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The role of SPI1‑TYROBP‑FCER1G network 
in oncogenesis and prognosis of osteosarcoma, 
and its association with immune infiltration
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Abstract 

Osteosarcoma is an aggressive malignant bone sarcoma worldwide. A causal gene network with specific functions 
underlying both the development and progression of OS was still unclear. Here we firstly identified the differentially 
expressed genes (DEGs) between control and OS samples, and then defined the hub genes and top clusters in the 
protein–protein interaction (PPI) network of these DEGs. By focusing on the hub gene TYROBP in the top 1 cluster, a 
conserved TYROBP co-expression network was identified. Then the effect of the network on OS overall survival was 
analyzed. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses and Gene Set 
Enrichment Analysis (GSEA) were used to explore the functions of the network. XCell platform and ssGSEA algorithm 
were conducted to estimate the status of immune infiltration. ChEA3 platform, GSEA enrichment analysis, and Drug 
Pair Seeker (DPS) were used to predict the key transcription factor and its upstream signal. We identified the downreg-
ulated SPI1-TYROBP-FCER1G network in OS, which were significantly enriched in immune-related functions. We also 
defined a two-gene signature (SPI1/FCER1G) that can predict poorer OS overall survival and the attenuated immune 
infiltration when downregulated. The SPI1-TYROBP-FCER1G network were potentially initiated by transcription factor 
SPI1 and would lead to the upregulated CD86, MHC-II, CCL4/CXCL10/CX3CL1 and hence increased immune infiltra-
tions. With this study, we could better explore the mechanism of OS oncogenesis and metastasis for developing new 
therapies.
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Introduction
Osteosarcoma (OS) is the most common primary malig-
nant bone sarcoma worldwide, particularly in children 
and adolescents [1, 2]. OS is a highly invasive tumor with 
20% of patients being diagnosed at metastatic stage and 
50% of patients with lung metastases at late stage. OS 

was due to a dysfunctional osteoblastic differentiation 
from the primitive mesenchymal bone-forming cells 
[3]. Now the treatment for OS has reached a plateau to 
the patients with metastases, the 5-year survival rate of 
which is under 30% [4]. Therefore, identifying the key 
gene network and their molecular mechanisms underly-
ing both the pathogenesis and progression of OS is nec-
essary and urgent.

Some studies have been published, which focused on 
the role of single oncogene in OS, such as p53 (arresting 
cell cycle and promoting apoptosis) [5], SOX2 (enhanc-
ing cell stemness and migration) [6], MALAT1 (promot-
ing proliferation and metastasis) [7], IGF-2 (affecting 
osteoblast differentiation) [8], cyclin E1 (inhibiting 
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proliferation and increasing chemotherapeutics sensi-
tivity) [9], and PTH (affecting migration) [10]. In recent 
years, some studies identified a cluster of hub genes as 
OS biomarkers via differentially expressed genes (DEGs) 
analysis followed by protein–protein interaction (PPI) 
network analysis or weighted gene co-expression network 
analysis (WGCNA). In this kind of analyses, multiple 
clusters of hub genes have been identified as OS charac-
teristic biomarkers or metastatic biomarkers involving 
functions such as focal adhesion, type I interferon signal-
ing and cell–cell adhesion [11–15]. However, a conserved 
gene network involved in both OS oncogenesis and OS 
prognosis have not been fully analyzed. Furthermore, the 
common gene network and functions across cancer types 
have not been fully discussed.

Here we integrated DEG results from GSE33382, 
GSE12865, GSE16088 and GSE14359 datasets and ana-
lyzed the survival data from TARGET-OS and GSE21257 
datasets to identify the immune-infiltration associated 
gene network (i.e., SPI1-TYROBP-FCER1G network) 
underlying both OS oncogenesis and prognosis. Firstly, 
we identified the DEGs and defined the hub genes and 
top clusters in the PPI network of those DEGs. Secondly, 
we did univariate Cox regression analysis to identify the 
9 prognostic genes in the five top clusters. To furtherly 
explore the function of TYROBP-centered top 1 cluster, 
we did an analysis across cancer types to identify a more 
conserved and extensive TYROBP co-expression net-
work, which was found to be significantly associated with 
leukocyte proliferation and T cell activation later. By PPI 
analysis and least absolute shrinkage and selection opera-
tor (LASSO) Cox regression analysis on the TYROBP co-
expression network, the two-gene signature of FCER1G 
and SPI1 were identified as a novel prognosis biomarker. 
Furthermore, the transcriptional levels of FCER1G and 
SPI1 can also distinguish the OS patients into two clus-
ters with different prognosis and immune cell infiltra-
tions, suggesting a potential treatment target for OS and 
other TYROBP-associated cancers.

