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Abstract 

Background:  Prognostic indicators, treatments, and survival estimates vary by cancer type. Therefore, disease-
specific models are needed to estimate patient survival. Our primary aim was to develop models to estimate sur-
vival duration after treatment for skeletal-related events (SREs) (symptomatic bone metastasis, including impending 
or actual pathologic fractures) in men with metastatic bone disease due to prostate cancer. Such disease-specific 
models could be added to the PATHFx clinical-decision support tool, which is available worldwide, free of charge. Our 
secondary aim was to determine disease-specific factors that should be included in an international cancer registry.

Methods:  We analyzed records of 438 men with metastatic prostate cancer who sustained SREs that required treat-
ment with radiotherapy or surgery from 1989–2017. We developed and validated 6 models for 1-, 2-, 3-, 4-, 5-, and 
10-year survival after treatment. Model performance was evaluated using calibration analysis, Brier scores, area under 
the receiver operator characteristic curve (AUC), and decision curve analysis to determine the models’ clinical utility. 
We characterized the magnitude and direction of model features.

Results:  The models exhibited acceptable calibration, accuracy (Brier scores < 0.20), and classification ability 
(AUCs > 0.73). Decision curve analysis determined that all 6 models were suitable for clinical use. The order of feature 
importance was distinct for each model. In all models, 3 factors were positively associated with survival duration: 
younger age at metastasis diagnosis, proximal prostate-specific antigen (PSA) < 10 ng/mL, and slow-rising alkaline 
phosphatase velocity (APV).
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Introduction
In the United States, prostate cancer is the most com-
mon diagnosed malignancy and the second leading cause 
of cancer death in men [1, 2]. The clinical treatment 
decision-making process is challenging because prostate 
cancer is a complex disease. Several tumor markers and 
biomarkers are associated with prognosis. For example, 
proximal prostate-specific antigen (PSA) (defined as the 
most recent value measured at least 6  months before 
developing metastasis) < 10  ng/mL is an independent 
predictor of metastasis-free survival among men with 
biochemical recurrence after undergoing radical pros-
tatectomy [3]. In addition, the change in alkaline phos-
phatase concentration over time, alkaline phosphatase 
velocity (APV), is a prognostic biomarker associated with 
overall survival in men with castration-resistant prostate 
cancer [4, 5]. Metwalli et  al. [5] found that higher APV 
was also an independent predictor of overall survival, as 
well as for bone metastasis–free survival in patients with 
castration-resistant prostate cancer, where APV ≥ 50 
(upper quartile) is “quick rising”, APV of 0 is “no rising”, 
and all other APV values are “slow rising.” High APV 
(uppermost quartile of velocity) is also predictive of dis-
tant metastasis–free survival in patients who have under-
gone radical prostatectomy and experienced biochemical 
recurrence [4].

The approach to treating men with metastatic bone 
disease due to prostate cancer requires balanced con-
sideration of clinical benefits, life expectancy, comor-
bidities, quality of life, and the risk of adverse effects. 
Clinical practice guidelines [6] published recently by the 
Musculoskeletal Tumor Society recommend that phy-
sicians consider using clinical support tools, such as 
PATHFx, available worldwide at no cost at www.​pathfx.​
org. The tool is designed to estimate a patient’s survival 
trajectory by estimating survival after treatment for a 
skeletal-related event (SRE), which is defined as patho-
logic fracture; spinal cord compression requiring surgical 
treatment; or nonsurgical treatment, including radiother-
apy, cryotherapy, or radiofrequency ablation. PATHFx 
currently estimates the likelihood of survival at 1, 3, 6, 12, 
18 and 24 months after surgical or nonsurgical interven-
tion or an SRE [7–11]. However, patients with metastatic 
prostate cancer often live much longer than 24  months 
after an SRE. For this reason, disease-specific models 

should be developed to augment—or take the place of—
the generic models currently powering the PATHFx 
decision-making support tool. Its use supports shared 
decision making by ensuring that treatment strategies 
align with each patient’s personal survival trajectory and 
functional goals.

