets are visualized in Fig.  2a-f. The results showed that 
the selected features could significantly classify the vari-
ous subtypes of ACs. The accuracy for the test set was 
found as 1.00, 0.95, and 0.95 for the ATLL_acute, ATLL_
chronic, and ATLL_smoldering, respectively. In order to 
find the activated pathways by the genes  classifiers  for 
each subtype, the pathway enrichment analysis was per-
formed. The involvement of each gene in each pathway 
and also the previously reported function of the genes in 
the ATLL progression were mentioned in Supplementary 
data file 3.

The genes classifiers for ATLL_acute were enriched in 
Glutathione metabolism, Urea cycle and the metabolism 
of amino groups, beta-Alanine metabolism, Cysteine 
and methionine metabolism, sulfate activation for sul-
fonation, CXCR4-mediated signaling events, Metabo-
lism of polyamines, Amino Acid metabolism, Metabolic 
pathways, Pathways in cancer, Hypoxia and p53 in the 
Cardiovascular system, Interferon Signaling, the planar 
cell polarity Wnt signaling, Noncanonical Wnt signal-
ing pathway, Expression of cyclins regulates progression 
through the cell cycle by activating cyclin-dependent 
kinases.

In addition, the  genes classifiers  for ATLL_chronic 
in tRNA modification in the nucleus and cytosol, TGF-
beta Receptor Signalling in Skeletal Dysplasias, tRNA 
processing, altered transforming growth factor-beta 
Smad dependent signaling, Cell to Cell Adhesion Sign-
aling, CD40L Signaling Pathway, Cytokine Signaling 

Table 2  List of selected features and accuracy of model

Results ATLL_acute ATLL_chronic ATLL_smouldering
Subtypes

Features IDH2,PTGER3,TM2D2,DAAM1,MXD1,RALB,TSC22
D4,FRY,NRSN2,SPINK2,GBP3,PAPSS1,SRM,HYI,PDI
A4,STON1,E2F2,NDST2,RNF35,UBQLN1,FHL2,ND
UFAF1,SLC39A11,WDR41,FLVCR1,NINJ2,SMS,XAF1

CD40LG,MAP1LC3C,SMAD7,PUS
1,RORC,ADAMTS10,TRMT61A,CC
T5,VCL

CDCA7L,HSPA1A,MCAT,SLC25A21,CHN1,IFI44,MT1
G,SLC6A20,CSRNP1,INPP5F,MYEF2,STMN1,NCF2,NO
SIP,CCDC50,ENO3,LAG3,RELA,WWC3,CCL3,FOSL2,L
SR,RNASEH2C,BHLHE40,DUSP23,KCNH5,PARP1,TTN
,CD70,HOXB2,MAF,SAP30

Accuracy 0.975 (0.075) 0.942 (0.118) 1.00 (0.00)

Fig. 2  The confusion matrix (a-c) and classification reports (d-f) for ATLL_acute, ATLL_chronic, and ATLL_smoldering subtypes
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in Immune system, Hypoxia response via HIF activa-
tion, Primary immunodeficiency, MAP2K and MAPK 
activation, IFN-gamma pathway, Integrins in angio-
genesis, TGF-beta receptor signaling, IL4-medi-
ated signaling events, Signaling events mediated by 
VEGFR1 and VEGFR2, Signaling by Interleukins, Non-
genomic actions of 1,25 dihydroxy vitamin D3, Onco-
genic MAPK signaling, Ferroptosis, Folding of actin by 
CCT/TriC.

For ATLL_smoldering, the classifiers were enriched 
in IL-18 signaling pathway, Chaperones modulate 
interferon Signaling Pathway, Rac 1 cell motility sign-
aling pathway, NAD Metabolism in Oncogene-Induced 
Senescence and Mitochondrial Dysfunction-Asso-
ciated Senescence, fMLP induced chemokine gene 
expression in HMC-1 cells, Osteoclast differentiation, 
CAMKK2 Pathway, RAC1/PAK1/p38/MMP2 Pathway, 
MAPK Signaling Pathway, Th1 and Th2 cell differenti-
ation, NF-kappa B signaling pathway, MAPK signaling 
pathway, HIF-1 signaling pathway, Toll-like receptor 
signaling pathway, Acetylation and Deacetylation of 
RelA in The Nucleus, Apoptosis, NAD+ metabolism, 
Apoptotic Signaling in Response to DNA Damage, 
Downregulation of SMAD2/3:SMAD4 transcriptional 
activity, Fatty acid biosynthesis, D4-GDI Signaling 
Pathway, Metallothioneins bind metals, NRF2 path-
way, 3-phosphoinositide degradation, TFs Regulate 
miRNAs related to cardiac hypertrophy, Metabolism 
of nitric oxide, VLDL interactions, Pathways of nucleic 
acid metabolism and innate immune sensing, Circa-
dian rhythm pathway, Transcriptional misregulation in 
cancer, Signaling events mediated by HDAC Class I.

