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Identification of an ACK1/TNK2-based 
prognostic signature for colon cancer to predict 
survival and inflammatory landscapes
Defeng Kong1, Guoliang Li1, Zhenrong Yang1, Shujun Cheng1, Wen Zhang2*, Lin Feng1* and Kaitai Zhang1* 

Abstract 

Activated Cdc42-associated kinase 1 (ACK1), a kind of tyrosine kinase, is considered to be an oncogene in many can-
cers, and it is likely to become a potential target for cancer treatment. We found that the expression of the ACK1 gene 
in colon cancer was higher than that in normal tissues adjacent to cancer, and high expression of the ACK1 gene was 
associated with poor prognosis of patients. We assessed the prognosis of colon cancer based on ACK1-related genes 
and constructed a model that can predict the prognosis of colon cancer patients in colon cancer data from The Can-
cer Genome Atlas (TCGA) database. We then explored the relationship between ACK1 and the immune microenviron-
ment of colon cancer. The overexpression of ACK1 might hinder the function of antigen-presenting cells. The colon 
cancer prognosis prediction model we constructed has certain significance for clinicians to judge the prognosis of 
patients with colon cancer. The expression of the ACK1 gene might affect the infiltration level of a variety of immune 
cells and immunomodulators in the immune microenvironment.
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Background
Colon cancer is a major health burden worldwide, and 
the incidence of colon cancer is on the rise [5]. At pre-
sent, the treatment of colon cancer is mainly based on 
traditional treatments such as surgery, radiotherapy and 
chemotherapy. With in-depth research on the mecha-
nism of colon cancer occurrence and development in 
recent years, many new treatment methods have been 
discovered, including molecular targeted therapy and 
immunotherapy, but these treatment methods have lim-
ited efficacy.

Until recently, the gene targets of precision therapy 
drugs mainly included MSI [30], BRAF [1], KRAS [7], 
NRAS [21], HER2 [10], NTRK [23], etc. However, these 
findings still cannot meet the needs of the many colon 
cancer patients with different molecular types. There-
fore, more effective therapeutic targets and more pre-
cise molecular classification of colon cancer need to be 
explored.

With the continuous progress of immunotherapy, it is 
necessary to establish reliable biomarkers for immune 
guidance. By inferring markers that are sensitive to 
immunotherapy, broadening our understanding of over-
lapping disease molecular fragments may help to better 
identify patients who respond to immunotherapy or tar-
geted therapy [2].

ACK1 tyrosine kinase is abnormally activated, ampli-
fied or mutated in a variety of human cancers. Dysregu-
lated kinase is carcinogenic, and its activation is related 
to the metastatic stage. The carcinogenicity of ACK1 is 
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not only due to its ability to promote the activation of key 
presurvival kinases and receptors by phosphorylation of 
different tyrosine residues but also due to the use of simi-
lar mechanisms to eliminate tumour suppressors in can-
cer cells. ACK1/TNK2 is a nonreceptor tyrosine kinase 
(NRTK) that represents a paradigm of tyrosine kinase 
signalling and seems to be addictive to cancer cells. Since 
the ACK1 signal can be activated by multiple ligands 
in the same cell, its importance is further emphasized. 
This finding is particularly important in cancers that are 
resistant to the inhibition of a single RTK pathway and 
have activated alternative RTK-regulated pathways to 
survive [14, 16].

There has been almost no research on the role of ACK1 
in colon cancer, especially in terms of immune invasion 
and prognosis of colon cancer. Therefore, this article 
explored the use of ACK1 to infer the prognosis of colon 
cancer and the immune microenvironment. ACK1 may 
become a potential target for precision therapy that ben-
efits colon cancer patients.

Methods and materials
Data sources and access to clinical information
This article selected the colon adenocarcinoma (COAD) 
cohort in the TCGA database. The clinical information 
for these patients was also downloaded directly from the 
TCGA database. Additionally, we selected two sets of 
data from the Gene Expression Omnibus (GEO) (https://​
www.​ncbi.​nlm.​nih.​gov/​geo/​query/​acc.​cgi?​acc=​GSE93​48, 
GSE44076). The immunohistochemical pictures provided 
in the article were from the Human Protein Atlas avail-
able from http://​www.​prote​inatl​as.​org [27].

Gene function enrichment analysis
Gene ontology (GO) and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) were implemented using R soft-
ware version 4.0.2 and the R package “clusterProfiler”.