PATHFx has been externally validated in several cent-
ers worldwide, continual advances in the treatment of 
patients with advanced cancer require that the models 
be updated regularly. For this reason, we updated the 
six PATHFx models using recent data obtained from 
patients undergoing contemporary systemic therapy, 
including targeted agents, and immunotherapy [12]. Val-
idation data for this study were derived from the Inter-
national Bone Metastasis Registry, which helps ensure 
that the updated models are applicable to various patient 
populations worldwide. This commitment to lifecycle 
management ensures that PATHFx remains applica-
ble as treatment philosophies change and new therapies 
become available, thereby providing clinicians with the 
most current, broadly applicable tool to estimate survival 
in this patient population.

Currently, the PATHFx tool groups cancer diagnoses 
according to historical data on survival rates. Because 
prognostic indicators, treatment protocols, and survival 
estimates vary widely by cancer type, it may be beneficial 
to develop disease-specific survival models. Such mod-
els would make use of prognostic information unique to 
men with metastatic prostate cancer, such as proximal 
PSA and APV.

Our primary purpose was to develop models to esti-
mate the duration of survival after treatment for skele-
tal-related events (SREs) in men with metastatic bone 
disease due to prostate cancer. Such models could inform 
the PATHFx clinical decision support tool, which cur-
rently groups cancer types according to historical sur-
vival data. Our secondary purpose was to determine 
disease-specific factors that should be included in an 
international cancer registry.

Methods
Guidelines
This retrospective prognostic classification study fol-
lowed the Transparent Reporting of a Multivariable 
Prediction Model for Individual Prognosis or Diagnosis 

Conclusions:  We developed models that estimate survival duration in patients with metastatic bone disease due to 
prostate cancer. These models require external validation but should meanwhile be included in the PATHFx tool. PSA 
and APV data should be recorded in an international cancer registry.
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guidelines [13] and the Guidelines for Developing and 
Reporting Machine Learning Predictive Models in Bio-
medical Research [14].

Data source and patient selection criteria
The study population comprised 29,000 men enrolled 
in the institutional review board–approved Center for 
Prostate Disease Research (CPDR) Multicenter National 
Database Program [15]. We reviewed the records of men 
who sustained a SRE due to metastatic prostate cancer 
and subsequently required treatment with radiotherapy 
or surgery between 1989 and 2017. There were 1,404 men 
with prostate cancer that metastasized to bone in the 
data set. Of these, 438 patients had sufficient information 
to calculate APV, defined as the slope of the linear regres-
sion line of alkaline phosphatase values obtained after the 
diagnosis of metastatic bone disease, plotted against time 
in years.

Outcome
We developed six models designed to estimate the likeli-
hood of survival at 1, 2, 3, 4, 5, and 10 years after treat-
ment of an SRE.

Demographic, clinical, and pathologic features
Consistent with previous methods of using APV as 
a prognostic feature, and because of the strong skew 
and non-normality of the APV distribution, APV was 
binned into the uppermost quartile (“quick-rising”) of 
all observed values and then compared with the lower 
3 quartiles combined (“slow-rising”) and zero value 

(“no-rising”) [4, 5]. Proximal PSA, defined as PSA con-
centration at the time of diagnosis of metastatic bone 
disease, was missing in 11% of these records. Data for 
all other features were complete. For each consecutive 
time point, the number of patients decreased because 
of censoring. Patient demographic and clinical data 
extracted for analysis were as follows: self-reported race 
(black or white/other), presence of comorbidities, age at 
first known bone metastasis, proximal PSA, APV values, 
method of local treatment of the primary tumor (radio-
therapy or surgery), adjuvant therapy (radiotherapy, 
chemotherapy, and hormonal therapy) and date of death.