Finding miRNA‑gene classifier between ATLL subtypes 
and ACs
As there are no reliable datasets to investigate the 
miRNA expression through ATLL subtypes, we consid-
ered miRNA expression in ATLL, generally. The  SVM_
RFECV analysis revealed the miR-21 as the best miRNA 
with an accuracy of 100% for classifying the ATLL from 
ACs. The confusion matrix and classification report  
are  depicted in Fig.  3a, b. The target genes of this miR-
21 were then found in the miRTarBase database (Sup-
plementary data file 4). Next, the common genes were 
identified between the target genes and the classifier ones 
in each subtype. As a result, DAAM1 and E2F2 in acute, 
SMAD7 in chronic, MYEF2 and PARP1 in smoldering 
subtypes were specified (Fig. 4).

Discussion
ATLL cancer is considered one of the extremely aggres-
sive T cell non-Hodgkin lymphoma variants. Four clinical 
variants of ATLL have been specified: acute, lymphoma-
type (lymphomatous), chronic, and smoldering. Shimoy-
ama’s criterion is limited for classifying some patients 
in the lack of a purposeful immunophenotypic precisely 
and clonal analysis of peripheral blood [28]. For example, 
HTLV-1 carriers without ATLL can contain up to 5% of 
blood-circulating atypical cells, which causes clinicians to 
classify the lymphomatous ATLL with circulating atypi-
cal cells as acute. Moreover, it has been reported that 
ATLL patients in different regions respond differently to 
accessible therapies. For instance, first-line zidovudine 
interferon-α (AZT-IFN) can be beneficial for the aggres-
sive leukemic ATLL patients in the United States [28]. 
Moreover, AZT-IFN is a first-line choice for patients with 
non-bulky aggressive ATLL and non-lymphomatous. 

Fig. 3  The (a) confusion matrix and (b) classification reports for ATLL_miRNA
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It can also be the best election for the patients with 
chronic-type ATLL. On the other hand, chemotherapy is 
a preferred option for the lymphomatous. It is the favored 
etoposide-based regimen for patients with aggressive 
ATLL in Latin America. While AZT-IFN is a well first-
line choice for the acute subtype [29].

A recent study on Japanese patients disclosed the 
unsatisfactory prognosis of the acute ATLL type and the 
worse prognosis of the smoldering type [30]. As a result, 
the accurate classification of ATLL subtypes could be 
applied for the proper treatments. ATLL subtypes could 
be categorized into molecularly distinguished subsets 
with various prognoses. Moreover, genetic profiling 
could contribute to obtain the better management and 
prognostication of ATLL patients [31]. Each ATLL sub-
type can carry diverse genomic alterations and different 
clinical courses. In a recent study, the total structural var-
iations, mutations, driver alterations, and abnormal CN 
segments were explored in the aggressive (acute) and the 
indolent (chronic and smoldering) subtypes [32]. In this 
study, we concentrate on the expression values of cod-
ing and non-coding RNAs. We applied the support vec-
tor machine-recursive feature elimination as a machine 
learning approach to classify the ATLL subtypes from 
ACs samples. Then, we identified the potential prognos-
tic targets.

Acute ATLL includes the lymphoma cells that persist 
in the blood. The main characteristic of this subtype 
is its aggressive biology, with a median survival of only 
4–6 months. The disease progresses rapidly in the bones, 
skin, lymph nodes, spleen, and liver. DAAM1 and E2F2 
are two specific classifier genes for the acute ATLL. 
DAAM1 encodes a protein that contains two FH domains 
pertaining to the FH protein subfamily with a role in the 
cell polarity. It is likely acts as a scaffolding protein for the 
Wnt-induced assembly of a disheveled (Dvl)-Rho com-
plex. It also boosts the nucleation and elongation of the 

new actin filaments and regulates the cell growth by the 
microtubules’ stabilization. Moreover, it has been shown 
that DAAM1 can help the migration and the invasion of 
cancerous cells. Also, it can promote tumor advancement 
in Hepatocellular Carcinoma as well as breast and ovar-
ian cancers [33–35].

