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Abstract 

Background:  Studies investigating breast cancer polygenic risk score (PRS) in Chinese women are scarce. The objec-
tives of this study were to develop and validate PRSs that could be used to stratify risk for overall and subtype-specific 
breast cancer in Chinese women, and to evaluate the performance of a newly proposed Artificial Neural Network 
(ANN) based approach for PRS construction.

Methods:  The PRSs were constructed using the dataset from a genome-wide association study (GWAS) and vali-
dated in an independent case-control study. Three approaches, including repeated logistic regression (RLR), logistic 
ridge regression (LRR) and ANN based approach, were used to build the PRSs for overall and subtype-specific breast 
cancer based on 24 selected single nucleotide polymorphisms (SNPs). Predictive performance and calibration of the 
PRSs were evaluated unadjusted and adjusted for Gail-2 model 5-year risk or classical breast cancer risk factors.

Results:  The primary PRSANN and PRSLRR both showed modest predictive ability for overall breast cancer (odds ratio 
per interquartile range increase of the PRS in controls [IQ-OR] 1.76 vs 1.58; area under the receiver operator character-
istic curve [AUC] 0.601 vs 0.598) and remained to be predictive after adjustment. Although estrogen receptor negative 
(ER−) breast cancer was poorly predicted by the primary PRSs, the ER− PRSs trained solely on ER− breast cancer cases 
saw a substantial improvement in predictions of ER− breast cancer.

Conclusions:  The 24 SNPs based PRSs can provide additional risk information to help breast cancer risk stratification 
in the general population of China. The newly proposed ANN approach for PRS construction has potential to replace 
the traditional approaches, but more studies are needed to validate and investigate its performance.

Keywords:  Breast cancer, Polygenic risk score, Single nucleotide polymorphisms, Artificial neural network, Estrogen 
receptor-negative breast cancer
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Background
Breast cancer is the most common type of malignant 
neoplasm and the second leading cause of cancer 
deaths in women worldwide [1]. The Global Burden 
of Disease (GBD) Study estimated that in 2017, breast 
cancer lead to over 17 million Disability-Adjusted Life 
Years (DALYs) and 600,000 deaths around the world 
[2]. Although the incidence of breast cancer is much 
lower in China than in the United States and Euro-
pean countries, the surge in the incidence in the largest 
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population in the world over the past few decades has 
made breast cancer a major public health issue that 
seriously endangers the health of women in China [3].

The etiology of breast cancer is multifactorial, with 
both non-genetic risk factors (including reproductive 
factors, exogenous hormonal medication, and life-
style factors) and inherited genetic risk factors playing 
important roles [4–8]. Multiple pathogenic variants of 
the BRCA1 and BRCA2 genes that confer high relative 
risks of breast cancer have been identified [9]. However, 
these variants are too rare in the general population to 
explain more than a small proportion of breast cancer 
cases [10, 11], especially among Chinese women where 
the prevalence of BRCA1 and BRCA2 mutations is 
lower than that in women of European ancestry [12]. In 
addition to these highly penetrant rare variants, more 
than 180 common single nucleotide polymorphisms 
(SNPs) that are associated with breast cancer risk have 
been identified in genome-wide association studies 
(GWASs) [13]. Each of these SNPs confers only a small 
risk of developing breast cancer, but when summarized 
in the form of a polygenic risk score (PRS), their com-
bined effect can be substantial [14].

Breast cancer PRSs have been shown to have suf-
ficient predictive power to aid risk stratification, and 
some have already been implemented in clinical prac-
tice [15, 16]. However, there is a lack of studies exam-
ining PRSs in Chinese women, since the majority of 
GWASs and other studies of breast cancer PRSs con-
ducted to date were conducted among women of 
European ancestry [13]. Among the limited studies 
investigating breast cancer PRSs in Chinese women 
[17–21], the biggest limitation is the lack of validation 
using independent datasets. These studies used the 
same datasets to estimate the PRS weighting parame-
ters and to evaluate the PRSs, which limited the value 
of the results as a true reflection of the performance of 
the PRSs. Furthermore, as highlighted by some recent 
studies, more efforts are needed to optimize PRSs for 
the prediction of estrogen receptor (ER) negative (ER−) 
breast cancer [22, 23], which is more aggressive and less 
common than estrogen receptor positive (ER+) breast 
cancer. Better prediction of ER-specific breast cancer 
could enable selection of high-risk women who might 
benefit from prevention with endocrine therapies.

The primary aim of this study was to develop and vali-
date PRSs for use in stratification of the risk of breast 
cancer and subtype-specific breast cancer in Chinese 
women. To that end, we used a GWAS dataset to develop 
PRSs and validated them in an independent test set from 
a case-control study. We also aimed to compare different 
approaches for calculating PRSs, including a newly pro-
posed artificial neural network (ANN)-based approach.