Materials and methods
Data resource and processing
Four microarray datasets of OS samples were collected 
from GEO database, including GSE33382, GSE12865, 
GSE16088 and GSE14359. The selection criteria included: 
1. including both normal control and osteosarcoma tis-
sues; 2. from Homo sapiens; 3. more than 10 samples. 
The platform annotation documents were also down-
loaded from GEO and annotated for microarray probes 
by “merge” R command.

Both expressional data and survival data from TAR-
GET-OS and GSE21257 datasets were downloaded for 
analyzing the effect of gene expression on prognosis (1. 

including both osteosarcoma tissue and survival data; 2. 
from Homo sapiens; 3. more than 20 samples).

TCGA Pan-Cancer TPM data (TOIL workflow pro-
cessed [16]) were obtained from UCSC Xena Browser 
(https://​xenab​rowser.​net/​datap​ages/). The correlations 
between the expressional levels of TYROBP and other 
genes were assessed using Spearman correlation analy-
sis (R > 0.6 and p < 0.05 as significance). GEPIA2 plat-
form was used to analyze the correlation between SPI1, 
TYROBP and FCER1G across multiple cancer types [17].

ENCODE PU.1 ChIP-seq peaks data from multiple 
cell lines (i.e., GM12878, GM12891, K562, HL-60) were 
downloaded [18] and visualized by software IGV [19]. 
RNA-seq and ChIP-seq data from THP-1 cell line were 
downloaded from GSE69284 and GSE89178, the peaks of 
which were called by HOMER [20]. ChIP-X Enrichment 
Analysis 3 (ChEA3) platform was used for transcription 
factor (TF) prediction by transcription factor enrichment 
analysis that ranks TFs associated with user-submitted 
gene sets [21].

Analysis of differentially expressed genes
GEO2R online tool was used to systematically meas-
ure the DEGs in GSE33382, GSE12865 and GSE14359 
(between control and OS). ‘GEOquery’ R package and 
‘limma’ R package were used to measure the DEGs in 
GSE16088 (between control and OS) [22, 23]. Significant 
DEGs were selected by Benjamini & Hochberg (BH, False 
discovery rate) adjusted p < 0.05 and |log2 fold change 
(FC)|> 0.58. Then the overlapped results were visualized 
by Venn diagram via “ggplot2” R package [24].

Functional enrichment analysis
Gene Ontology Analysis on Gene Clusters Gene ontology 
(GO) (including biological process (BP), molecular func-
tions (MF), and cellular components (CC) terms) [25] 
and Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathways [26] are used to annotate the functions of genes 
via “clusterProfiler” R package [27] and virtualized by 
“ggplot2” R package.

Gene set enrichment analysis (GSEA) was performed 
by pre-ranking genes based on R value of TYROBP 
correlation level. We subsequently run the GSEA pre-
ranked analysis with the c2.cp.reactome.v7.2.symbols.
gmt (reactome), h.all.v7.2.symbols.gmt (signaling path-
way), and c3.all.v7.2.symbols.gmt (transcriptional factor 
motif ) gene set from MsigDB [28] via “clusterProfiler” R 
package.

Protein–protein interaction network
The Search Tool for the Retrieval of Interacting Genes 
(STRING) database is an online tool that is used to 
develop protein–protein interaction (PPI) networks [29]. 

https://xenabrowser.net/datapages/
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The network data of proteins from DEGs were down-
loaded from STRING to visualize the protein interaction 
network in the Cytoscape software [30]. In the network of 
DEGs, the 5 top clusters (highly interconnected regions) 
were identified by MCODE plugin in Cytoscape, which 
can find clusters (i.e., the highly interconnected regions) 
by vertex weighting and isolating the dense regions in a 
network [31]. The degree of gene connection was ana-
lyzed by Cytoscape and reflected by its area. In the 
TYROBP network, we identified the ranked hub genes 
by cytoHubba plugin (with Maximal Clique Centrality 
(MCC) algorithm) [32] in Cytoscape.

Survival analyses
Survival analyses were performed using univariate Cox 
regression and LASSO regression via “survival” [33] 
and “glmnet” [34] R package. For LASSO regression, 
the final formula of the risk signature was given as risk 
score = expression level of Gene1*β1 + expression level 
of Gene2*β2 + … + expression level of Genen* βn, in 
which β represents the regression coefficient of each vari-
able. The receiver operating characteristic (ROC) curves 
for the imaging markers were constructed for overall 
survival, and the areas under the ROC curves (AUC) 
were estimated empirically with the trapezoid rule with 
“pROC” [35] and “ggplot2” R package.