Categorical and continuous features included in the 
models and the proportions of missing data are listed 
in Tables 1 and 2. We used Bayes factor (BF) analysis to 
compare the cohorts. BF analysis considers the strength 
of evidence supporting or contradicting the study 
hypothesis. The analysis is categorized by the following: 
BF ≥ 100 indicates strong supporting evidence for the 
alternative hypothesis; BF < 100 indicates strong support-
ing evidence for the null hypothesis; and BF of approxi-
mately 0 indicates no probable difference between the 2 
groups [16, 17].

Model development
We selected gradient boosting machine (GBM) mod-
eling because it is a decision tree machine learning 
technique that builds an ensemble of shallow and weak 
trees or learners in succession (rather at than all at once 
as in random forest machine learning), so each tree 
learns and improves from the previous iteration. GBM 

Table 1  Continuous variables contained within the train and test sets

PSA prostate-specific antigen
* P values determined using Pearson’s chi-squared test

Variable by Time Point Median (IQR) P value* Bayes Factor

Whole Cohort Train Set Test Set

Proximal PSA

  1-Year 33.4 (200) 38.6 (202) 23.7 (153) 0.37 0.15

  2-Year 35.7 (205) 30.5 (147) 51.7 (294) 0.59 0.14

  3-Year 36.7 (211) 34.0 (205) 46.2 (238) 0.38 0.15

  4-Year 36.8 (217) 36.8 (232) 37.4 (202) 0.43 0.15

  5-Year 39.6 (236) 42.8 (232) 31.5 (242) 0.54 0.14

  10-Year 42.8 (252) 44.5 (275) 40.7 (131) 0.21 0.17

Age

  1-Year 71.0 (12.7) 71.1 (12.6) 70.1 (12.9) 0.41 0.19

  2-Year 71.0 (12.7) 71.2 (12.6) 70.6 (12.4) 0.96 0.13

  3-Year 71.0 (12.7) 71.0 (12.9) 71.1 (11.7) 0.95 0.13

  4-Year 71.0 (12.8) 71.0 (12.7) 71.6 (13.4) 0.32 0.22

  5-Year 71.0 (12.9) 70.8 (12.7) 71.5 (13.1) 0.46 0.18

  10-Year 71.0 (13.0) 70.8 (12.6) 72.5 (13.7) 0.21 0.32
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Table 2  Categorical variables contained within the train and test sets

Variable by Time Point Whole Cohort Train Set Test Set P value* Bayes Factor

Model Features
  Comorbidity Yes No Yes No Yes No
    1-Year 145 293 118 232 27 61 0.68 0.20