Signature identification based on ACK1‑related genes 
and establishment of a prognostic model
We selected the top 500 genes associated with 
ACK1 with P  < 0.05. Then, the least absolute shrink-
age and selection operator (LASSO)-Cox model with 
the “glmnet” and “survival” R packages was used to 
screen variables, and 8 genes were used to construct 
a prognostic model. The risk score was calculated: 
Risk score = (Gene1 * coef Gene1) + (Gene2 * coef 
Gene2) + … + (Gene8 * coef Gene8). All patients were 
divided into two groups according to the risk score. The 
survival analysis of the high-risk group and the low-risk 
group was analysed by the Kaplan–Meier method and 
two-tailed log-rank test, and P  < 0.05 was considered 

to be significantly different. We used nomograms com-
bined with clinical characteristics and patient risk 
scores for cancer prognosis. The nomogram was created 
by the rms package of R software. The consistency index 
(C-index) was used to measure the prediction accu-
racy of the nomogram. In addition, we randomly split 
the TCGA colorectal cancer dataset at a ratio of 7:3 for 
internal verification.

Analysis of immune cell infiltration in colon cancer
Cell type identification by estimating relative subsets of 
RNA transcripts (CIBERSORT) was adopted to qualify 
and quantify 22 types of immune cells in colon cancer 
tissues. (https://​ciber​sort.​stanf​ord.​edu/) [19]. The results 
were displayed using R software version 4.0.2.

The relationship between ACK1 and immunomodulators
The correlation analysis between genes and immune 
cells was processed by the Tumour Immune Estimation 
Resource (TIMER) database (cistr​ome.​dfci.​harva​rd.​edu/​
TIMER/) [13], and the correlation analysis between genes 
and immunomodulators was performed on the TISIDB 
website (http://​cis.​hku.​hk/​TISIDB/) [20].

Statistical analysis
Statistical analysis was performed using R software ver-
sion 4.0.2. In all statistical analyses presented in this 
article, when P < 0.05, the difference was considered sta-
tistically significant.

Results
ACK1/TNK2 is differentially expressed in colon cancer 
and adjacent tissues
We adopted colon cancer data from the TCGA database. 
In the colon cancer cohort, ACK1 expression in cancer 
tissues was higher than that in adjacent cancer tissues 
(Fig. 1A, B). We also verified the results in two independ-
ent datasets from the GEO database (Fig.  1C, D). This 
provided a chance for ACK1 become one of the targets 
of colon cancer treatment. Colon cancer patients were 
divided into two groups according to the expression 
of ACK1. The prognosis of patients in the ACK1 high 
expression group was worse (Fig. 1K).

We referred to immunohistochemical images of colon 
cancer tissue and normal colon tissue from the Human 
Protein Atlas, and the results showed that the expression 
level of ACK1 protein was higher in colon cancer tissue 
(Fig. 1E-J) [27].

Signal pathway analysis of ACK1 related genes
To study the signal regulation characteristics of genes 
related to ACK1, we screened the top 500 genes related to 
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ACK1 and performed signal pathway enrichment analy-
sis. The activated signalling pathways included the follow-
ing cancer-driving gene signalling pathways: P53 pathway, 
inflammatory signalling pathway interferon alpha pathway, 
interferon gamma pathway, hypoxia signalling pathway, 
TNFα signalling pathway, ras protein signal transduction, 
autophagy, oestrogen response pathway, apoptosis pathway 
and oxidative phosphorylation signalling pathway. These 
signalling pathways play a vital role in the occurrence and 
development of cancer. Some of these signalling pathways 
have become classic target pathways for cancer targeted 
therapy, such as the ras protein signal transduction path-
way and oestrogen response pathways (Fig. 2). This result 
indicated that ACK1 might be a potential target for cancer 
targeted therapy.

A prognostic model based on ACK1‑related genes can be 
used as an indicator to evaluate the prognosis of colon 
cancer
We constructed a prognostic model with eight genes (​
POF​UT2​*0.​129​542​673​119284 +​ ​TME​M19​8B*​0.0​970​654​
34827916 + ASB6*0.220764646390914 + A​RHG​AP4​*0.​
009​353​573​99314663 + ASPHD1*0.0140944673936701 + 
KCTD1*0.0849497715526077 + ENO3*0.134401085942
573 + NOL3*0.1370027521824) based on ACK1-related 
genes (Fig.  6A, B, C). According to our model, patients 
were divided into high and low groups by calculating 
risk scores, and the prognosis of patients in the high-
risk group was worse (Fig.  3E). The risk score was sig-
nificantly associated with survival in COAD, as indicated 
by the multivariate Cox regression analyses (HR = 2.79, 