Immune infiltration analysis
Platform xCell (xCell signature) [36] and single-sample 
gene set enrichment analysis (ssGSEA, based on immune 
signature by “gsva” R package [37]) were used to reckon 
the proportion and score of immune cell infiltration in 
OS tumor environment, respectively. We filtered out the 
cell types with proportion less than 0.01 in xCell results. 
Boxplots of proportions and normalized scores were per-
formed with “ggplot2” R package. Wilcox test was per-
formed for the comparison between groups. ssGSEA, as 
an extension of GSEA, can calculate separate enrichment 
scores of immune cells for the pairing of OS samples and 
the gene set of immune cell signatures. XCell can calcu-
late separate proportions of immune cells in microenvi-
ronment based on gene signatures for 64 cell types.

Results
The DEGs from multiple OS datasets 
and the immune‑related function of downregulated genes
Four of GEO datasets with both normal control and oste-
osarcoma tissues were included in the study. It’s nota-
ble that there were a few of differences between these 
datasets, reflecting the complementarity between them. 
Firstly, in GSE12865 and GSE14359, the control samples 
were normal primary osteoblasts, while in GSE33382 
the control samples were osteoblasts derived from 

osteogenic differentiated bone-marrow-derived mes-
enchymal stem cells. In GSE16088, the control samples 
were from an unspecific osteoblast cell line H-012706. 
Furthermore, although OS samples were all OS tissues 
not cell line in the four datasets, in GSE33382 the OS 
samples were from high-grade OS pre-chemotherapy 
biopsy. In GSE12865, OS samples were all from pediatric 
OS patients. In GSE14359, OS group included a part of 
lung metastasis OS tissues. For a comprehensive analy-
sis, the DEGs ( |log2(Fold Change)|> 0.58 and adjusted 
p < 0.05) were identified in 4 OS datasets independently 
(Supplementary Fig.  1A). The overlapped DEGs in >  = 3 
datasets were considered as credible DEGs for the next 
functional enrichment analysis (Fig.  1A-B). In the end, 
we found 124 of upregulated genes (Fig.  1A) and 98 of 
downregulated genes (Fig. 1B).

Among them, the 124 upregulated genes were enriched 
in annotations such as collagen-containing extracellular 
matrix, smooth muscle cell proliferation, cell-substrate 
adhesion and p53 signaling pathway (Fig.  1C), while 
the 98 downregulated genes were enriched in immune-
related functions including MHC class II protein 
complex/complex binding, lymphocyte/leukocyte prolif-
eration, and so on, indicating a significant loss of MHC 
class II protein complex and immune cell activation abil-
ity in OS samples compared with that in control samples 
(Fig. 1D).

The hub genes and top clusters in PPI network of DEGs, 
and the immune‑related function of top 1 cluster genes
To define the hub genes and functional gene clusters in 
DEGs, we put upregulated and downregulated genes 
together to construct the PPI network by Cytoscape 
based on STRING database. According to the connection 
degrees of DEGs, we found the hub genes with the top 
10 degrees (reflected by their areas in Fig. 2A) in the net-
work (Supplementary Fig.  1B) including FN1, TYROBP, 
EGFR, CSF1R,C1QB, PLEK, LCP2, C1QA, CD86 and 
VWF, which were enriched in functions including osteo-
clast differentiation/integrin binding/collagen-containing 
extracellular matrix/glial cell activation (Fig.  2B), and 
potentially initiated the whole PPI network as the hub 
genes.

Furthermore, we defined the top 5 clusters by MCODE 
plugin in Cytoscape and analyzed their functions respec-
tively (Fig.  2C-G). Notably, genes from top 1 cluster 
were all downregulated in OS and enriched in immune-
related functions such as positive regulation of immune 
cell activation/cytokine production, and MHCII class 
II protein complex (Fig.  2C). Top 2 cluster genes were 
about the functions of lipoprotein particle binding, gran-
ule membrane and phagocytosis (Fig. 2D). Top 3 cluster 
genes were enriched in functions of actin cytoskeleton 
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reorganization (Fig. 2E). Top 4 cluster genes were mainly 
associated with fibroblast proliferation (Fig.  2F). Top 5 
cluster genes were most significantly associated with cell 
migration including smooth muscle cell migration and 
leukocyte migration (Fig. 2G).