Methods
Study design and participants
The dataset used for PRS development was obtained 
from the Shanghai Breast Cancer Genetics Study 
(SBCGS) [24]. The SBCGS was conducted in 5152 partic-
ipants (2867 case participants and 2285 control partici-
pants) from the following four population-based studies 
conducted among Chinese women in urban Shanghai 
between 1996 and 2005: the Shanghai Breast Cancer 
Study [25], the Shanghai Breast Cancer Survival Study 
[26], the Shanghai Endometrial Cancer Study (contribut-
ing controls only) [27] and the Shanghai Women’s Health 
Study [28]. The samples from the SBCGS were genotyped 
using Affymetrix Genome-Wide Human SNP Array 6.0. 
The raw individual-level genotype dataset was provided 
by the Database of Genotypes and Phenotypes (dbGaP) 
project phs000799.v1.p1 (https://​www.​ncbi.​nlm.​nih.​
gov/​gap). The quality control (QC) procedures applied 
to the SBCGS dataset are described in Fig. 1. Briefly, we 
excluded SNPs and samples with a call rate < 99%. We 
also excluded SNPs with a minor allele frequency < 1%, 
SNPs with Hardy–Weinberg equilibrium (HWE) test 
P < 10− 6 and P < 10− 10 for controls and cases, respectively, 
and samples with KING-robust kinship coefficients 
> 0.0884 (second-degree relations, first-degree relations 
and duplicate samples) [29]. QC and imputation were 
performed using PLINK 1.9 and IMPUTE2 software [30, 
31]. After QC procedures, the final dataset consisted of 
4861 participants (2722 case participants and 2139 con-
trol participants) and 569,677 SNPs.

The independent test set used for PRS validation was 
obtained from the Sichuan Breast Cancer Case-Control 
Study (SBCCS) conducted in Chengdu, Sichuan Prov-
ince. The study design has been described in detail else-
where [6]. In brief, the SBCCS was conducted in 794 
case participants and 805 control participants between 
2014 and 2015. Case participants were recruited from 
primary breast cancer patients diagnosed in three gov-
ernment-owned hospitals, whereas control participants 
were recruited from healthy women undergoing annual 
physical examination in two physical examination cent-
ers. A standardized questionnaire was used to collect 
demographic and breast cancer risk factor information 
from participants. Clinical characteristics of case partici-
pants were directly exported from hospitals’ information 
systems. Blood samples were collected from all partici-
pants on the day of the questionnaire survey and stored 
at − 80 °C prior to DNA extraction. DNA was extracted 
from blood samples using whole blood genomic DNA 
extraction kits (Tiangen Biotech Company, Beijing, 
China) and stored at − 80 °C. In the current study, we 
included 826 DNA samples from 376 control participants 
and 431 case participants that were available in 2019.

https://www.ncbi.nlm.nih.gov/gap
https://www.ncbi.nlm.nih.gov/gap
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SNP selection and genotyping
We generated two sets of SNPs as potential candidates 
for genotyping in the SBCCS. The first set of SNPs was 
selected by reviewing association studies or meta-anal-
yses. Due to budget limitations and the“diminishing 
returns” effect [13], we focused on susceptible SNPs that 
were identified in previous smaller studies and selected 
28 SNPs that had been widely found to be associated 
with breast cancer risk in the Chinese population (Table 
S1). Thirteen SNPs were not represented in the SBCGS 
dataset, among which five SNPs (rs1801133, rs4973768, 
rs854560, rs1695 and rs9282861) were excluded because 
their eligible proxy SNPs, defined as linkage disequilib-
rium (LD) measure R2 > 0.9 determined using the LDLink 
tool [32], were also not represented in the SBCGS 

dataset. The remaining eight SNPs were replaced by cor-
responding proxies (rs1137101 replaced by rs10789190; 
rs10941679 replaced by rs4479849; rs662 replaced by 
rs2057681; rs2234767 replaced by rs7097467; rs2981578 
replaced by rs10736303; rs2420946 replaced by 
rs2162540; rs730154 replaced by rs8031463; rs11655505 
replaced by rs9646413). We further excluded rs1219648 
because it was in tight LD (R2 > 0.8) with both rs2162540 
and rs2981575 (Supplementary Fig. S1). Twelve SNPs 
that achieved genome-wide significance (P < 5 × 10− 8) 
for overall breast cancer in the SBCGS dataset formed 
the second set of SNPs (Table S2). As shown in Supple-
mentary Fig. S2, pairwise LD analysis revealed that no 
pruning was needed in the second set of SNPs (R2 < 0.8). 
Therefore, a total of 34 SNPs were selected and genotyped 

Fig. 1  Flowchart of the quality control process of the genotypic data in SBCGS. Quality control procedures were carried out using PLINK 1.9. HWE: 
Hardy–Weinberg equilibrium; MAF: minor allele frequency; SBCGS: Shanghai Breast Cancer Genetics Study; SNPs: single nucleotide polymorphisms
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in the SBCCS (Supplementary Table S1 and Supplemen-
tary Table S2).

Before genotyping, QC of DNA samples was performed 
and 19 samples that failed the DNA QC were excluded, 
resulting in a total of 807 samples (376 control partici-
pants and 431 case participants) plus 30 blind duplicate 
samples sent for genotyping. Genotyping of the 34 SNPs 
was carried out blindly by Bio Miao Biological Company 
Limited. Time-of-flight mass spectrometry was used for 
genotyping in strict accordance with a standard protocol.

QC of the SBCCS genotyping was carried out by 
excluding SNPs with call rate < 98%, concordance rate in 
duplicate samples < 99%, HWE test P < 0.05 (rs6730484), 
and SNPs that were monomorphic (Supplementary Table 
S1 and Supplementary Table S2). Samples were excluded 
if ≥3 SNPs failed the QC (6 samples were excluded). The 
remaining sporadic missing genotypes were imputed 
using population mean values.

PRS development
The 22 SNPs in the first set of SNPs were all included 
from the PRS development. Of the remaining 11 SNPs 
in the second set, we included only two SNPs that exhib-
ited the same effects on breast cancer in the SBCGS and 
SBCCS regardless of P-values (Supplementary Table 
S2). Therefore, a total of 24 SNPs were included for PRS 
development (Supplementary Table S3).