    2-Year 144 286 112 232 32 54 0.49 0.26

    3-Year 143 283 119 221 24 62 0.26 0.39

    4-Year 139 278 115 218 24 60 0.36 0.31

    5-Year 137 265 108 213 29 52 0.81 0.20

    10-Year 127 246 103 195 24 51 0.78 0.21

  Hormone therapy/chemotherapy
    1-Year 282 156 222 128 60 28 0.48 0.25

    2-Year 276 154 230 114 46 40 0.03 2.55

    3-Year 272 154 217 123 55 31  > 0.99 0.19

    4-Year 266 151 213 120 53 31 0.98 0.19

    5-Year 260 142 208 113 52 29  > 0.99 0.19

    10-Year 243 130 197 101 46 29 0.52 0.27

  Treatment-naïve
    1-Year 88 350 76 274 12 76 0.12 0.63

    2-Year 87 343 66 278 21 65 0.35 0.28

    3-Year 87 339 69 271 18 68  > 0.99 0.16

    4-Year 86 331 66 267 20 64 0.51 0.23

    5-Year 82 320 66 255 16 65 0.99 0.16

    10-Year 77 296 60 238 17 58 0.75 0.19

  Radiotherapy
    1-Year 68 370 52 298 16 72 0.55 0.19

    2-Year 67 363 48 296 19 67 0.09 0.76

    3-Year 67 359 54 286 13 73 0.99 0.14

    4-Year 65 352 54 279 11 73 0.59 0.17

    5-Year 60 342 47 274 13 68 0.89 0.15

    10-Year 53 320 41 257 12 63 0.76 0.17

  APV of 0
    1-Year 188 250 154 196 34 54 0.43 0.28

    2-Year 183 247 142 202 41 45 0.34 0.34

    3-Year 180 246 149 191 31 55 0.24 0.44

    4-Year 176 241 144 189 32 52 0.47 0.27

    5-Year 172 230 138 183 34 47 0.97 0.20

    10-Year 156 217 123 175 33 42 0.77 0.22

  Quick-rising APV
    1-Year 111 327 86 264 25 63 0.55 0.22

    2-Year 109 321 90 254 19 67 0.52 0.22

    3-Year 109 317 82 258 27 59 0.21 0.44

    4-Year 108 309 88 245 20 64 0.73 0.19

    5-Year 106 296 87 234 19 62 0.60 0.21

    10-Year 103 270 86 212 17 58 0.35 0.32

  Slow-rising APV
    1-Year 139 299 110 240 29 59 0.88 0.19

    2-Year 138 292 112 232 26 60 0.78 0.19

    3-Year 137 289 109 231 28 58  > 0.99 0.18

    4-Year 133 284 101 232 32 52 0.22 0.46

    5-Year 124 278 96 225 28 53 0.50 0.26
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modeling trains models in a gradual, additive, and 
sequential manner, which strengthens the final product 
[18, 19]. The final model is built on the strength of pre-
vious, smaller predictors.

We used Python, version 3.7.4 (Python Software 
Foundation, Beaverton, OR) to develop the models. For 
each model, we split the data 80/20 into train and test 
groups and a further 80/20 split of the train group into 
train and validation sets stratified by the binary out-
come feature across all groups. Data were shuffled to 
create random order before splitting into listed groups. 
Because the number of patients at each time point dif-
fered, the exact number of records in the train, valida-
tion, and test groups vary by time point and cohort. 
Data types were changed to integer, float, and object 
as applicable. Missing data were imputed using the 
multiple imputation by chained equations algorithm 
from the IterativeImputer package. Our data were pre-
processed to scale using the MinMaxScaler package of 
sklearn.preprocessing. Six GBM models were created, 1 
for each of the 6 survival time points, using the train set 
and the GradientBoostingClassifier package in sklearn.
ensemble.

Feature selection
Because of our limited data set, we made all categori-
cal features binary. This allowed for a more transpar-
ent analysis of results. We performed feature selection 
using Boruta Random Forest algorithm; all features were 
included. Features were further characterized for magni-
tude and direction of each feature’s association with the 
outcome (patient survival) using the local interpretable 
model–agnostic explanations (LIME) package in R soft-
ware for the models [20].

Model regulation
GBM models continue improving to minimize error 
at the risk of overfitting. For internal validation, we 
used a cross-validated grid search to direct our choice 
of parameters using GridSearch CV within sklearn.
model_selection package (Python Software Founda-
tion). Our scoring measure of interest was the AUC. 
For each model, we selected parameters that produced 
the highest AUC in the validation set. Parameters of 
interest were learning rate, number of estimators, max-
imum depth of tree, minimum number of samples per 
node to be considered for splitting, minimum number 

Table 2  (continued)