Fig. 1  Expression of ACK1/TNK2 gene and protein in cancer tissues and normal tissues adjacent to cancer and its relationship with prognosis. A 
TCGA cohort; B Paired samples of TCGA cohort; C Data from GSE9348; D Data from GSE44076; E, F, G, H Immunohistochemical results of ACK1 
in colon cancer tissue from HPA database. E HPA041954; F HPA041954; G HPA041954; H HPA041954; I, J Immunohistochemical results of ACK1 in 
normal tissues adjacent to cancer from the HPA database. I HPA041954; J HPA041954. K Survival curve of ACK1 expression in the TCGA colon cancer 
cohort
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95% CI = 1.72–4.5, P  < 0.001) (Fig.  3D). The area under 
the curve (AUC) of the receiver operating characteristic 
curve (ROC) was 0.69 (Fig.  3F). Subsequently, we con-
ducted internal verification of the randomly selected data 
from the TCGA colon cancer dataset. The patients in the 
high-risk group had a worse prognosis (Fig. 3G), and the 
AUC of the ROC curve was 0.69 (Fig. 3H).

We constructed a prognostic nomogram in COAD to 
anticipate the individuals’ survival probability by weighing 
risk score, stage, age, and sex. Calibration was performed 
for the nomogram (Fig. 4B). The calibration curve showed 
that the probability predicted by the nomogram was 

consistent with the ideal reference line for 1-year, 3-year 
and 5-year survival rates (Fig. 4C, D, E). We also evaluated 
the predicted discrimination of the nomogram using the 
C index, which quantifies the level of agreement between 
the probability derived from the nomogram and the actual 
death observation. The C index of our prognostic nomo-
gram reached 0.78.

The landscape of infiltrating immune cells in colon cancers 
and normal tissues
We systematically delineated the pattern of immune cells 
by extracting and processing the signature gene expression 
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profile with the CIBERSORT method. After removing the 
samples with P ≥ 0.05, the landscape of the infiltrating 
immune cells in cancer tissues and adjacent cancer tis-
sues for TCGA colon cancer cohorts is displayed in Fig. 5. 
Naive B cells, plasma cells, monocytes, M2 macrophages, 

resting dendritic cells and resting mast cells had a higher 
degree of infiltration in adjacent tissues. CD4 memory-
activated T cells, resting NK cells, M0 macrophages, M1 
macrophages, activated mast cells, and neutrophils had an 
increased infiltration rate in cancer tissues (Fig. 5A, B).

Fig. 3  An 8-gene prognostic model based on ACK1/TNK2-associated genes. A The LASSO coefficient profiles of the most useful prognostic genes. 
B Plot of cross-validated partial likelihood deviances. The number on the top of the plot shows the number of genes of each model. C Results 
of the multivariate Cox regression analyses of genes in the model regarding OS in the COAD cohort. D Results of the univariate and multivariate 
Cox regression analyses of clinical features and risk of model regarding OS in the COAD cohort. E Prognostic analysis of high- and low-risk groups 
according to the risk score of the 8-gene prediction model. F ROC curve of 8 gene prediction model. G Prognostic analysis of internal validation set. 
H ROC curve of internal validation set



Page 6 of 12Kong et al. BMC Cancer           (2022) 22:84 

ACK1 expression is related to the degree of immune cell 
infiltration
Subsequently, we investigated the interaction between 

ACK1 gene expression and tumour immune infiltration. 
The immune cell infiltration levels changed along with 
the ACK1/TNK2 gene copy numbers. Two immune cell 
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Fig. 5  COAD immune infiltration analysis based on cell type identification by estimating relative subsets of RNA transcripts (CIBERSORT) method. A 
Violin plots showing the differences in the immune cell distribution between cancer (red) and adjacent normal tissues (blue) in COAD. B Heatmaps 
indicating the differences in the immune cell distribution between cancer (red) and adjacent normal tissues (blue) in COAD. C Correlation between 
immune cells in COAD
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infiltration levels seemed to be associated with altered 
ACK1/TNK2 gene copy numbers, including CD8+ T 
cells and neutrophils, in COAD (Fig. 6A). The expression 
of ACK1 was also positively correlated with the infiltra-
tion levels of CD4+ T cells and dendritic cells (Fig.  6B). 
In a more detailed classification of immune cells, the 
expression of ACK1 was negatively correlated with several 

immune cells, including activated CD4+ T cells, activated 
CD8+ T cells, iDCs, macrophages, mast cells, pDCs, Tem 
CD4+ cells, Tgd cells and Th2 cells, but not CD56dim cells 
(Fig. 6C).