In the current study, we used three different approaches 
to calculate PRSs. The first two approaches were based on 
the same formula: PRS =

∑
n

k=1
βkxk , where n is the total 

number of SNPs, xk is the number of effect allele (minor 
allele) for the kth SNP, and βk is the corresponding effect 
size, calculated as per-allele log OR for breast cancer 
associated with the kth SNP. The first approach is known 
as the repeated logistic regression (RLR) approach. In this 
approach, βk was estimated in the SBCGS dataset using 
univariate logistic regression for each SNP individually. 
The RLR approach is the typical method used to calculate 
PRSs, since βk estimated from RLR is a summary statistic 
and can be easily obtained without access to individual-
level genotype data. In the second approach, βk was esti-
mated in the SBCGS dataset using multivariate logistic 
ridge regression, where all 24 SNPs were included in the 
model simultaneously. The model was also adjusted for 
age and population structure (first two principal com-
ponents). The second approach is known as the logistic 
ridge regression (LRR) approach. The optimal penalty 
parameter lambda in the ridge regression model was 
chosen by conducting 10-fold cross-validation on the 
SBCGS dataset (results shown in Supplementary Fig. S3). 
The third approach was a newly proposed ANN-based 
approach. In this approach, the ANN can be consid-
ered as a perceptron, that was used to extract a vector of 

length 6 from the original 24 SNPs, and the final PRS was 
calculated based on the extracted vector while adjusting 
for age and population structure. The optimal hyperpa-
rameters for the ANN-based model were chosen by con-
ducting 10-fold cross-validation on the SBCGS dataset 
(Fig. 2). The structure of the final ANN-based model used 
in the study is shown in Supplementary Fig. S4.

The primary PRSs for overall breast cancer were con-
structed using all breast cancer cases in the SBCGS data-
set. We also constructed the PRSs for subtype-specific 
breast cancer (ER+ and ER−) using corresponding sub-
type-specific breast cancer cases in the SBCGS dataset.

Hyperparameters tuning was conducted by apply-
ing 10-fold cross validation to the SBCGS dataset and 
using average log-loss as the main outcome. The opti-
mal number of iterations, hidden layers and dropout rate 
were 60, 3 and 0.4 respectively. Other hyperparameters 
that were not tuned include: number of hidden neurons 
in each hidden layer (square root of number of input 
neurons plus two); learning rate (0.01), activation func-
tion of the hidden layers (Leaky ReLU); activation func-
tion of the output layer (sigmoid); loss function (sigmoid 
cross entropy) and optimizer (Adam optimizer). SBCGS: 
Shanghai Breast Cancer Genetics Study.

Statistical analyses
The performance of the PRSs was assessed from two 
perspectives: predictive ability and calibration. For pre-
dictive ability, we used the odds ratio (OR) per inter-
quartile range (IQR) increase (IQ-OR) in the PRSs in 
the controls as the primary outcome. Discrimination 
was also used as a metric for the evaluation of predic-
tive ability. Discrimination was assessed by the area 
under the receiver operator characteristic curve (AUC) 
with confidence intervals estimated using the Hanley 
and McNeil’s method [33]. To indirectly compare the 
predictive ability of our PRSs with previous PRSs, we 
also assessed the odds of breast cancer in the fourth 
quartile (Q4th) of the PRSs in controls with those in 
the first quartile (Q1st). Calibration was assessed by 
inspecting the observed OR to the expected OR in 
each PRS decile and were further estimated using coef-
ficients from log scale linear regression as described 
by Brentnall et  al. [23]. In addition to evaluating the 
crude performance of the PRSs, we also evaluated their 
performance after adjusting for non-genetic risk fac-
tors or absolute risks predicted by the Gail-2 model, to 
investigate the ability of our PRSs to provide additional 
risk information for Chinese women. To this end, we 
regressed the PRSs (as the dependent variable) against 
non-genetic risk factors and used the remainder of 
the PRSs to calculate the evaluation metrics described 
above. The non-genetic risk factors used for adjustment 
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included age, age of menarche, number of live births, 
family history of breast cancer, body mass index (BMI), 
and menopausal status. Sensitivity analyses were con-
ducted as follows: 1) by excluding samples with spo-
radic missing genotypes in the SBCCS dataset, and 2) 
by incorporating a more rigorous pruning in the SNP 
selection process (R2 < 0.3).

The Gail-2 model 5-year absolute risks were calcu-
lated using SAS Macro (version 4 downloaded from 
https://​dceg.​cancer.​gov/​tools/​risk-​asses​sment/​bcras​
asmac​ro) in SAS (version 9.4 SAS Institute Inc., Cary, 
NC, USA). All the statistical analyses were performed 

using scikit-learn (version 0.21.2), TensorFlow (version 
1.13.1) and SciPy (version 1.1.0) in Python 3.6.

Results
The age and ER status profile of the participants in 
SBCGS are shown in Supplementary Table S4. ER status 
information was available for only 1495 case participants 
(54.9%), among which 985 cases were ER+ breast cancer 
patients and 510 cases were ER− breast cancer patients.

Basic characteristics of the included 427 case and 374 
control participants in the SBCCS are shown in Table 1. 
Due to a relatively small sample size, case and control 

Fig. 2  Hyperparameters tuning (A: number of iterations, B: number of hidden layers and dropout rate) results of the Artificial Neural Network 
model

https://dceg.cancer.gov/tools/risk-assessment/bcrasasmacro
https://dceg.cancer.gov/tools/risk-assessment/bcrasasmacro
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participants were comparable in terms of several breast 
cancer risk factors, including BMI, age at menarche and 
family history of breast cancer (P > 0.05). Furthermore, 
there were no significant differences in 5-year absolute 
risks of breast cancer predicted by the Gail-2 model 
between case and control participants (P = 0.07). Com-
parison of the basic characteristics of the participants 
in the SBCCS who were included in the current study 
with those of the participants not included due to una-
vailability of DNA samples showed that there were no 
significant differences between these two groups of par-
ticipants (Supplementary Table S5). As revealed by Fig. 3, 
the three primary PRSs for overall breast cancer (PRSRLR, 
PRSLRR, PRSANN) had very weak correlation with other 
breast cancer risk factors. Associations between the PRSs 
and Gail-2 model 5-year risk were also very weak (Spear-
man’s ρ = − 0.01, − 0.03, and − 0.01 for PRSRLR, PRSLRR 
and PRSANN, respectively), suggesting that the PRSs were 
independent of absolute risk predicted by the Gail-2 
model.