Variable by Time Point Whole Cohort Train Set Test Set P value* Bayes Factor

    10-Year 114 259 89 209 25 50 0.66 0.23

  Black
    1-Year 92 346 77 273 15 73 0.38 0.25

    2-Year 90 340 74 270 16 70 0.66 0.18

    3-Year 90 336 65 275 25 61 0.06 1.16

    4-Year 88 329 72 261 16 68 0.71 0.18

    5-Year 83 219 70 251 13 68 0.32 0.30

    10-Year 78 295 64 234 14 61 0.71 0.19

  White or other race
    1-Year 346 92 273 77 73 15 0.38 0.25

    2-Year 340 90 270 74 70 16 0.66 0.18

    3-Year 336 90 275 65 61 25 0.06 1.16

    4-Year 329 88 261 72 68 16 0.71 0.18

    5-Year 319 83 251 70 68 13 0.32 0.30

    10-Year 295 78 234 64 61 14 0.71 0.19

Outcome Variable
  Survival duration
    1-Year 405 33 324 26 81 7  > 0.99 0.10

    2-Year 330 100 264 80 66 20  > 0.99 0.16

    3-Year 269 157 215 125 54 32  > 0.99 0.19

    4-Year 223 194 178 155 45 39  > 0.99 0.19

    5-Year 181 221 145 176 36 45  > 0.99 0.20

    10-Year 71 302 57 241 14 61  > 0.99 0.16
* P values determined using Pearson’s chi-squared test
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of samples required in a terminal node, and subsample 
percentage included for each tree.

Performance assessment
We created predictive values for each model by using 
each corresponding test set. First, calibration plots 
were used to visualize the concurrence of the pre-
dicted probabilities with the observed frequencies in 
the data set. Then, discriminatory ability was deter-
mined by estimating the AUC. Next, Brier scores were 
used to determine overall accuracy of the predictions. 
The Brier score measures distance between the actual 
outcome and the predicted probability assigned to the 
outcome for each observation, where the best possible 
Brier score for accuracy is 0 and the worst is 1 [21, 22]. 
Finally, we determined whether the models possessed 
clinical utility by using decision curve analysis [23, 24], 
as described previously in this patient population [12].

Results
Participants
Continuous and categorical features for the train and 
test sets are listed in Tables  1 and 2, respectively. As 
expected, we found no difference between continuous 
features in the train and test sets (BF of approximately 
0) (Table  1). When comparing categorical features, 
we found no difference between the 2 groups (BF of 
approximately 0) for treatment type and survival (yes/
no) at any time point (Table 2).

Model development and validation
The AUC was between 0.73 and 0.86 for all 6 models 
(Table  3). Brier scores were < 0.20 and demonstrated the 
model’s predictions were accurate. The relative influence 
table for the 6 models in Fig. 1 shows the degree of influ-
ence for each feature on the overall model. Proximal PSA 
and patient age at the time of first-known SRE consist-
ently had the most influence across all models. Treatment 
method and APV became increasingly influential with the 
later time period models.

Global application (Model‑level interpretation)
In earlier survival estimate models, proximal PSA and age 
at diagnosis had more influence on the outcome variable. 
Notably, APV was an important feature at all time points; 
quick-rising APV was more influential in later survival 
estimate mode. Unexpectedly, the method of treating the 
primary disease also had strong influence; however, treat-
ment-naïve status was more influential on survival than 
was radiotherapy and/or chemotherapy.

Local application (Patient‑level interpretation)
To trust and apply models correctly, clinicians must be able 
to interpret them at the patient level [20]. The positive and 
negative directionality of each model is shown in Fig.  1. 
Overall, features positively associated with survival were 
younger age at metastasis diagnosis, proximal PSA < 10 ng/
mL, slow-rising APV, no-rising APV, radiotherapy treat-
ment, and hormonal or chemotherapy treatment (Fig.  1). 
Features negatively associated with survival were older age 
at metastasis diagnosis, proximal PSA > 10  ng/mL, quick-
rising APV values, and being treatment-naïve (Fig. 1). The 
patient-level interpretations were consistent with global-
level model application.

