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Abstract 

Bladder cancer (BC) is one of the most frequent cancer in the world, and its incidence is rising worldwide, especially in 
developed countries. Urine metabolomics is a powerful approach to discover potential biomarkers for cancer diagno-
sis. In this study, we applied an ultra-performance liquid chromatography coupled to mass spectrometry (UPLC-MS) 
method to profile the metabolites in urine from 29 bladder cancer patients and 15 healthy controls. The differential 
metabolites were extracted and analyzed by univariate and multivariate analysis methods. Together, 19 metabo-
lites were discovered as differently expressed biomarkers in the two groups, which mainly related to the pathways 
of phenylacetate metabolism, propanoate metabolism, fatty acid metabolism, pyruvate metabolism, arginine and 
proline metabolism, glycine and serine metabolism, and bile acid biosynthesis. In addition, a subset of 11 metabolites 
of those 19 ones were further filtered as potential biomarkers for BC diagnosis by using logistic regression model. The 
results revealed that the area under the curve (AUC) value, sensitivity and specificity of receiving operator characteris-
tic (ROC) curve were 0.983, 95.3% and 100%, respectively, indicating an excellent discrimination power for BC patients 
from healthy controls. It was the first time to reveal the potential diagnostic markers of BC by metabolomics, and this 
will provide a new sight for exploring the biomarkers of the other disease in the future work.
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Introduction
Bladder cancer (BC), also known as urinary bladder can-
cer, is the tenth most frequent cancer in the world (sixth 
in men and seventeenth in women), and its incidence is 
steadily rising worldwide, especially in developed coun-
tries, with approximately 550,000 new cases annually [1, 
2]. Prolonged exposure to environmental and occupa-
tional chemicals could result in the tumorigenesis of BC. 

Among them, tobacco smoke is the main known cause, 
which is a possible explanation that greater tobacco 
smoke in men leads to the 4-fold gender discrepancy in 
BC incidence [1, 3, 4]. In addition, BC is a heterogene-
ous disease and possesses a high risk of morbidity and 
recurrence [5]. Among BC patients, it has primary and 
recurrent bladder cancer, and the stages of BC could 
be classified into T1, T2, T3, T4, Ta, etc [6]. The cur-
rent BC diagnoses are mainly based on urinary cytology, 
cystoscopy and radiological imaging [6–8]. Cystoscopy 
is invasive, painful and costly, and it has low sensitivity 
for diagnosing high-grade superficial tumors. Particu-
larly, it may lead to a high psychological burden for some 
patients once coupled with biopsy [7, 8]. Urinary cytol-
ogy is a noninvasive test with high specificity, but poor 
sensitivity [9]. Therefore, it is urgent to seek more new 
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noninvasive, sensitive and less expensive methods for BC 
diagnosis.

The reported biomarkers of bladder cancer mainly 
focused on the gene expression, such as CDK1, 
MAGEA3, etc [10]. Some of them lacked experimental 
validations. Meanwhile, gene markers might be failed 
since they could be regulated by the other proteins or 
signals. In recent years, metabolomics has proved to 
be a powerful technique for investigating the variation 
of endogenous small molecules during life activities 
in a high-throughput mode [10, 11]. Metabolites have 
played important roles in biological systems that dis-
eases cause the disruption of biochemical pathways, and 
the metabolites changes observed in patients as primary 
indicators have been an important part of clinical prac-
tice [12]. Nowadays, metabolomics has been recognized 
as the preferred approach for biomarker identification, 
early disease diagnosis and searching related pathways 
[10, 13, 14]. For example, with the help of urine metabo-
lomics, a marker discovery pipeline selected six putative 
markers from the metabolomic profiles, which could be 
employed for the discrimination of BC samples from 
hernia samples [15].