For overall breast cancer, the primary PRSs constructed 
using the ANN-based approach achieved higher IQ-OR 
(1.76, 95% CI 1.39–2.24) than the primary PRSs con-
structed using RLR (IQ-OR 1.49, 95% CI 1.23–1.81) and 
LRR (IQ-OR 1.58, 95% CI 1.29–1.92, Table  2). In terms 
of discrimination (Fig. 4), PRSLRR and PRSANN were com-
parable (AUC 0.598, 95% CI 0.559–0.637 vs. AUC 0.601, 
95% CI 0.562–0.640) and superior to PRSRLR (AUC 0.582, 
95% CI 0.543–0.621). As shown in Fig. 4, all three PRSs 
were well calibrated to overall breast cancer relative risks 

in Chinese women, with the observed to expected OR 
(O/E OR) of 1.10 (95% CI 0.71–1.48), 1.08 (95% CI 0.62–
1.55) and 1.09 (95% CI 0.77–1.41) for PRSRLR, PRSLRR and 
PRSANN, respectively. The primary PRSs showed slightly 
better predictive ability for ER+ breast cancer but sig-
nificantly poorer predictive ability for ER− breast can-
cer. For ER+ breast cancer, PRSANN (IQ-OR 1.96, 95% 
CI 1.50–2.55; AUC 0.620, 95% CI 0.577–0.663) outper-
formed PRSRLR and PRSLRR in terms of predictive ability. 
Calibration of the PRSs for ER+ breast cancer remained 
similar. For ER− breast cancer, the primary PRSs had sim-
ilarly poor IQ-OR (1.27–1.32) and AUC (0.550–0.555). 
PRSANN was poorly calibrated to ER- breast cancer risks 
(O/E OR 1.37, 95% CI -0.62–3.35). Adjustment for the 
Gail-2 model absolute risks had almost no effect on the 
performance of the primary PRSs (results shown in Sup-
plementary Table S6), while adjustment for the breast 
cancer risk factors slightly reduced the predictive ability 
of the PRSs (Table 2).

The performance of the subtype-specific PRSs is 
shown in Table  3. In general, ER+ PRSRLR and ER+ 
PRSLRR showed similar performance to the correspond-
ing primary PRSs of ER+ breast cancer, whereas the 
performance of the ER+ PRSANN of ER+ breast cancer 
was worse than that of the primary PRSANN (IQ-OR 
1.60 vs. 1.96; AUC 0.612 vs. 0.620; O/E OR 1.16 vs. 
1.09). Compared with the primary PRSs, all ER− PRSs 
showed substantial improvement in the prediction of 
ER− breast cancer. Among the three ER− PRSs, ER− 
PRSLRR achieved the highest predictive ability (IQ-OR 

Table 1  Characteristic of the participants in the Sichuan Breast Cancer Case-Control Study

* P-value from Mann-Whitney U test (continuous variables) or chi-square test (categorical variables)

BMI body mass index, IQR interquartile range, PRS polygenic risk score, RLR repeated logistic regression, LRR logistic ridge regression, ANN Artificial Neural Network

Characteristics Control (N = 374) Case (N = 427) P-value*

Continuous variables (median, IQR)
  Age (years) 48.00 (42.00–53.00) 50.00 (44.00–57.00) 0.01

  BMI (kg/m2) 23.37 (21.46–25.10) 22.94 (21.23–25.24) 0.18

  Age at menarche (years) 14.00 (13.00–15.00) 14.00 (13.00–15.00) 0.29

  Number of live births (N) 1.00 (1.00–1.00) 1.00 (1.00–2.00) < 0.001

  Gail-2 model 5-year risk (%) 0.54 (0.42–0.67) 0.54 (0.46–0.67) 0.07

  PRSRLR 0.44 (0.05–0.84) 0.62 (0.23–1.05) < 0.001

  PRSLRR 0.02 (−0.18–0.23) 0.14 (− 0.06–0.32) < 0.001

  PRSANN − 0.17 (− 0.33–0.09) 0.01 (− 0.24–0.13) < 0.001

Categorical variables (N, %)
  Menopausal status 0.33

    Premenopausal 223 (59.63%) 239 (55.97%)

    Postmenopausal 151 (40.37%) 188 (44.03%)

  Family history of breast cancer 0.83

    Yes 7 (1.87%) 10 (2.34%)

    No 367 (98.13%) 417 (97.66%)
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1.52 95% CI 1.10–2.10; AUC 0.582 95% CI 0.523–0.641) 
but still underestimated the ER− breast cancer risk to 
some extent (O/E OR 1.13 95% CI 0.04–2.21). Adjust-
ment for the Gail-2 model absolute risks and breast 
cancer risk factors had limited effect on the perfor-
mance of ER+/ER− PRSRLR and PRSLRR, which was 
similar to that observed in the primary PRSs. However, 
adjustment for breast cancer risk factors substantially 
reduced the predictive and discriminative abilities of 
the ER+/ER− PRSANN.