Clinical utility
Decision curve analysis showed that physicians may 
achieve better outcomes by using the 6 models described 
above, rather than assuming all will survive, or none will 
survive for 1, 2, 3, 4, 5, and 10 years, respectively (Fig. 2). 
Decision curve analysis measures the net benefit of using 
a clinical support tool across different threshold probabili-
ties defined as the point of equipoise when considering 2 
courses of treatment (e.g., nonsurgical vs. surgical for short-
term survival estimates, less invasive vs. more invasive for 
longer-term estimates). Low-threshold probabilities are 
associated with healthier patients, whereby physicians have 

Table 3  Summary of the accuracy (AUC) and discriminatory 
ability (Brier score) of the predictive model at each time period

AUC​ area under the receiver operating characteristic curve, CI confidence 
interval

Model AUC (95% CI) Brier Score (95% CI)

1-Year 0.76 (0.61–0.91) 0.07 (0.02–0.12)

2-Year 0.73 (0.60–0.85) 0.17 (0.12–0.22)

3-Year 0.86 (0.79–0.94) 0.19 (0.16–0.21)

4-Year 0.82 (0.73–0.91) 0.20 (0.18–0.22)

5-Year 0.79 (0.69–0.89) 0.19 (0.15–0.23)

10-Year 0.79 (0.65–0.93) 0.14 (0.09–0.19)

Fig. 1  A-F This figure shows both the relative influence of each feature and whether the feature has a positive or negative association with survival. 
The directionality (to support or contradict the outcome of interest) of each level of the model features is ranked by average weight of feature level 
across all cases. Blue bars (positive feature weight) are associated with features that are associated with survival; red bars (negative feature weight) 
represent features that are negatively associated with survival at (A) 1 year, (B) 2 years, (C) 3 years, (D) 4 years, (E) 5 years, and (F) 10 years

(See figure on next page.)
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Fig. 1  (See legend on previous page.)
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a low threshold to offer surgery. In contrast, high-threshold 
probabilities are associated with patients in which surgery 
carries greater risk.

Discussion
The duration of survival for prostate cancer patients 
with metastatic bone disease is difficult to predict. We 
successfully developed models to estimate survival in 
patients with prostate cancer who have metastatic bone 
disease to help clinicians navigate treatment algorithms. 
Previous studies have shown that APV is predictive of 
distant metastasis–free survival [4, 5, 25]. In this study, 
we showed that machine learning–based models can 
predict survival in prostate cancer patients, and that 
these models improve in both discriminatory ability and 
accuracy with the addition of APV data. Specifically, 
the patient’s primary disease treatment type and APV 
became increasingly influential in the later time period 
models. Although further external validation studies are 
required, these data justify inclusion of these models in 
the PATHFx tool, an open-source clinical decision-mak-
ing support tool for survival estimation (https://​www.​
pathfx.​org) [7].

Patient race and ethnicity may provide important infor-
mation on genetic and socioeconomic factors pertaining 
to disease [26, 27]. Race was self-reported by patients 
at the time of enrollment and divided into 2 broad cat-
egories (white/other or black). Using the CPDR database, 
Cullen et al. [28] found self-reported black race was not 
a predictor of poorer overall survival among participants 
in the CPDR Multicenter National Database Program 
undergoing active surveillance, despite race-based differ-
ences in baseline clinical risk characteristics.

Although PATHFx is validated, it does not offer dis-
ease-specific estimates of survival [12]. The prostate 
cancer–specific models at 1 and 2  years can be com-
pared directly with the PATHFx 1- and 2-year models 
in terms of discriminatory ability (AUC) and accuracy 
of prediction (Brier score). The new 1-year prostate dis-
ease–specific model we developed (AUC = 0.85; Brier 
score = 0.07) was superior to the PATHFx (version 3.0) 
1-year model (AUC = 0.78; Brier score = 0.18). However, 
the 2-year prostate disease–specific model (AUC = 0.80; 
Brier score = 0.17) was no better than the PATHFx 2-year 
model (AUC = 0.82; Brier score = 0.12). Based on this 
direct comparison, the 1-year prostate disease–specific 
model could be used independently to accurately deter-
mine survival duration in men with metastatic prostate 

cancer. However, predictive algorithms continue to 
improve with exposure to more data [29]. Therefore, we 
believe there is room for improvement by incorporating 
additional PATHFx variables, such as hemoglobin con-
centration and absolute lymphocyte count.