Five genes from top 1 cluster can also predict patient 
prognosis
To furtherly explore the potential effect of the 5 top 
clusters on OS patient prognosis, we did univariate Cox 
regression based on TARGET-OS database and found 9 
of the top cluster genes can also predict the prognosis 

of OS patients (Fig. 3A-B). Interestingly, 5 of the 9 prog-
nostic genes, i.e., FCER1G, CSF1R, C1QA, TYROBP, and 
C1QB, were from the TYROBP-centered top 1 cluster, 
suggesting the importance of top 1 cluster in OS progres-
sion (Fig. 3B). All the 5 genes from top 1 cluster, includ-
ing TYROBP itself (Fig.  3C), had a Hazard Ratio (HR) 
less than 1 (Fig.  3B), suggesting their protective effect 
on good OS prognosis (i.e., the higher expression associ-
ated with good prognosis). By GSEA enrichment analy-
sis, the TYROBP co-expressed genes (|R|> 0. and p < 0.05) 
in OS were enriched in annotations including innate/
adaptive immune system, cytokine signaling, neutrophil 

Fig. 1  Differentially expressed genes (DEGs) were identified in four OS datasets and functional enrichment analysis on them. A-B The Venn diagram 
representing DEGs numbers in each dataset. C-D The top three KEGG pathways and GO functions (BP, CC, MF) assembled by upregulated (C) and 
downregulated (D) genes
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Fig. 2  The top 10 hub genes in PPI network of DEGs and the top 5 cluster genes in DEGs network. A The top 10 hub genes in PPI network of DEGs. 
The area represented the degree of each node the red node represented upregulated genes, while the blue node represented the downregulated 
genes. B The top 3 KEGG and GO annotations enriched by the total DEGs. C-G The PPI network of top 5 clusters
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degranulation, and TYROBP causal network (Fig.  3D), 
indicating the strong connection between TYROBP and 
immune functions. Moreover, although FN1 had the 
highest degree in the whole network, it did not signifi-
cantly impact the OS prognosis (Fig. 3E).

The conserved TYROBP co‑expression network 
across multiple cancer types and its classic immune 
activation function
As the second highest degree gene in DEGs network 
and the highest degree gene in top 1 cluster, TYROBP 

also significantly impact the prognosis of OS patients 
(Fig.  3C). Therefore, we furtherly identified the con-
served TYROBP co-expressed network across multiple 
cancer types to explore its classic function in tumor 
progression. Firstly, we found that the expressional 
level of TYROBP was significantly (adjusted p < 0.05) 
lower in cancers including READ, PAAD, LUAD, LUSC, 
COAD, and OS, while the expressional level was higher 
in cancers including THCA, BRCA, STAD, ESCA, and 
GBM (Fig. 4A). Then we integrated all the down-regu-
lated co-expression genes of TYROBP in READ, PAAD, 

Fig. 3  The prognostic genes in the top 5 clusters. A The Venn diagram representing the 9 overlapping genes between 56 of top 5 cluster genes 
and all prognostic genes identified by univariate Cox regression analysis on TARGET-OS dataset. B The forest plot showing the Hazard Ratio with 
Credible Interval and P value of each gene in the analysis. C Survival curve showing OS overall survival based on the median expressional level 
cutoff of TYROBP. D GSEA plot showing significant enrichment of immune-related Reactome pathways in TYROBP positively co-expressed genes. E 
Survival curve showing OS overall survival based on the median expressional level cutoff of FN1 

(See figure on next page.)
Fig. 4  The common 55 TYROBP co-expression genes (including TYROBP) across cancer types and their enriched functions. A The boxplot showing 
the expressional levels of TYROBP between para-cancer tissues and cancer tissues across different cancer types (*, p < 0.05; **, p < 0.01; ***, p < 0.001). 
B The Venn diagram representing the number of TYROBP co-expression genes in cancer types with upregulated TYROBP (Left) and cancer type with 
downregulated TYROBP (Right), and the 55 of common genes across all cancer types. C The top 20 in all annotations and the top 3 in each type of 
database (BP, CC, MF, KEGG) enriched by the 55 TYROBP co-expression genes
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Fig. 4  (See legend on previous page.)
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LUAD, LUSC, COAD, and OS, and all the up-regulated 
co-expression genes in THCA, BRCA, STAD, ESCA, 
and GBM (Fig.  4B). By overlapping the 80 of down-
regulated co-expression genes and 109 up-regulated 
co-expression genes, we got 54 of conversed TYROBP 
co-expressed genes (R > 0.6 and p < 0.05) across multi-
ple cancer types (Fig.  4B). These genes were enriched 
in functions such as mononuclear cell/lymphocyte/leu-
kocyte proliferation, T cell activation, and antigen pro-
cessing and presentation (Fig.  4C), suggesting a classic 
immune activation function and a potential immune 
infiltration-associated function.