Mass spectrometry (MS) is a generally used platform 
for metabolomics analysis, and it is always coupled with 
advanced separation techniques such as gas chromatog-
raphy (GC-MS), liquid chromatography (LC-MS) and/
or others [16–18]. However, GC-MS is only suitable for 
analyzing volatile metabolites, resulting in the limited 
application. On the contrary, LC-MS has been widely 
used for metabolomics analysis benefitting from its high 
separation power and resolution [19, 20]. Therefore, in 
this study, a method by ultra-performance liquid chro-
matography coupled to mass spectrometry (UPLC-MS) 
was developed and applied to detect endogenous metab-
olites in urine from BC and healthy control groups. Mul-
tivariate statistical analysis methods were employed to 
identify significantly differential metabolites and poten-
tial biomarkers. The pattern recognition analytical tech-
niques, including principal components analysis (PCA), 
partial least squares discriminant analysis (PLS-DA) and 
orthogonal partial least squares discriminant analysis 
(OPLS-DA), were used to comprehensively evaluate the 
metabolites that were present in any given biological case 
or that were connected to a specific disease condition 
(Fig.  1). As a result, a combinatorial biomarker panel, 

Fig. 1  The workflow of urine biomarker discovery in bladder cancer
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with high sensitivity and specificity, was explored and 
defined as core indicators in BC diagnosis.

Materials and methods
Chemicals and reagents
Formic acid was of analytical grade and obtained 
from Sigma-Aldrich (St. Louis, MO, USA). Methanol 
(Optima LC-MS grade), acetonitrile (Optima LC-MS 
grade), and isopropanol (Optima LC-MS grade) were 
purchased from Thermo Fisher Scientific (FairLawn, 
NJ, USA). Sable isotope-labeled internal standards 
and the derivatization regents, 3-nitrophenylhydra-
zine (3-NPH) and N-(3-(dimethylamino)propyl)-N′-
ethylcarbodiimide (EDC)·HCl were purchased from 
Sigma-Aldrich (St. Louis, MO, USA). Ultra-pure water 
was produced by a Milli-Q system equipped with a 
LC-MS Pak filter (Millipore, Billerica, MA, USA).

All of the standards were purchased from TRC 
Chemicals (Toronto, ON, Canada), Sigma-Aldrich (St. 
Louis, MO, USA) and Steraloids Inc. (Newport, RI, 
USA). They were accurately weighed and dissolved in 
appropriate solutions to obtain individual stock solu-
tions at the concentration of 5.0 mg mL− 1. Appropriate 
amount of each stock solution was mixed to get stock 
calibration solutions.

Apparatus
An ultra-performance liquid chromatography coupled 
to tandem mass spectrometry (ACQUITY UPLC-Xevo 
TQ-S, Waters Corp., Milford, MA, USA) with an elec-
trospray ionization (ESI) source was operated under 
positive and negative ion modes for the quantitation of 
metabolites. The UPLC-MS system was controlled by 
MassLynx 4.1 software. The chromatographic separa-
tions were carried out by an ACQUITY BEH C18 col-
umn (100 mm × 2.1 mm, 1.7 μm) (Waters, Milford, MA) 
at a flow rate of 0.4 mL min− 1. The mobile phases were 
consisted of 0.1% formic acid in water (solvent A) and 
acetonitrile/isopropanol (70:30, v:v) (solvent B), and a 
gradient elution program was set as follows: 0–1 min, 
5% B; 1–5 min, 5–30% B; 5–9 min, 30–50% B; 9–12 min, 
50–79% B; 12–15 min, 78–95% B; 15–16 min, 95–100% 
B; 16–18 min, 100% B. The main parameters of ESI 
source were optimized and adopted as follows: 1.2 kV 
(ESI−) and 3.2 kV (ESI+) of capillary voltage, 150 °C of 
source temperature, 550 °C of desolvation temperature, 
and 1200 L h− 1 of desolvation gas flow (N2). Collision-
induced dissociation (CID) activation was used for the 
MS/MS fragmentation with an isolation width of m/z 3.0.