The sensitivity analysis conducted by excluding sam-
ples with missing genotypes in the SBCCS dataset 
did not reveal significant changes in the main results 
(Supplementary Table S7). The ANN-based and LRR 
approaches can compensate for the issue of collinear-
ity; therefore, we incorporated a loose R2 threshold of 
0.8 when selecting the SNPs in order to include more 
informative SNPs. However, this threshold may have 
influenced the performance of the PRSRLR. A sensitivity 

analysis was conducted by incorporating a more rigorous 
R2 threshold, which led to the removal of seven additional 
SNPs (rs2981582, rs3803662, rs9646413, rs2162540, 
rs10736303, rs4479849, and rs10789190). The perfor-
mance of the PRSRLR constructed using SNP-17 was 
slightly improved but did not exceed the performance of 
the primary PRSLRR and PRSANN (Supplementary Table 
S8).

Discussion
In the current study, the PRSs for the prediction of over-
all breast cancer and subtype-specific breast cancer in 
Chinese women were developed using a GWAS data-
set and validated in an external case-control dataset. 
The best PRSs (PRSANN and PRSLRR) based on 24 SNPs 
showed modest predictive ability (PRSANN: IQ-OR 1.76; 
AUC 0.601; PRSLRR: IQ-OR 1.58; AUC 0.598) and cali-
bration (PRSANN: O/E OR 1.09; PRSLRR: O/E OR 1.08) 
for overall breast cancer. More importantly, the study 

Fig. 3  Spearman’s rank correlation coefficient matrix for breast cancer risk factors, PRSs and Gail-2 model 5-year risk. BMI: body mass index; PRS: 
polygenic risk score; RLR: repeated logistic regression; LRR: logistic ridge regression; ANN: Artificial Neural Network
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results showed that the PRSANN was largely independ-
ent of Gail-2 model 5-year risk and other non-genetic 
risk factors. The PRSANN remained predictive of overall 
breast cancer after adjustment for classical breast cancer 
risk factors (PRSANN: IQ-OR 1.68; AUC 0.596; PRSLRR: 
IQ-OR 1.57; AUC 0.595), although the calibration index 
seemed to be slightly altered for PRSANN (O/E OR 1.17). 
These results indicated that our PRSs can provide addi-
tional risk information and are therefore suitable for use 

in conjunction with breast cancer risk prediction mod-
els based on non-genetic risk factors to stratify women 
into different risk groups. Since the Gail-2 model is the 
only publicly available model that can be implemented 
in our dataset, we also investigated the combination of 
the PRSANN and PRSLRR with the Gail-2 model. Although 
there was a substantial increase in AUC when the PRSs 
were combined with the Gail-2 model (increased from 
0.531 to approximately 0.58), the combined models had 

Table 2  Predictive performance of the primary PRSs for overall and ER+/ER− breast cancer

a Adjustment B: adjusted for classical breast cancer risk factors; Q4th vs Q1st OR: participants in the fourth quartile of the PRS vs those in the first quartile

ERb estrogen receptor positive, ER estrogen receptor negative, OR odds ratio, Q4th fourth quartile, Q1st first quartile, IQR interquartile range, PRS polygenic risk score, 
RLR repeated logistic regression, LRR logistic ridge regression, ANN Artificial Neural Network, IQ-OR OR per IQR increase of the PRS in controls, O/E OR observed to 
expected OR, AUC​ area under the receiver operator characteristic curve

PRS N (Controls/
Cases)

Cases (Median, 
IQR)

Controls 
(Median, IQR)

Q4th vs Q1st OR 
(95% CI)

IQ-OR (95% CI) O/E OR (95% 
CI)

AUC (95% CI) Adjustmenta

Overall breast cancer
  PRSRLR 374/427 0.62 (0.23–1.05) 0.44 (0.05–0.84) 2.09 (1.40–3.11) 1.49 (1.23–1.81) 1.10 (0.71–1.48) 0.586 (0.547–

0.625)
None

0.15 (−0.23–
0.58)

−0.01 
(− 0.40–0.36)

2.02 (1.36–2.99) 1.43 (1.19–1.72) 1.08 (0.51–1.64) 0.582 (0.543–
0.621)

B

  PRSLRR 0.14 (−0.06–
0.32)

0.02 (− 0.18–
0.23)

2.59 (1.71–3.91) 1.58 (1.29–1.92) 1.08 (0.62–1.55) 0.598 (0.559–
0.637)

None

0.11 (−0.09–
0.28)

− 0.01 
(− 0.22–0.21)

2.47 (1.63–3.73) 1.57 (1.28–1.93) 1.08 (0.81–1.35) 0.595 (0.556–
0.634)

B

  PRSANN 0.01 (− 0.24–
0.13)

−0.17 
(− 0.33–0.09)

2.61 (1.72–3.95) 1.76 (1.39–2.24) 1.09 (0.77–1.41) 0.601 (0.562–
0.640)

None

0.15 (−0.10–
0.26)

−0.02 
(− 0.19–0.22)

2.51 (1.67–3.79) 1.68 (1.34–2.12) 1.17 (0.62–1.72) 0.596 (0.557–
0.635)

B

ERb breast cancer
  PRSRLR 374/290 0.65 (0.24–1.06) 0.44 (0.05–0.84) 2.24 (1.44–3.48) 1.56 (1.26–1.93) 1.09 (0.61–1.57) 0.597 (0.553–

0.641)
None

0.20 (−0.22–
0.60)

− 0.01 
(− 0.40–0.36)

2.18 (1.41–3.37) 1.49 (1.22–1.83) 1.06 (0.53–1.59) 0.592 (0.548–
0.636)