A two‑gene signature (FCER1G and SPI1) from TYROBP 
co‑expression network can predict OS prognosis
To explore the effect of the conserved TYROBP co-
expression network (Supplementary Fig. 1C) on OS prog-
nosis, we identified the top 10 hub genes in the network 
by PPI analysis and defined a two-gene signature from 
the 10 hub genes by the overall survival-based LASSO 
Cox regression model. Firstly, we found the 10 hub genes 
including SPI1 (first rank), TYROBP (second rank), 
FCER1G (third rank), ITGB2, C1QB, C1QA, LY86, LCP2, 
CCR1, and AIF1 (Fig.  5A). Even across the ten cancer 
types in Fig. 4B, the expressional levels of SPI1, TYROBP, 
FCER1G were also highly correlated with R > 0.8 and 
p = 0 (Fig. 5B). Therefore, we also name the TYROBP co-
expression network as SPI1-TYROBP-FCER1G network. 
Furthermore, a LASSO Cox regression analysis identified 
an optimal two-gene predictive signature (Fig.  5C) with 
risk score as follows: (-0.1405) × FCER1G expression 
value + (-0.0282) × SPI1 expression value. The AUC of 
risk score was 0.673 as independent prognostic indica-
tor (Fig. 5D), which was higher than the AUCs (Fig. 5E) 
of FCER1G (0.664), TYROBP (0.634), and SPI1 (0.658) 
expression value respectively. The overall survival of OS 
patients with higher risk score is significantly shorter 
than those with lower risk score (cut off by median risk 
score) from overall survival curve (Fig. 5F).

Different levels of immune infiltration between the two 
clusters of OS patients based on the expressional levels 
of FCER1G and SPI1
Because dividing OS patients by median risk score is rela-
tive arbitrary, we divided OS patients according to the 
expressional levels of FCER1G and SPI1 in TARGET-OS 
database by the consensus clustering analysis. We found 
cluster 1, which had lower expressional levels of FCER1G 
and SPI1, was significantly associated with poorer over-
all survival (p = 0.010, Fig.  6A). In addition, cluster 1 
also had lower stromal and immune scores (p < 0.01 and 
p < 0,001 separately, Fig. 6B), compared with cluster 2. To 
explore the alteration of different immune cell subsets, we 

estimate the immune cell infiltrations via both ssGSEA 
algorithm and xCell platform. We found almost all 
immune cells had higher scores in cluster 2 than that in 
cluster 1 in addition to CD56dim NK cells and Th2 cells 
(Fig.  6C). Besides, there were higher proportions of 
CD4 + Tem cells, endothelial cells (including ly and mv 
endothelial cells), macrophages (including M1 and M2), 
monocytes, dendritic cells (including aDC, cDC, iDC and 
pDC) in cluster 2 than that in cluster 1 (Fig. 6D), after fil-
tering cell subset less than 1% (0.01). Furthermore, xCell 
also identified the significantly higher immune score and 
microenvironment score in cluster 2 than that in cluster 
1, suggesting more immune infiltration and lower tumor 
microenvironment abundance (Fig. 6E).

To validate the result, we did the same analyses 
on GSE21257 data. Similarly, cluster 1 had signifi-
cantly poorer overall survival compared with cluster 
2 (p = 0.021, Fig.  6F-G). Almost all immune cells had 
higher scores in cluster 2 than that in cluster 1 in addition 
to CD56dim NK cells and pDC cells (Fig.  6H). Besides, 
there were higher proportions of CD4+ T cells (including 
T cells and Tem), CD8+ T cells (including T cells, Tcm 
and Tem), B cells (including B cells and class-switched 
memory B cells), endothelial cells, macrophages (includ-
ing M1 and M2), monocytes, dendritic cells (including 
iDC and pDC), basophils, eosinophils, erythrocytes, DC, 
and iDC in cluster 2 than that in cluster 1 (Fig. 6I), after 
filtering cell subset less than 1%. However, there were 
lower proportions of plasma cells and smooth muscle 
cells in cluster 2 than cluster 1 (Fig. 6I). Similarly, xCell 
also identified the significantly higher immune score/
microenvironment score but lower stroma score in clus-
ter 2 than that in cluster 1, indicating higher immune 
infiltration but lower tumor purity and stroma cell pro-
portion (Fig. 6J).

These results indicated that low expressional levels of 
FCER1G and SPI1 could predict an attenuated immune 
infiltration and poorer prognosis, suggesting a potential 
immune escape and metastasis tendency. By comparing 
the expressional level between OS patients with metas-
tases after diagnosis of primary tumor and patients with-
out metastases in GSE21257, we found the expressional 
levels of TYROBP (p = 0.0003, Log2FC = -1.16), FCER1R 
(p = 0.0002, Log2FC = -1.19) and SPI1 (p = 0.0059, 
Log2FC = -0.599) were all down-regulated in metastases 
group, consistent with the above result.