Clinical samples
A total of 44 subjects, including 29 BC patients (BCs) 
and 15 healthy controls (HCs), were recruited at the 

First Affiliated Hospital, Zhejiang University School of 
Medicine. Among the collected BC patients, 19 were 
classified into high stage and 10 were low stage. The 
detailed information was showed in the supplemen-
tary materials Table S1. The experiment was approved 
by Zhejiang University Institutional Review Board, and 
informed consent forms were obtained from all partici-
pants. The diagnosis, staging and other information of 
BCs were obtained from the database for inpatients of 
the First Affiliated Hospital. The midstream urine was 
freshly collected in the morning after overnight fasting, 
then transferred into an Eppendorf tube, which was 
stored at − 80 °C before use.

Urine sample preparation
Metabolomics analysis on urine samples was conducted 
by using the Q300 Metabolite Assay Kit (Human Metab-
olomics Institute, Inc., Shenzhen, Guangdong, China), 
referring to reported method with some modifications 
[21]. In brief, samples were firstly thawed on the ice-bath 
to reduce sample degradation. Then, 25 μL of urine was 
added to a 96-well plate, which was loaded to the Biomek 
4000 workstation (Biomek 4000, Beckman Coulter, Brea, 
California, USA) [21]. The cold methanol containing par-
tial internal standards was automatically added to each 
sample, and the samples were subsequently vortexed for 
5 min [22]. After centrifugation for 30 min at 4000×g 
(Allegra X-15R, Beckman Coulter, Indianapolis, IN, 
USA), 30 μL of supernatant and 20 μL of fresh derivative 
reagents (200 mM 3-NPH in 75% methanol and 96 mM 
EDC-6% pyridine solution in methanol) were added to 
each well of a new clean 96-well plate [22]. After deri-
vatization at 30 °C for 60 min, each sample was diluted 
by 350 μL of cold 50% methanol and stored at − 20 °C 
for 20 min. After centrifugation with the conditions of 
4000×g and 4 °C for 30 min, 135 μL of supernatant and 
15 μL of internal standards were added to each well on 
a new 96-well plate. And the remaining wells were filled 
with serial diluted derivatized stock standards. At last, 
the sample plate was sealed for the subsequent UPLC-MS 
analysis.

Quality control approach for metabolomic analysis
Periodic analysis of real samples together with quality 
control (QC) samples was applied in this study to ensure 
the excellent quality of metabolic profiling [12]. In detail, 
five injections of QC samples were put in the analyti-
cal platform in the first instance. Next, before inserting 
5 samples, one QC sample was breathed into the sample 
set in order. The QC samples were prepared by a mixture 
of BCs and HCs samples with the same volumes.
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Data analysis and statistical analysis
The raw MS data files were processed by Targeted 
Metabolome Batch Quantification (TMBQ) software 
(v1.0, Human Metabolomics Institute, Inc., Shenz-
hen, Guangdong, China) to perform peak integration, 
calibration, and quantitation for each metabolite [23]. 
Identified metabolites were further annotated using the 
Kyoto Encyclopedia of Genes and Genomes (KEGG) 
database (http://​www.​genome.​jp/​kegg/) and Human 

Metabolome Database (HMDB) (http://​www.​hmdb.​
ca/) [24]. Metaboanalyst (https://​www.​metab​oanal​yst.​
ca/) was employed to perform the metabolic pathway 
enrichment of differential metabolites. PCA and OPLS-
DA were carried out by metaX software [25]. Uni-
variate analysis (t-test) was employed to calculate the 
statistical significance (P-value) [26]. The metabolites 
with variable importance in the projection (VIP)  >  1, 
P-value < 0.05 and |fold change (FC)| >0 were regarded 
as differential metabolites [27].