B

  PRSLRR 0.15 (− 0.05–
0.33)

0.02 (− 0.18–
0.23)

2.94 (1.85–4.69) 1.67 (1.34–2.08) 1.12 (0.74–1.51) 0.613 (0.570–
0.656)

None

0.12 (− 0.07–
0.30)

−0.01 
(− 0.22–0.21)

2.72 (1.71–4.32) 1.67 (1.33–2.10) 1.10 (0.75–1.45) 0.608 (0.565–
0.651)

B

  PRSANN 0.04 (−0.22–
0.15)

− 0.17 
(− 0.33–0.09)

3.00 (1.87–4.78) 1.96 (1.50–2.55) 1.09 (0.80–1.38) 0.620 (0.577–
0.663)

None

0.17 (− 0.09–
0.28)

−0.02 
(− 0.19–0.22)

2.89 (1.82–4.58) 1.85 (1.43–2.39) 1.12 (0.65–1.59) 0.614 (0.571–
0.657)

B

ER− breast cancer
  PRSRLR 374/124 0.57 (0.19–0.92) 0.44 (0.05–0.84) 1.63 (0.91–2.95) 1.27 (0.96–1.69) 1.08 (0.42–1.74) 0.554 (0.495–

0.613)
None

0.10 (−0.27–
0.49)

− 0.01 
(− 0.40–0.36)

1.53 (0.86–2.73) 1.24 (0.94–1.62) 1.17 (0.35–1.99) 0.549 (0.490–
0.608)

B

  PRSLRR 0.08 (− 0.11–
0.28)

0.02 (− 0.18–
0.23)

1.79 (0.98–3.28) 1.29 (0.97–1.72) 1.23 (0.18–2.28) 0.555 (0.496–
0.614)

None

0.05 (− 0.12–
0.25)

− 0.01 
(− 0.22–0.21)

1.87 (1.00–3.50) 1.30 (0.96–1.75) 1.15 (0.41–1.89) 0.555 (0.496–
0.614)

B

  PRSANN −0.13 
(− 0.25–0.11)

−0.17 
(− 0.33–0.09)

1.78 (0.96–3.30) 1.32 (0.93–1.87) 1.37 (− 0.62–
3.35)

0.550 (0.491–
0.609)

None

−0.01 
(− 0.11–0.24)

−0.02 
(− 0.19–0.22)

1.70 (0.92–3.14) 1.30 (0.93–1.82) 1.21 (− 0.18–
2.60)

0.548 (0.489–
0.607)

B
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lower predictive ability than that using the PRSs alone. 
This was largely due to the poor performance of the 
Gail-2 model in the SBCCS dataset, which was consist-
ent with a recent meta-analysis reporting a pooled AUC 
of 0.55 (95% CI 0.52–0.58) for the Gail-2 model in Asian 
females [34]. Therefore, although our PRSs showed great 
potential to contribute additional risk information and 
increase predictive ability when combined with classical 
breast cancer risk factors, further studies are still needed 
to investigate their performance when combined with a 
more accurate non-genetic risk prediction model for Chi-
nese women (e.g., Han Chinese Breast Cancer Prediction 
model [35]).

Another important application of the PRS is to identify 
women at high risk of breast cancer who could benefit 
from more frequent breast cancer screening or preven-
tive therapy. Therefore, it is also important to assess the 
ability of the PRSs in predicting risk in the tails of the 
distribution. In the current study, the adjusted Q4th vs. 
Q1st ORs for PRSANN and PRSLRR were 2.51 and 2.47, 

respectively, meaning women in the fourth quartiles of 
the PRSs had an approximately 2.5-fold greater risk of 
having breast cancer than those in the lowest quartiles. 
This represents a substantial improvement in predictive 
ability compared with previous PRSs developed for Chi-
nese women (Supplementary Table S9). This improve-
ment can be attributed to the use of individual-level 
genotype data and a more sophisticated approach for 
PRS construction. Nevertheless, our best PRSs were still 
less predictive compared with some recent PRSs devel-
oped for women of European ancestry [22, 23, 36, 37], 
perhaps reflecting the gap between the number of SNPs 
included. Therefore, the performance of these PRSs can 
still be improved by including more SNPs associated with 
breast cancer risk in the Chinese population.

Previous studies conducted in women of European 
ancestry showed that breast cancer PRSs were generally 
less predictive of ER− breast cancer than ER+ breast can-
cer [22]. We confirmed this result in our dataset in the 
Chinese population. The primary PRSs were significantly 

Fig. 4  Receiver operator characteristic curves for primary unadjusted A: PRSRLR, B: PRSLRR C: PRSANN, and calibration plots for primary unadjusted 
D: PRSRLR, E: PRSLRR F: PRSANN. In the calibration plots, each circle represents the predicted OR and observed OR by decile. O/E OR is the ratio of the 
observed to expected OR, corresponding to the coefficients of the log scale linear regression. OR: odds ratio; PRS: polygenic risk score; RLR: repeated 
logistic regression; LRR: logistic ridge regression; ANN: Artificial Neural Network; AUC: area under the receiver operator characteristic curve
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less predictive and poorly calibrated for ER− breast can-
cer, with adjusted IQ-OR and AUCs ranging from 1.24 to 
1.30 and 0.548 to 0.555, respectively. To improve the pre-
diction of ER− breast cancer, we developed ER− PRSs in 
the current study. The results indicated that when train-
ing PRSs solely on ER− breast cancer cases yielded a sub-
stantial gain in predictive ability for ER− breast cancer. 
As a more aggressive breast cancer subtype, patients with 
ER− breast cancer had significantly worse prognosis com-
pared with patients with ER+ breast cancer. Identifying 

women at high risk of ER− breast cancer regardless of 
their overall breast cancer risk is therefore of great value 
in clinical practice and breast cancer screening. Our 
results highlighted the requirement for optimization of 
future PRS for ER− breast cancer by incorporating more 
ER− cases in the training dataset and perhaps, including 
more SNPs associated with ER− breast cancer.