Transcription factor SPI1 may initiate the expression 
of whole TYROBP network and be impacted by upstream 
TNF‑α
Although TYROBP is in the center of its whole co-
expression network, it cannot regulate gene expression 
as a transcription factor. Therefore, we predicted the 
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Fig. 5  The prognostic two-gene signature from the hub genes in conserved SPI1-TYROBP-FCER1G network. A The hub genes in conserved 
SPI1-TYROBP-FCER1G network. The depth of color reflecting the rank in the hub genes. B The correlation between SPI1/FCER1G and TYROBP across 
cancer types. C Coefficients of selected features are shown by lambda parameter. Partial likelihood deviance versus log (λ) was performed through 
LASSO regression. D ROC curve based on the two-gene signature for overall survival according to risk scores. E ROC curves for overall survival 
according to the expressional levels of SPI1, FCER1G, or TYROBP. F Kaplan–Meier plots of overall survival according to risk scores

(See figure on next page.)
Fig. 6  Differential overall survival and immune infiltration of OS in cluster 1 and cluster 2 subgroups according to the expressional levels of SPI1 and 
FCER1G. A-E Based on TARGET-OS dataset. F-J Based on GSE21257 dataset. A and F Consensus clustering matrix for k = 2. B and G Kaplan–Meier 
overall survival curves for OS. C and H The boxplot of immune cell infiltration score in cluster 1 and 2. D and I The boxplot of immune cell infiltration 
proportion in cluster 1 and 2. E and J The boxplot of immune infiltration score in cluster 1 and 2. ns, p ≥ 0.05,*, p < 0.05,**, p < 0.01,***, p < 0.001
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Fig. 6  (See legend on previous page.)
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key transcription factor of the 55 genes of the TYROBP 
network by ChEA3 platform. SPI1 ranked second in the 
top 50 predicted transcription factors. Furthermore, in 
addition to the 5 genes (i.e., C1orf162, SLAMF8, HLA-
DPB1, HLA-DRA, and HLA-DRB1), all other 50 genes 
in the network, including TYROBP, FCER1G, and SPI1 
itself, can be bound and regulated by SPI1 (Fig.  7A). 
Interestingly, GSEA enrichment analysis also showed 
that transcription factor PU.1/SPI1 motifs were enriched 
in TYROBP positively correlated genes (Fig.  7B). ChIP-
seq and RNA-seq data validated the binding of SPI1 on 
TYROBP (Fig.  7C) and other 9 of network hub genes 
(data not shown). Notably, the low expressional level of 
SPI1 was significantly associated with poorer overall sur-
vival in TARGET-OS dataset (Fig. 7D).

To identifying the upstream factor of SPI1 in OS, by 
GSEA analysis, we found ‘TNF-α signaling via NF-κB’, 
‘IFN-α/γ response’, ‘inflammatory response’ and ‘IL2-
STAT5 signaling’ pathways were all enriched in TYROBP 
positively correlated genes (Fig.  7E). Moreover, by the 
analysis of Drug Pair Seeker (DPS), we found TNF-α and 
IGF2 can partly rescue the under-expression of TYROBP 
network and the over-expression of TYROBP negatively-
correlated genes in OS (Fig. 7F). These results suggested 
the importance of TNF-α in the activation of SPI1 and 
TYROBP network, and a potential deficiency of tumor 
microenvironmental TNF-α in OS and OS with poorer 
prognosis.

The TYROBP network‑associated immune molecules 
affecting immune infiltration and activation
To furtherly explore the mechanism of downregulated 
immune infiltrations in OS, we overlapped the immune 
stimulators, MHC molecules, chemokines, and immune 
inhibitors with 965 of TYROBP positively-correlated 
genes (R > 0.4, p < 0.05) in TARGET-OS dataset and 
491 of down-regulated genes in >  = 2 GEO datasets 
(i.e., GSE33382, GSE12865, GSE16088 and GSE14359). 
We identified 1 of immune stimulators (CD86), 5 of 
MHC molecules (HLA-DMA, HLA-DMB, HLA-DPA1, 
HLA-DPB1, HLA-DRA), 3 of chemokines (CCL4, 
CXCL10, CX3CL1), and 2 of immune inhibitors (CSF1R, 
HAVCR2), which were both TYROBP positively-corre-
lated and down-regulated in OS samples compared with 
that in normal samples (Fig.  8A-B), which potentially 

underlay the mechanism of attenuated immune infiltra-
tions by the under-expression of SPI1-TYROBP-FCER1G 
network in OS (Fig. 8C).