Results
Clinical information of participants
An untargeted metabolomics method was used to study 
urine samples from 29 BCs and 15 HCs. The partici-
pants’ clinical information is summarized in Table  1. 
These participants aged from 48 to 92 years old with an 
average age of 68.2. In the BCs, 21 (72.4%) were male 
and 8 (27.6%) were female. In the HCs, 12 (80.0%) were 
male and 3 (20.0%) were female.

QC sample analysis
PCA analysis was performed based on QC samples and 
tested samples. The PCA score plot is shown in Fig. 2A. 
The result indicated that QC samples formed a cluster 
without any obvious drift during metabonomic profil-
ing. In addition, the pearson correlation (calculated by 
Pearson Correlation Coefficient) of any two QC sam-
ples was within 0.996 and 1 (Fig.  2B). These results 
demonstrated the current metabolomics data had good 
stability and reproducibility.

Table 1  Characteristics of enrolled patients

Groups No. of subjects Gender

Male Female

Sample number 44 33 11

  BC patient 29 21 8

  HC control 15 12 3

Among patients
  Age range 68.2 (48–92)

Stage
  Ta 11 7 4

  T1 6 6 0

  T2 5 2 3

  T3 4 4 0

  T4 3 2 1

  MIBC 12 8 4

  NMIBC 17 13 4

  High grade 19 12 7

  Low grade 10 9 1

  Primary 18 14 4

  Recurrence 11 7 4

Fig. 2  A PCA score plot for QC samples and tested samples. Yellow dots denote QC samples, blue dots are HC samples and red dots represent BC 
samples. B correlation heat map for QC samples

http://www.genome.jp/kegg/
http://www.hmdb.ca/
http://www.hmdb.ca/
https://www.metaboanalyst.ca/
https://www.metaboanalyst.ca/


Page 5 of 12Wang et al. BMC Cancer          (2022) 22:214 	

Fig. 3  A OPLS-DA score plot for HC and BC groups. Blue circles and red circles represent data for HC and BC samples, respectively. (B) The 
correlation coefficient (R2) distribution plot of the permutation test for the OPLS-DA model

Fig. 4  A Volcano plot of VIP scores from OPLS-DA model. The green crosses represent the metabolites with VIP>1 and the grey crosses represent the 
metabolites with VIP ≤ 1. B Volcano plot with the univariate statistical test (−ln P) and the magnitude of the change (log2FC) of metabolites. Red 
points represent the metabolites with P-value < 0.05 and FC>0. Blue points represent the metabolites with P-value < 0.05 and FC < 0. Grey points 
represent the metabolites with P-value>0.05. C Venn diagram integrating results from volcano-plots of OPLS-DA model and univariate statistical test
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Urine metabolomics data analysis
Based on the untargeted metabolomics technique, a total 
of 208 metabolites were identified in the urine samples. 
To evaluate the discriminating power of the obtained 
208 metabolites, we performed OPLS-DA analysis for 
the urine samples from 29 BCs and 15 HCs (Fig.  3A). 
The OPLS-DA model was constructed by performing 
7-fold cross-validation, and the result showed satisfac-
tory modeling and prediction with 1 predictive com-
ponent and 2 orthogonal components (R2Xcum = 0.157, 
R2Ycum = 0.837, Q2 cum = 0.399). To avoid model over-
fitting, the model was further validated with a permuta-
tion multivariate analysis of variance (PERMANOVA), 
and the result indicated that the probability of this model 
randomly occurring was less than 0.001 (Fig. 3B). From 
these satisfactory results, the metabolic profiling of BC 
patients showed significantly discriminative potential 
from that of HCs.