We compared three different approaches to PRS con-
struction, consisting of the traditional RLR approach 
using summary statistics, as well as LRR approach and 

Table 3  Predictive performance of the subtype-specific PRSs for ER+/ER− breast cancer

a Adjustment A: adjusted for Gail-2 model 5-year absolute risk, adjustment B: adjusted for classical breast cancer risk factors

ERb estrogen receptor positive, ER estrogen receptor negative, OR odds ratio, Q4th fourth quartile, Q1st first quartile, IQR interquartile range, PRS polygenic risk score, 
RLR repeated logistic regression, LRR logistic ridge regression, ANN Artificial Neural Network, IQ-OR OR per IQR increase of the PRS in controls, O/E OR observed to 
expected OR, AUC​ area under the receiver operator characteristic curve

PRS N (Controls/
Cases)

Cases 
(Median, IQR)

Controls 
(Median, IQR)

Q4th vs Q1st OR 
(95% CI)

IQ-OR (95% 
CI)

O/E OR (95% 
CI)

AUC (95% CI) Adjustmenta

ERb breast cancer
  ERb PRSRLR 374/290 0.65 (0.19–1.08) 0.41 (0.02–0.85) 2.23 (1.43–3.46) 1.55 (1.25–

1.91)
1.05 (0.73–
1.37)

0.596 (0.552–
0.640)

None

0.22 (−0.24–
0.65)

− 0.02 
(− 0.42–0.42)

2.22 (1.43–3.46) 1.55 (1.25–
1.92)

1.07 (0.75–
1.39)

0.595 (0.551–
0.639)

A

0.20 (− 0.26–
0.62)

−0.02 
(− 0.40–0.40)

1.94 (1.26–2.99) 1.48 (1.21–
1.81)

1.05 (0.53–
1.56)

0.591 (0.547–
0.635)

B

  ERb PRSLRR 0.11 (−0.09–
0.29)

−0.03 
(− 0.23–0.18)

2.92 (1.86–4.59) 1.70 (1.37–
2.10)

1.09 (0.76–
1.42)

0.618 (0.575–
0.661)

None

0.12 (−0.06–
0.31)

−0.01 
(− 0.21–0.20)

2.93 (1.86–4.63) 1.69 (1.36–
2.09)

1.07 (0.69–
1.46)

0.617 (0.574–
0.660)

A

0.13 (−0.08–
0.31)

−0.01 
(− 0.20–0.21)

2.49 (1.59–3.89) 1.65 (1.33–
2.04)

1.06 (0.71–
1.41)

0.613 (0.570–
0.656)

B

  ERb PRSANN −0.11 
(− 0.26–0.00)

−0.21 
(− 0.40–0.07)

2.81 (1.79–4.42) 1.60 (1.28–
2.01)

1.16 (0.56–
1.75)

0.612 (0.569–
0.655)

None

0.14 (−0.01–
0.26)

0.05 (− 0.13–
0.19)

2.51 (1.62–3.90) 1.57 (1.26–
1.95)

1.18 (0.53–
1.84)

0.611 (0.568–
0.654)

A

0.13 (−0.02–
0.24)

0.05 (− 0.15–
0.18)

2.44 (1.57–3.81) 1.47 (1.18–
1.83)

1.19 (0.72–
1.66)

0.596 (0.552–
0.640)

B

ER− breast cancer
  ER− PRSRLR 374/124 0.68 (0.31–0.97) 0.52 (0.15–0.83) 1.84 (1.02–3.33) 1.41 (1.04–

1.90)
1.26 (0.52–
2.01)

0.574 (0.515–
0.633)

None

0.15 (−0.22–
0.44)

0.00 (− 0.37–
0.31)

1.91 (1.05–3.48) 1.41 (1.04–
1.90)

1.28 (0.42–
2.15)

0.573 (0.514–
0.632)

A

0.12 (−0.23–
0.45)

0.01 (− 0.35–
0.33)

1.68 (0.94–3.02) 1.38 (1.02–
1.86)

1.29 (0.43–
2.15)

0.570 (0.511–
0.629)

B

  ER− PRSLRR 0.23 (0.10–0.44) 0.16 (−0.05–
0.37)

2.55 (1.34–4.88) 1.52 (1.10–
2.10)

1.13 (0.04–
2.21)

0.582 (0.523–
0.641)

None

0.08 (−0.06–
0.29)

0.00 (− 0.21–
0.21)

2.55 (1.31–4.93) 1.52 (1.10–
2.09)

1.21 (0.08–
2.33)

0.582 (0.523–
0.641)

A

0.07 (−0.07–
0.28)

0.00 (− 0.20–
0.20)

2.26 (1.18–4.33) 1.47 (1.08–
1.99)

1.13 (0.26–
2.00)

0.578 (0.519–
0.637)

B

  ER− PRSANN −0.12 
(− 0.25–0.02)

−0.16 
(− 0.37–0.03)

2.10 (1.09–4.07) 1.52 (1.09–
2.12)

1.29 (0.74–
1.84)

0.562 (0.503–
0.621)

None

0.10 (−0.02–
0.21)

0.06 (− 0.14–
0.20)

2.22 (1.15–4.30) 1.52 (1.09–
2.12)

1.28 (0.61–
1.95)