The E2F2 protein is a transcription factor that has 
a substantial function in controlling the action of the 
tumor suppressor proteins and the cell cycle. Also, it is 
considered a target for the transforming proteins of the 
small DNA tumor viruses [36]. Particularly, E2F2 binds to 
the RB1 in a cell-cycle-dependent manner. RB1 mediates 
the control of the cell cycle through binding the E2F2 and 
also suppressing the expression from the E2F2-depend-
ent promoters. It is concluded that E2F2 and DAAM1 
could be considered for the prognosis of the acute ATLL 
subtype.

Another subtype of ATLL is chronic which is charac-
terized by slow growth with an effect on the lungs, skin, 
lymph nodes, spleen, and liver. A higher number of T 
cells and lymphocytes in the blood are the signs of this 
subtype. SMAD7 encodes a nuclear protein that binds 
the E3 ubiquitin ligase SMURF2. After binding, this 
complex translocates to the cytoplasm and it can inter-
act with TGFBR1 which results in the degradation of 
both the encoded protein and TGFBR1. The relationship 
between the expression of SMAD7 and lymphatic metas-
tasis in gastric cancer has been reported [37]. Moreover, 
the survival of cancer cells and apoptosis were induced 
after SMAD7 transduction. The upregulation of SMAD7 
interdicts the proliferation, boosts apoptosis, and inacti-
vates the Smad signaling [38].

Smoldering ATLL similar to the chronic subtype grows 
slowly and affects the lungs or skin. It causes unusual T 
cell counts in the blood. MYEF2 and PARP1 are two clas-
sifier genes that we identified for the smoldering subtype. 
MYEF2 is the myelin expression factor 2, which acts as 

Fig. 4  The miR-21-gene target interaction for various ATLL subtypes
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a transcription suppressor of the myelin basic protein 
(MBP). MYEF2 is a downstream target that is modulated 
by the Wnt/β-catenin pathway. The genes regulated by 
Wnt/β-catenin can help for identifying the pathogen-
esis mechanisms of cancer and therapies [39]. Further-
more, the possible carcinogenesis role of MYEF2 has 
been proposed; however, its performance in cancer is still 
unknown and it should be evaluated in further studies.
PARP1 encodes a chromatin-associated enzyme, 

namely, poly (ADP-ribosyl) transferase, which rectifies 
several nuclear proteins by poly (ADP-ribosyl)ation. The 
modification relies on DNA and is implicated in the regu-
lation of different significant cellular processes like the 
proliferation and the transformation of the tumor. Also, 
the regulation of the molecular events is involved in the 
cell recovery from DNA damage [40].

PARP1 is a coactivator for the HTLV-1 transcription 
activator Tax. It constitutes the active complexes on the 
promoter [41]. Furthermore, the expression of PARP1 
is related to a progressive course of indolent mantle cell 
lymphoma. Therefore, it was proposed that PARP1 could 
be used for the initial diagnostic studies as a negative pre-
dictor [42].

Moreover, SVM-RFECV was employed for finding a 
promising classifier of miRNA. MiR-21 was identified 
as the best classifier between ATLL and ACs. It involves 
the acceleration of tumorigenesis and the onset of some 
tumor types [43]. It can target many genes as well as the 
above-mentioned genes which are involved in the pro-
gression of cancer and tumor. Therefore, its function 
should be surveyed in a complicated network of genes 
and the effect of other miRNAs.

Our study has some limitations. It is known that the 
chronic type is divided into favorable and unfavorable 
types based on some laboratory findings. The unfavora-
ble chronic type is regarded as aggressive ATLL as well 
as the acute type. There are no expression data regarding 
these two groups, so we had to consider chronic ATLL 
generally regardless of subgrouping. Moreover, the iden-
tified classifiers should be experimentally validated in a 
large cohort containing the samples from various ATLL 
subtypes.

Conclusion
In summary, we identified the mRNAs and miRNA clas-
sifiers which could accurately classify the various ATLL 
subtypes vs. ACs. The outcomes disclosed the promising 
classifiers: SMAD7 in chronic, both MYEF2 and PARP1 
in smoldering, and also both DAAM1 and E2F2 in acute 
subtypes. Moreover, miR-21 classified ATLL from ACs. 
However, further studies should be carried out to assess 
these classifiers, experimentally.
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