Identification of metabolic biomarkers
In the current study, we applied two types of analysis 
to identify the significantly changed metabolites in BC 
patients and explore potential biomarkers for diagnosis of 
BC. Firstly, VIP scores of obtained 208 metabolites were 
extracted from the OPLS-DA model. The volcano plot of 
VIP scores for these metabolites is shown in Fig. 4A. The 
green crosses in the volcano plot indicated 67 significantly 
changed metabolites with VIP  >  1. Secondly, t-test was 
employed to calculate the P-value and fold change (FC), 

which was shown in the volcano plot (Fig. 4B). As a result, 
21 metabolites with P value < 0.05 and |FC|>0 were high-
lighted as differential metabolites, including 11 upregula-
tion (marked in red) and 10 downregulation (marked in 
blue). In consideration of stage and gender influence, we 
carefully analyzed the data (Fig. S1 and Fig. S2). The top 
10 metabolites were listed in Table S2 and S3. There were 
common metabolites, such as AMP, GUDCA, etc. Mean-
while, different metabolites between low grade and high 
grade were also found, such as N-Methylnicotinamide. 
There was some difference based on stage or gender 
analysis. However, due to the limitation of samples, more 
samples should be collected to make a direction. All the 
metabolites were presented in the top 21 metabolites of 
changed metabolites in BC patients.

Finally, a Venn diagram was plotted to integrate the 
selected results from the OPLS-DA model and univari-
ate analysis (Fig. 4C). In the overlapped area of the Venn 
diagram, a total of 19 metabolites could meet the follow-
ing criteria of VIP  >  1 and P-value < 0.05 and |FC|>0, 
which were regarded as metabolic biomarkers. Their 
detailed information is listed in Table  2. Based on the 
relative abundance of differential metabolites, pathway 
enrichment results showed that 33 metabolic pathways 
were identified in Small Molecule Pathway Database 
(SMPDB). Among them, 7 pathways, including pheny-
lacetate metabolism, propanoate metabolism, fatty acid 
metabolism, pyruvate metabolism, arginine and proline 
metabolism, glycine and serine metabolism, and bile acid 

Table 2  19 differential metabolites annotated in KEGG or HMDB database

Metabolite Class HMDB KEGG P-value FC VIP

Hydroxypropionic acid Organic Acids HMDB0000700 C01013 0.0195 0.5273 1.2951

AMP Nucleotides HMDB0000045 C00020 0.0079 2.4444 1.1625

Lactic acid Organic Acids HMDB0000190 C00186 0.0446 1.8547 1.6818

Picolinic acid Pyridines HMDB0002243 C10164 0.0102 0.6731 1.2883

4-Hydroxybenzoic acid Benzoic Acids HMDB0000500 C00156 0.0114 0.6455 1.3049

Phenylacetic acid Benzenoids HMDB0000209 C07086 0.0429 1.3069 1.9231

Salicyluric acid Benzoic Acids HMDB0000840 C07588 0.0144 0.4935 1.378

Proline Amino Acids HMDB0000162 C00148 0.0209 1.7364 1.0882

N-Acetylserine Amino Acids HMDB0002931 NA 0.042 0.5078 1.0862

5-Aminolevulinic acid Amino Acids HMDB0001149 C00430 0.0011 0.3679 2.5489

N-Methylnicotinamide Pyridines HMDB0003152 NA 0.0283 1.6952 1.783

Heptanoic acid Fatty Acids HMDB0000666 C17714 0.0378 1.129 2.0465

GUDCA Bile Acids HMDB0000708 NA 0.0121 90.0 1.9545

CDCA Bile Acids HMDB0000518 C02528 0.0099 1.3894 2.5883

GCDCA Bile Acids HMDB0000637 C05466 0.0071 1.5 1.4274

Tridecanoic acid Fatty Acids HMDB0000910 C17076 0.0276 0.8571 2.2681

Myristic acid Fatty Acids HMDB0000806 C06424 0.0011 0.8913 2.5243

3-Hydroxylisovalerylcarnitine Carnitines NA NA 0.0195 0.5544 1.3705

Palmitoylcarnitine Carnitines HMDB0000222 C02990 0.0249 10.0 1.3128
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biosynthesis, were significantly enriched with at least 
2 annotated metabolites (Fig.  5). The detailed pathway 
enrichment results are displayed in Table 3.