0.562 (0.503–
0.621)

A

0.09 (−0.05–
0.2)

0.06 (− 0.15–
0.20)

1.90 (0.99–3.62) 1.38 (0.99–
1.93)

1.16 (0.34–
1.98)

0.547 (0.488–
0.606)

B
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the newly proposed ANN-based approach using individ-
ual-level genotype data. Compared with the traditional 
summary statistics-based RLR approach, the LRR and 
ANN approaches can be used to address the issues of 
overfitting, collinearity and confounding by using indi-
vidual-level genotype data, thus providing a more accu-
rate estimate of the weighting parameters. Therefore, it 
is expected that the primary PRSs constructed using the 
ANN and LRR approaches both achieved better predic-
tive performance than PRSRLR (including SNP-17 based 
PRSRLR in the sensitivity analysis). Through the use of 
the non-linear activation function and multiple hidden 
layers, the ANN model is able to fit high-order interac-
tions between variables [38]. Therefore, in theory, the 
ANN approach captures the interactions between breast 
cancer SNPs [39–41], and thereby achieves better pre-
dictive performance than the linear LRR approach. Our 
research confirms this speculation. The primary PRSANN 
showed better predictive ability than the primary PRSLRR 
in predicting overall and ER+ breast cancer, which sug-
gests the existence of interactions between the included 
SNPs. To explore possible SNP-SNP interactions, we con-
ducted logistic regression analyses to identify pairwise 
interactions in the SBCGS dataset. A total of 13 pairs 
of SNPs with possible SNP-SNP interactions (P < 0.05) 
were identified, but none of them reached a Bonferroni 
corrected level of statistical significance (P < 1.8 × 10− 4). 
Further post-hoc analysis revealed that the interaction 
between rs10789190 and rs7799039 was statistically sig-
nificant in both datasets (P < 0.05). The SNPs rs10789190 
and rs7799039 are located in the leptin (LEP) and leptin 
receptor (LEPR) genes, respectively, making their inter-
action biologically plausible. Adding this interaction 
term to the PRSLRR slightly improved its predictive ability 
(PRSLRR with interaction term: IQ-OR 1.62; AUC 0.602), 
indicating the differences between the primary PRSLRR 
and PRSLRR can be partially attributed to this interaction 
term. In other words, the ANN approach automatically 
captures the potential interactions between SNPs, which 
are likely to be omitted in the traditional approaches. 
Nevertheless, the ANN approach is more sophisticated 
and less flexible than the LRR and RLR approaches. 
Whether ANN can be considered the optimal approach 
to PRS construction remains to be investigated.

The current study has several strengths. First, the PRSs 
were validated in an external dataset, and thus avoided 
the concern of overfitting. Nevertheless, further valida-
tion with an expanded sample, preferably from multiple 
locations in China, is still needed. Second, we examined 
the performance of the PRSs by ER status and further 
optimized the PRSs for ER− breast cancer prediction, 
which has not been previously conducted in Chinese 
women. Future studies may consider both ER and human 

epidermal growth factor receptor 2 (HER2) status when 
optimizing the PRS for prediction of subtype breast can-
cer. Third, all the SNPs in the SBCGS and SBCCS were 
genotyped directly. Imputation was conducted only for 
sporadic missing genotypes. However, the study also has 
some limitations. First, the overall performance of the 
PRSs is not ideal, especially compared with the perfor-
mance of PRS in women of European ancestry. Due to 
budget constraints, the search for candidate SNPs was 
limited to those that are well-validated in Chinese popu-
lation, hence some newly identified SNPs and SNPs that 
remain to be validated in Chinese population were omit-
ted. Therefore, the results of our study should be inter-
preted with caution. Future studies should include more 
SNPs associated with breast cancer susceptibility, espe-
cially those identified in recent GWASs. High-quality 
genetic studies are also needed to identify and validate 
more breast cancer susceptibility SNPs in the Chinese 
population. Second, assessment of the performance of 
the PRSs in combination with classical breast cancer 
risk factors was not sufficient, since there is no suitable 
breast cancer risk prediction model for Chinese women. 
Further studies are warranted to investigate the perfor-
mance of the PRSs when incorporated into more accu-
rate risk prediction models for Chinese women. Third, 
BRCA status information is unavailable for either SBCGS 
or SBCCS, we are therefore not able to conduct further 
stratified analyses or make comparisons. Besides, since 
the SBCGS spanned a long period of time (i.e., 1996 to 
2015), we cannot rule out the possibility that changes in 
recommendations for determining ER status may have 
influenced the results of our study. Finally, our PRSs and 
study results are limited to Han Chinese women and may 
not be generalizable to Chinese women in other ethnic 
groups, although they only account for around 9% of the 
total population.

In summary, the SNP-24-based breast cancer PRSs 
showed significantly better predictive ability than pre-
vious PRSs developed for Chinese women. Our SNP-
24-based PRSs were largely independent of classical 
breast cancer risk factors and thus have great potential 
to improve clinical practice and future risk-based breast 
cancer screening programs by providing additional risk 
information for the general population. Nevertheless, 
the predictive performance of the current PRSs is not 
ideal and can be improved by incorporating more SNPs 
that are associated with breast cancer risk in Chinese 
women. Although the subtype-specific PRSs showed 
substantial improvement for ER− breast cancer predic-
tion, the overall performance is still poor and improve-
ments are still needed before it can be implemented 
to identify women at high risk of ER− breast cancer. 
Our newly proposed ANN-based PRS construction 
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approach automatically captures the potential interac-
tions between SNPs and showed better performance 
than the traditional approaches, although additional 
studies are needed to further validate and investigate 
this approach.
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