Although the classification ability of the prostate-spe-
cific models derived in this study is no better than that 
of the current PATHFx tool [12], we have developed 4 
additional models that estimate survival at 3, 4, 5, and 
10  years. Validation statistics and decision curve analy-
sis indicate that these models are suitable for clinical use. 
Incorporating these prostate cancer–specific models into 
the PATHFx clinical support tool is part of our continued 
responsibility to provide accurate estimations of survival 
to help clinicians and patients navigate complex treat-
ment algorithms. Unlike traditional statistical decision 
rules, the accuracy of machine learning–based models 
can be improved over time with better machine learning 
methods, more data, changes in practice, changes in the 
patient population, and/or better understanding of dis-
ease processes [29].

When evaluating the results of this study, its limitations 
must be considered. It is possible that other statistical 
techniques could be used to develop similar prognostic 
models for prostate cancer. Our author group has exten-
sive experience using various machine learning tech-
niques. Some techniques are prone to overfitting and 
produce overly optimistic results. Therefore, we imple-
mented GBM with hyperparameter tuning to mitigate 
the risk of overfitting. Our study was limited by missing 
data, which can result in incomplete codification of train 
data and overfitting; however, we mitigated these effects 
by using a “holdout” validation set. Despite these results, 
external validation studies are necessary before these 
models can be recommended for use in other patient 
populations. Beyond APV, there may be other labora-
tory-related features to consider for use in the model; 
however, the data are not complete in the CPDR data-
base. The number of features available for the model was 
a limitation. Only 31% of the CPDR data had APV data, 
so we restricted the data set to the 438 records with APV 
values. Nevertheless, we expect the models to continue to 
improve as more data become available.

Although the addition of APV to the mod-
els improved performance, we may see continued 
improvement in model performance by including 
additional demographic and laboratory-based patient 
data. For example, Stattin et al. [30] found that a panel 

(See figure on next page.)
Fig. 2  A-F Decision curve analyses of each of the 6 models designed to estimate patient survival at (A) 1 year, (B) 2 years, (C) 3 years, (D) 4 years, 
(E) 5 years, and (F) 6 years after treatment or surgery for skeletal-related events due to bone metastasis from prostate cancer. These results suggest 
that all the models (dotted line) should be used rather than assuming all patients (continuous line) or no patients (thick continuous line) will survive 
longer than the period of each predictive model

https://www.pathfx.org
https://www.pathfx.org
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Fig. 2  (See legend on previous page.)
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of kallikrein marker (human kallikrein-related pepti-
dase 2 [hK2] and total, free, and intact PSA) is strongly 
predictive of distant metastasis in men with modestly 
elevated PSA. As these data are collected and added to 
national and international prostate cancer registries, 
we could continue to augment the models for survival 
estimations. Additionally, different mechanisms exist 
to measure and categorize APV, and previously deter-
mined [4, 5, 25] cut points were used in this analysis. 
Furthermore, PSMA PET and bone scintigraphy have 
been shown to predict the survival of end-stage pros-
tate cancer patients [31]. It possible that integrating 
APV into PATHFx with these imaging biomarkers may 
further strengthen survival estimates.

By including disease-specific information such as APV, 
we have developed a tool that helps predict survival dura-
tion in men with metastatic bone disease due to prostate 
cancer. Although external validation studies are required 
to support its use in other patient populations, these data 
justify inclusion of these models in the PATHFx tool. In 
addition, data used in the GBM model, including APV 
and proximal PSA, should be included in the Interna-
tional Bone Metastasis Registry. 
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