Potential biomarkers for BC diagnosis
In order to find out candidate biomarkers from 19 iden-
tified differential metabolites, we carried out random 
forest (RF), support vector machine (SVM) and boruta 
analysis in sequence. First, we got union set between 
top 10 metabolites from RF and top 10 metabolites from 
SVM, which were employed to carry out further selec-
tion of potential biomarkers using boruta analysis. In this 
study, the result of the boruta algorithm for selecting the 
most important metabolites is shown in Fig. 6, and a total 

of 11 metabolites, namely glycochenodeoxycholic acid 
(GCDCA), adenosine monophosphate (AMP), 5-Ami-
nolevulinic acid, myristic acid, chenodeoxycholic acid 
(CDCA), salicyluric acid, proline, N-Acetylserine, pico-
linic acid, hydroxypropionic acid and 4-Hydroxybenzoic 
acid, were labeled as “Confirmed”, which could be used 
for model building and prediction. These 11 selected 
potential biomarkers were further combined by logistic 
regression (LR) model to build the biomarker panel, and 
the final receiving operator characteristic (ROC) curve 
is shown in Fig. 7. It can be observed that the biomarker 
panel had an area under the curve (AUC) of 0.983 and 
the values of sensitivity and specificity reached 95.3% and 
100% at the best cut-off points.

Fig. 5  Differential metabolite pathway analysis. The color depth and column length indicate the disturbance degree of the pathway
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Discussion
Bladder cancer is one of the most prevalent malignancies 
of the urinary system, which is related to multiple factors, 
such as genetic susceptibility, environmental exposure as 
well as unhealthy lifestyles [5]. In recent years, there is 
a trend of increased incidence and mortality worldwide 
for BC [28, 29]. As is known, metabolomics has proved 
to be a powerful technique for investigating the variation 
of endogenous small molecules during life activities in a 
high-throughput mode [10], which could help us to iden-
tify potential metabolic biomarkers and study possible 

mechanisms for BC. Because bladder is a temporary stor-
age of urine and the urinary metabolic characteristics 
could closely reveal changes that occur during pathologi-
cal conditions, urinary metabolomics has some advan-
tages over other biological fluids, such as noninvasive 
collection and convenient storage. In the present study, a 
nontargeted UPLC-MS method was applied to profile the 
metabolites of urine from 29 BC patients and 15 healthy 
subjects. A group of 19 metabolites was discovered as 
differently expressed biomarkers, which mainly related to 
phenylacetate metabolism, propanoate metabolism, fatty 