Fig. 6  Correlation analysis between ACK1, immune cells and immunomodulators processed by the TIMER database and the TISIDB website. A 
Correlation between ACK1 gene copy numbers and immune cell infiltration levels in COAD. *p < 0.05; **p < 0.01; ***p < 0.001. B The correlation 
between the expression level of the ACK1 gene and different immune cells in COAD by the TIMER database. C Correlation between ACK1/TNK2 
gene expression and different immune cell subgroups by the TISIDB website



Page 9 of 12Kong et al. BMC Cancer           (2022) 22:84 	

ACK1 expression is related to the expression of immune 
checkpoint proteins
ACK1 was positively correlated with the expression of 
HLA-F, TAP2 and TAPBP (Fig.  7). These three proteins 
belong to the MHC family. HLA-F was negatively cor-
related with overall survival (OS) in all grades of glioma 
and glioblastoma (GBM) [9]. Abnormal function of 
the TAP gene plays an important role in tumorigenesis 
and development [12]. Then, we explored the relation-
ship between ACK1 and immunostimulators as well as 

immunoinhibitors (Fig. 7). Signals initiated through both 
the TCR complex and CD28 were required for optimal 
activation of T lymphocytes. Recently, it has been dem-
onstrated that CD28 interacts with two different ligands, 
designated CD80 (B7/B7–1) and CD86 (B70/B7–2). The 
roles of CD80 and CD86 in an immune response may 
be determined primarily by their differential expression 
on APCs [3, 11]. However, ACK1 was negatively cor-
related with the expression of CD80 and CD86, so we 
inferred that the overexpression of ACK1 might hinder 

Fig. 7  Correlation between the ACK1/TNK2 gene and immunomodulators
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the function of antigen-presenting cells. The study by 
Duhen and colleagues showed that CD103 + CD39+ 
tumour-infiltrating CD8 T cells (CD8 TILs) were 
enriched for tumour-reactive cells in both primary and 
metastatic tumours. CD103 + CD39+ CD8 TILs also 
efficiently killed autologous tumour cells in an MHC 
class I-dependent manner [8]. However, the expression 
of ACK1 was negatively correlated with the expression 
of ENTPD1. The expression of ACK1 might be detri-
mental to the killing function of CD8 TILs. ACK1 was 
positively correlated with the expression of TNFRSF14. 
Tumour necrosis factor receptor superfamily 14 is highly 
expressed in various tumour tissues and plays criti-
cal roles in tumour biology. A high level of TNFRSF14 
expression was associated with poor overall survival (OS) 
and disease-free survival (DFS) in patients with clear cell 
renal cell carcinoma (ccRCC) [24].

Tumours evade immune-mediated recognition through 
multiple mechanisms of immune escape. During the 
last decade, immunotherapies targeting IRs such as pro-
grammed cell death receptor 1 (PD-1) and anticytotoxic 
T lymphocyte-associated antigen 4 (CTLA-4) have pro-
vided ample evidence of clinical benefits in many solid 
tumours. Beyond CTLA-4 and PD-1, multiple other IRs 
were also targeted with immune checkpoint blockade in 
the clinic. Specifically, the T cell immunoreceptor with 
immunoglobulin and ITIM domain (TIGIT) is a prom-
ising new target for cancer immunotherapy. TIGIT is 
upregulated by immune cells, including activated T cells, 
natural killer cells, and regulatory T cells. TIGIT binds 
to two ligands, CD155 (PVR) and CD112 (PVRL2, nec-
tin-2), which are expressed by tumour cells and antigen-
presenting cells in the tumour microenvironment [6]. 
The expression of ACK1 and PVRL2 was negatively cor-
related. Therefore, the immune microenvironment of 
colon cancer tissues overexpressing ACK1 may be very 
complicated and needs to be further explored.

Discussion
The ACK1 gene is located on human chromosome 3q29, 
encodes a large protein (140 kDa) of 1038 amino acids 
and contains at least 8 different domains. This multid-
omain structure not only promotes the localization of 
ACK1 to different cell compartments but also promotes 
its association with disparate proteins, fostering its func-
tional diversity [15].

The ACK1 gene is oncogenically activated in a variety 
of cancers, such as lung cancer, head & neck squamous 
cell carcinomas, breast cancer and gastric cancer [18, 22, 
26, 31]. Aberrant ACK1 activation leading to its onco-
genicity may occur by at least three distinct mechanisms: 

deregulated RTK activation feeding into ACK1, gene 
amplification and somatic missense mutations [15].