Discussion
This study identified a conserved TYROBP co-expression 
network that was associated with both OS oncogenesis 
and prognosis. The whole workflow was summarized in 
Fig. 8D. Firstly, we found five functional gene clusters of 
DEGs between control and OS samples. Then we focused 
on the TYROBP-centered top 1 cluster that was down-
regulated in OS and associated with MHC II complex, 
immune cell activation and cytokine production. The 
under-expression of five genes (i.e., FCER1G, CSFR1, 
C1QA, TYROBP, and C1QB) from top 1 cluster were also 
associated with poorer overall survival of OS patients. 
Furthermore, we extended the top 1 cluster into a more 
conserved TYROBP co-expression network with 10 hub 
genes (SPI1, TYROBP, FCER1G, ITGB2, C1QB, C1QA, 
LY86, LCP2, CCR1, AIF1) by an analysis across cancer 
types, which was associated with immune cell prolifera-
tion and T cell activation. Then, the risk score combin-
ing the expression levels of both SPI1 and FCER1G were 
constructed to predict the overall survival of OS patients. 
Moreover, we found the distinguished immune infiltra-
tions between two clusters of OS patients with differ-
ent overall survival times, suggesting the importance of 
SPI1-TYROBP-FCER1G network in upregulating the 
microenvironmental immune infiltration and promot-
ing better prognosis. In addition, we identified SPI1 as 
the key transcription factor in the network, and found it’s 
potentially associated with the upstream TNF-α signal-
ing. We also identified the TYROBP positively-correlated 
and downregulated immune molecules in OS, suggesting 
the immune-related mechanism of attenuated immune 
infiltration and activation in OS.

As a conserved and immune-related network across 
multiple cancer types, some molecules in the SPI1-
TYROBP(i.e., KARAP or DAP12)-FCER1G network have 
been identified as prognostic biomarkers before in other 
cancer types [38–41] and OS [42–44]. Although the net-
work was upregulated in certain cancer types (e.g., clear 
cell renal cell carcinoma, breast cancer, gastric cancer, 
and low-grade glioma) and positively associated with the 
poorer prognosis and higher immune infiltrations, the 

Fig. 7  The key transcription factor SPI1 in the conserved SPI1-TYROBP-FCER1G network. A The Venn diagram representing the numbers of ChEA3 
predicted transcription factors/SPI1 binding genes and TYROBP network genes. B GSEA plot showing significant enrichment of PU.1 and IRF 
binding motifs in TYROBP positively co-expressed genes. C The genomic signal density around TYROBP showing the PU.1 binding regions upstream 
and the mRNA level of TYROBP. D Kaplan–Meier plots of overall survival according to expressional level of SPI1 (median cutoff ). E GSEA plot 
showing the significant enrichments of signaling pathways including TNF-α signaling via NF-κB in TYROBP positively co-expressed genes. F Drug 
pairs found by Drug Pair Seeker representing the cytokine pairs including TNF-α that can upregulate the TYROPB network

(See figure on next page.)
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network was downregulated in OS, positively associated 
with higher immune infiltrations in OS, and negatively 
associated with the poorer prognosis of OS. Therefore, 
despite the same positive-correlation between TYROBP 
network and higher immune infiltrations across mul-
tiple cancer types [38–45], the associations between 
TYROBP network and overall survival in different can-
cer types were different, suggesting the altered role of 
immune infiltration or altered major infiltrating cell types 
among different cancer types. In a word, SPI1-TYROBP-
FCER1G network is a conserved immune-related net-
work underlying both the oncogenesis and the prognosis 
of OS and other cancer types.

Across multiple cancer studies, the TYROBP network 
was always positively-associated with immune infil-
tration, such as the increased infiltration of CD8+ T 
cells, DCs, and macrophages [38–45]. According to our 
study on its potential mechanism, the overexpression of 
TYROBP network may activate the immune infiltration 
by the co-expressed immune stimulators, MHC mol-
ecules, and chemokines. After recruiting immune cells 
into the tumor microenvironment by secreting CCL4 
(collaborating with CCR5 to recruit CD8 + T cells, NK 
cells, monocytes, etc. [46, 47]), CXCL10 (collaborating 
with CXCR3 to recruit CD8 + T cells, NK cells, etc. [48–
50]), and CX3CL1 (not only collaborating with CX3CR1 
to recruit CD4 + T cells, CD8 + T cells, dendritic cells 
[51, 52], but also inducing OS metastasis via ICAM-1 
[52]), molecules CD86 (co-stimulatory molecule CD86 
polymorphism is also associated with increased suscep-
tibility to osteosarcoma [53]) and MHCs (HLA-DPA1/
HLA-DPB1/HLA-DRA) on the surfaces of the tumor 
cells, endothelial cells or DCs/macrophages can furtherly 
activated T cells in the microenvironment. Therefore, the 
under-expression of TYROBP network can lead to the 
attenuated immune infiltrations of OS due to the lack 
of chemokines, stimulators and MHCs, which can cause 
the immune escape and then the metastasis of OS. Fur-
thermore, we also found the down-regulation of immune 
checkpoint inhibitors CSF1R and HAVCR2 in OS. It 
has been found that OS tumor cell-intrinsic CSF1R can 
enhances cell proliferation and metastasis by CSF-1R/
JAG1 axis or ERK signaling pathway [54, 55]. HAVCR2 
(i.e., TIM-3), as an immune checkpoint inhibitor, can 
also promote the OS progression by inducing T cell 