Table 3  SMPDB pathway enrichment

Pathway Total Expected Hits P-value Adjust P-value FDR Enriched compounds

Phenylacetate Metabolism 9 0.132 2 0.0068 0.666 0.666 AMP; Phenylacetic acid

Propanoate Metabolism 42 0.615 2 0.123 1 1 AMP; Hydroxypropionic acid

Fatty acid Metabolism 43 0.63 2 0.128 1 1 AMP; Palmitoylcarnitine

Pyruvate Metabolism 48 0.703 2 0.153 1 1 AMP; Lactic acid

Arginine and Proline Metabolism 53 0.776 2 0.18 1 1 AMP; Proline

Glycine and Serine Metabolism 59 0.864 2 0.212 1 1 AMP; 5-Aminolevulinic acid

Bile Acid Biosynthesis 65 0.952 2 0.246 1 1 CDCA; GCDCA

Thiamine Metabolism 9 0.132 1 0.125 1 1 AMP

Alanine Metabolism 17 0.249 1 0.223 1 1 AMP

Butyrate Metabolism 19 0.278 1 0.246 1 1 AMP

Ethanol Degradation 19 0.278 1 0.246 1 1 AMP

Ubiquinone Biosynthesis 20 0.293 1 0.258 1 1 4-Hydroxybenzoic acid

Riboflavin Metabolism 20 0.293 1 0.258 1 1 AMP

Pantothenate and CoA Biosynthesis 21 0.308 1 0.269 1 1 AMP

Cysteine Metabolism 26 0.381 1 0.322 1 1 AMP

Mitochondrial Beta-Oxidation of Short Chain Saturated Fatty 
Acids

27 0.396 1 0.332 1 1 AMP

Mitochondrial Beta-Oxidation of Medium Chain Saturated 
Fatty Acids

27 0.396 1 0.332 1 1 AMP

Phenylalanine and Tyrosine Metabolism 28 0.41 1 0.342 1 1 AMP

Selenoamino Acid Metabolism 28 0.41 1 0.342 1 1 AMP

Mitochondrial Beta-Oxidation of Long Chain Saturated Fatty 
Acids

28 0.41 1 0.342 1 1 AMP

Pentose Phosphate Pathway 29 0.425 1 0.352 1 1 AMP

Urea Cycle 29 0.425 1 0.352 1 1 AMP

Ammonia Recycling 32 0.469 1 0.381 1 1 AMP

Aspartate Metabolism 35 0.513 1 0.409 1 1 AMP

Gluconeogenesis 35 0.513 1 0.409 1 1 Lactic acid

Fatty Acid Biosynthesis 35 0.513 1 0.409 1 1 Myristic acid

Nicotinate and Nicotinamide Metabolism 37 0.542 1 0.426 1 1 AMP

Porphyrin Metabolism 40 0.586 1 0.452 1 1 5-Aminolevulinic acid

Methionine Metabolism 43 0.63 1 0.477 1 1 AMP

Histidine Metabolism 43 0.63 1 0.477 1 1 AMP

Glutamate Metabolism 49 0.718 1 0.523 1 1 AMP

Warburg Effect 58 0.85 1 0.586 1 1 Lactic acid

Purine Metabolism 74 1.08 1 0.678 1 1 AMP
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acid metabolism, pyruvate metabolism, etc. (Table  3). 
In addition, the combination of 11 potential biomark-
ers showed an excellent discrimination capability of BCs 
from HCs, which could be potentially used for clinical 
diagnosis, prognosis monitoring, and early detection of 
BC patients.

Significantly altered metabolites and related pathways
Among the 19 differential metabolites, the changes of 
AMP, glycoursodeoxycholic acid (GUDCA) and palmi-
toylcarnitine were the most dramatic ones with FC>2. 
Adenosine monophosphate, known as AMP, is a nucleo-
tide that is found in RNA. AMP can be produced during 
adenosine triphosphate (ATP) synthesis by the enzyme 
adenylate kinase urine (Human Metabolome Database). 
The AMP-activated protein kinase (AMPK) is sensi-
tive to cellular AMP/ATP ratio, in which a high AMP or 
low ATP level activates AMPK [30, 31]. In the present 
research, the content of AMP in BCs was higher than 
that in HCs. AMPK activation could provide a growth 
advantage to tumor cells by regulating cellular metabolic 

plasticity, thus providing tumor cells the flexibility to 
adapt to metabolic stress [32]. The role of core enzyme 
(AMPK) was analyzed by using Onconmine and cBIO 
portal. As showed in the following Fig. S3, it was found 
that the survival probability of Protein Kinase AMP-
Activated Catalytic Subunit Alpha 2 (PRKAA2, one 
sub-type of AMPK) altered patients was relatively lower 
than those without alteration. Higher expression of AMP 
could result in the worse survival conditions.