Although the role of ACK1 in promoting the occur-
rence and development of cancer has been found in many 
cancers, in colon cancer, the impact of the ACK1 gene 
on the immune microenvironment and the prognosis of 
patients has not been reported.

The occurrence and development of colon cancer is a 
complex process involving multiple genes and multiple 
stages. At present, many important driver genes have 
been discovered, such as P53, APC, and KRAS [28, 29]. 
Driver genes and accompanying genes can become tar-
gets for tumour therapy [7]. The development of cancer is 
a process in which tumour cells interact with the micro-
environment. It is very important to study how driver 
genes interact with the immune microenvironment.

We found that there was a significant difference in the 
expression of the ACK1 gene between colon cancer tis-
sues and adjacent normal tissues. As an oncogene, the 
high expression of ACK1 in tumour tissues may explain 
its role in tumour initiation. Therefore, ACK1 may be a 
potential therapeutic target [14, 17]. The expression of 
ACK1 is significantly related to prognosis.

The expression of a single gene may vary due to differ-
ent samples or sequencing methods, so it is often impos-
sible to accurately predict the prognosis of patients with 
a single gene. However, gene signature can remedy this 
problem. Multigene verification can reduce the deviation 
caused by the specificity of a single gene. A prognostic 
model built on the basis of ACK1-related genes can infer 
the patient’s prognostic status. This model provides a 
new method for evaluating the prognosis of colon cancer 
patients.

Colon cancer is highly related to inflammation. Inflam-
mation plays an indispensable role in the process of can-
ceration and progression of colon tissue. Inflammation 
causes changes in the immune microenvironment of 
colon tissue, and long-term chronic inflammation pro-
motes the survival of tumour cells. In addition, inflamma-
tion leads to changes in the composition of the intestinal 
flora, which indirectly lead to the formation of cancer 
[25, 28]. The relationship between ACK1, immune cells 
and immunomodulators also provides a point for under-
standing the immune microenvironment of colon cancer.

The study by Bindea et al. reported that the density of 
B cells was elevated in adjacent tissues [4]. This result 
was consistent with our research. In general, the immune 
microenvironment of colon cancer is very complex and 
worthy of further exploration and research.

Based on the analysis of TCGA data, GEO data and 
protein expression data, this article found that ACK1 is 
more highly expressed in colorectal cancer tissues than 
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in adjacent tissues and that patients with high ACK1 
expression have a poorer prognosis. Through GO and 
KEGG analysis, it was found that the high expression of 
ACK1 is related to the P53 pathway, inflammatory signal-
ling pathway interferon alpha pathway, interferon gamma 
pathway, hypoxia signalling pathway, TNFα signalling 
pathway, ras protein signal transduction, autophagy, oes-
trogen response pathway, apoptosis pathway and oxida-
tive phosphorylation signalling pathway. This indicates 
that ACK1 may be a driver gene related to the occur-
rence and development of colon cancer and may become 
a therapeutic target in the future, providing a new target 
for targeted therapy. Subsequently, we made a prediction 
model for predicting the prognosis of colorectal can-
cer patients based on ACK-related genes. The prognosis 
of patients in the high-risk group is worse, which helps 
clinicians predict the survival time of colorectal cancer 
patients. Through the analysis of immune infiltration, we 
also found that the ACK1 gene is related to a variety of 
immune cells, indicating that ACK1 may be involved in 
the regulation of the tumour immune microenvironment, 
which plays a very complicated and unclear role. There-
fore, it is very important to further study the relation-
ship between ACK1 and immune cells and the immune 
microenvironment.

Our research also has some limitations. Although all of 
our results were based on a large amount of data analysis, 
more in-depth research on ACK1 needs to be verified by 
experiments in the future.

The ACK1 gene is related to many important signal 
transduction pathways, but its mechanism of action 
still needs to be experimentally verified. The clinical 
information included in the multivariate analysis of our 
model is limited and does not include information such 
as whether the patient had surgery or not and whether 
the patient received immunotherapy. In our immune 
cell infiltration analysis, we found that the ACK1 gene is 
related to a variety of immune cells, but this correlation 
needs to be verified by experiments, and the role of these 
immune cells in the occurrence and development of can-
cer still needs to be further explored.

Conclusions
In conclusion, the relationship between the ACK1 gene 
and immunomodulators may provide a reference for the 
immunotherapy of colon cancer. In addition, the eight-
gene prognostic model based on the correlation of the 
ACK1 gene will be helpful for clinicians to assess the 
prognosis of patients with COAD.
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