exhaustion and impair T cell function when expressed on 
T cells [56, 57] and inducing M2 macrophage polariza-
tion when expressed on macrophages [58, 59]. The rela-
tionship between the under-expression of CSF1R and 
immune infiltration in OS needs further study in the 
future.

As transmembrane immune signaling adaptor pro-
teins, TYROBP and FCER1G may mediate an intracellu-
lar signal via immunoreceptor tyrosine-based activation 
motif (ITAM) to up-regulate the expression of SPI1 and 
then initiate the whole SPI1-TYROBP-FCER1G network 
for a competent immunological surveillance function 
with upregulated immune infiltrations in tumor micro-
environment [60–63]. SPI1, as an oncogene, is also an 
important transcription factor for monocyte and mac-
rophage identity. However, it can also be regulated by 
multiple signals, such as NF-κB signaling from upstream 
TYROBP, FCER1G [62, 63], TNF-α [64, 65] or IFN-γ [66, 
67]. SPI1, as the key transcription factor for the network, 
may shape a positive-feedback network with the signal-
ing from TYROBP/FCER1G or environmental TNF-α/
IFN-γ, then furtherly initiate the whole SPI1-TYROBP-
FCER1G network to regulate the immune infiltration and 
cancer prognosis (Fig. 8C). In OS, the under-expression 
of SPI1-TYROBP-FCER1G network in tumor cells or 
microenvironmental endothelial cells/myeloid cells can 
potentially attenuate the immune infiltration and T cell 
activation, leading to the metastasis/poorer prognosis of 
OS (Fig. 8C).

This study has several limitations. First, the relatively 
small number of DEGs that appeared in >  = 3 datasets may 
be due to the heterogeneity between these GEO datasets 
that we have mentioned in the result, which can reduce 
the efficiency of finding more functional gene clusters. 
However, it did not affect the validity of already identified 
results. In addition, although current studies have obtained 
useful findings, more laboratory studies both in vitro and 
in vivo are needed to validate these bioinformatic results 
in the future, such as the levels of SPI1-TYROBP-FCER1G 
network-regulated immune molecules in OS tumor cells. 
Thirdly, in addition to OS tumor cells, the expressional 
levels of SPI1-TYROBP-FCER1G network in other poten-
tial cell types, such as myeloid cells and endothelial cells, 
in the microenvironment are still unclear. Furthermore, 
the reason why SPI1-TYROBP-FCER1G network was 

(See figure on next page.)
Fig. 8  The relationship between TYROBP network and immune-related genes in OS and the schematic workflow of the whole study. A-B The 
Venn diagram representing the overlapping between downregulated genes in OS, TYROBP positively correlated genes in OS, and immune 
related genes (i.e., immune stimulators, MHC molecules, chemokines in A, and immune inhibitors in B). C The working model representing the 
TNF-α-SPI1-TYROBP network pathway across cancer types, which can regulate immune infiltration and CD8+ T cell activation. D Workflow for the 
whole study as to how to identify the SPI1-TYROBP-FCER1G network and its association with immune microenvironment
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upregulated in certain cancer types but downregulated in 
the others including OS, and its potential immunological 
mechanism, cannot be answered by our study and need 
further explorations in the future.

In a word, our study identified a conserved SPI1-
TYROBP-FCER1G network across cancer types for the 
first time, and explored its immune-related mechanism 
in OS, which could be used as a treatment target in OS 
with TNF-α or TYROBP/FCER1G stimulators to res-
cue the under-expression of SPI1-TYROBP-FCER1G 
network in OS. The drug seeker analysis also supported 
a standpoint [68] that anti-TNF-α treatment in OS may 
cause metastasis and poorer prognosis by sustaining the 
under-expression of SPI1-TYROBP-FCER1G network. 
We provided an essential bioinformatic mechanism foun-
dation and a novel therapeutic target of OS oncogenesis 
and prognosis for future explorations.
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