The potential biomarkers of GUDCA, CDCA and 
GCDCA were also belonging to the group of bile acids, 
and they were all up-regulated in urine from BC patients 
as compared to the HC group. Bile acids are physiological 
detergent molecules, so are highly cytotoxic. Meanwhile, 
it is found that conjugated bile acids can activate the 
sphingosine 1-phosphate receptor 2 that activates intra-
cellular ERK1/2 and AKT signaling to promote the inva-
sive growth of cholangiocarcinoma, which is commonly 
associated with chronic cholestasis [33], and overexpres-
sion of bile acids in urine might result in worse condition 
of urinary bladder, even cancer. It was reported that bile 

Fig. 6  Relative importance (RI) of metabolites calculated by boruta algorithm
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acids were implicated as etiologic agents in cancer of the 
gastrointestinal tract, including cancers of the esophagus, 
stomach, small intestine, liver, biliary tract, pancreas and 
colon [34]. The bile acids could generate cellular reac-
tive oxygen species and induce multiple stresses on cells 
including DNA damage, endoplasmic reticulum stress 
and mitochondrial damage, which lead to genomic insta-
bility, apoptosis, necrosis, autophagic cell death, etc. 
[35–38].

Palmitoylcarnitine is a well-known intermediate in 
mitochondrial fatty acid oxidation, which naturally 
exists in blood, feces, saliva and urine. In this study, 
the content of palmitoylcarnitine on bladder cancer 
patients was 10 times higher than that in healthy sub-
jects. Some studies have reported the accumulation of 
palmitoy lcarnitine in diabetes mellitus type II, obe-
sity and kidney cancer [39–41]. It was found that the 
increased contents of most acylcarnitines in the urine 
of cancer patients together with high cancer grades in 
those patients, and higher chain length acylcarnitines, 

such as palmitoylcarnitine, showed inhibitory effects 
on nuclear factor kappa-B (NF-kB) activation, indicat-
ing an immune modulatory effect [41]. Besides, it was 
reported that palmitoylcarnitine might represent a 
potential biomarker of the metabolic dysfunction asso-
ciated with prostate cancer [42]. The result showed 
that, at physiological levels of palmitoylcarnitine, there 
were no effects on the prostate cancer cells; however, at 
high levels of palmitoylcarnitine, it drove tumor devel-
opment through inducing key inflammatory cytokines 
and gene expression associated with glycolysis.

Interestingly, salicylic acid was a characteristic index 
presented in the urine samples of BC. Through ana-
lyzing the drug administration, we found that some 
of BC patients often used salicylic acid-related drugs, 
such as aspirin. This indicated that overdose of salicylic 
acid-related drugs might contribute to the tumorigen-
esis of BC. Due to the small samples in our work, more 
subjects were needed to be collected to validate this 
speculation.

Fig. 7  Receiver operating characteristic (ROC) curve of a logistic regression model for distinguishing BCs from HCs by using 11 potential biomarkers 
conjunctively
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Diagnosis of BCs from HCs
The AUC was 0.983 for BC diagnosis, with 95.3% sen-
sitivity and 100% specificity, showing satisfactory dis-
crimination power by the eleven-biomarker panel. 
The results suggested that the eleven-biomarker panel 
could be used for the diagnosis of BCs from HCs. In 
addition, besides N-Acetylserine, all other potential 
biomarkers could individually achieve a high AUC 
value higher than 0.7 with satisfactory sensitivity and 
specificity. It should be noted that, because these 11 
differential metabolites were chosen based on boruta 
algorithm using 29 BCs and 15 HCs, this predictive 
accuracy may be biased upward. Thus, the additional 
verification set should include a wider range of sub-
jects, and their ages and gender should be carefully 
matched in the further study.

Conclusion
In this study, we established and applied a UPLC-MS 
based metabolomics to investigate the metabolite dif-
ference in urine from 29 bladder cancer patients and 
15 healthy subjects. An obvious discrimination was 
obtained by OPLS-DA analysis based on the identi-
fied metabolites between bladder cancer patients and 
healthy controls. In addition, 19 metabolites were dis-
covered as differently expressed biomarkers in the two 
groups. Based on boruta analysis, 11 of them were 
selected and combined to test the potentiality of diag-
nosis of BC by using LR model. The AUC, sensitivity 
and specificity of ROC curve were 0.983, 95.3% and 
100%, respectively, showing an excellent discrimination 
power for BC diagnosis.
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