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Abstract 

Background:  Circulating cell-free DNA (cfDNA) in the plasma of cancer patients contains cell-free tumour DNA 
(ctDNA) derived from tumour cells and it has been widely recognized as a non-invasive source of tumour DNA for 
diagnosis and prognosis of cancer. Molecular profiling of ctDNA is often performed using targeted sequencing or 
low-coverage whole genome sequencing (WGS) to identify tumour specific somatic mutations or somatic copy num-
ber aberrations (sCNAs). However, these approaches cannot efficiently detect all tumour-derived genomic changes in 
ctDNA.

Methods:  We performed WGS analysis of cfDNA from 4 breast cancer patients and 2 patients with benign tumours. 
We sequenced matched germline DNA for all 6 patients and tumour samples from the breast cancer patients. All 
samples were sequenced on Illumina HiSeqXTen sequencing platform and achieved approximately 30x, 60x and 100x 
coverage on germline, tumour and plasma DNA samples, respectively.

Results:  The mutational burden of the plasma samples (1.44 somatic mutations/Mb of genome) was higher than the 
matched tumour samples. However, 90% of high confidence somatic cfDNA variants were not detected in matched 
tumour samples and were found to comprise two background plasma mutational signatures. In contrast, cfDNA 
from the di-nucleosome fraction (300 bp–350 bp) had much higher proportion (30%) of variants shared with tumour. 
Despite high coverage sequencing we were unable to detect sCNAs in plasma samples.

Conclusions:  Deep sequencing analysis of plasma samples revealed higher fraction of unique somatic mutations in 
plasma samples, which were not detected in matched tumour samples. Sequencing of di-nucleosome bound cfDNA 
fragments may increase recovery of tumour mutations from plasma.
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Background
Cell-free DNA (cfDNA) is an emerging non-invasive bio-
marker for diagnosis and prognosis of various acute and 
chronic disorders. cfDNA has been detected in many 
body fluids, including plasma, serum, urine and cer-
ebrospinal fluid [1]. cfDNA is predominantly of hemat-
opoietic origin [2], however recent studies have showed 
release of cfDNA from other organs and tissues into the 
extracellular compartments [3–5]. The connection of 

Open Access

*Correspondence:  d.ganesamoorthy@uq.edu.au; lachlan.coin@unimelb.edu.
au
2 Department of Clinical Pathology, The University of Melbourne, Parkville, 
Melbourne, Australia
7 Department of Infectious Disease, Imperial College London, London, UK
Full list of author information is available at the end of the article

http://orcid.org/0000-0001-8149-6703
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12885-021-09160-1&domain=pdf


Page 2 of 13Ganesamoorthy et al. BMC Cancer           (2022) 22:85 

cfDNA with several tissues and organs in the body makes 
it an attractive non-invasive biomarker for various dis-
eases including cancer.

Cell-free tumour DNA (ctDNA) derived from cancer-
ous cells can be detected in blood [6] and it has provided 
new avenues for non-invasive detection and monitoring 
of cancer [7]. Tumour-specific alterations such as somatic 
copy number aberrations (sCNAs) and single nucleotide 
variants (SNVs) have been detected in the plasma of can-
cer patients [8]. ctDNA has been detected in both early 
and late stage tumours [9] and the utility of ctDNA as 
a biomarker has been assessed for various cancer types 
with promising results [10]. The levels of ctDNA can 
be used as an early diagnostic marker and to monitor 
changes during therapy [11–13].

Currently the gold standard approach for tumour diag-
nosis involves biopsy sampling. However, the invasive 
nature of the biopsy sampling process restricts its use. 
It is not feasible for frequent sampling; the size and the 
location of the tumour also imposes limitations. Moreo-
ver, a biopsy only samples part of the tumour, hence, 
only represents a fraction of the possible heterogeneity 
observed in many tumours. ctDNA on the other hand 
can be obtained by a single blood draw allowing for mul-
tiple sampling. Also, as ctDNA is derived from various 
tumour clones and sites, it provides a comprehensive 
representation of the tumour heterogeneity in the patient 
[5]. These features make them an ideal biomarker for 
cancer diagnosis and monitoring.

Levels of ctDNA can vary between different cancer 
types and often early stage cancers have very low levels 
of ctDNA in plasma [9], making it difficult to measure. To 
enable accurate detection of ctDNA, targeted approaches 
such as quantitative PCR for specific gene mutations or 
copy number changes associated with cancer are widely 
used [14–16]. Targeted sequencing approaches using 
gene panels or exome panels have been utilised to enable 
testing of more targets in cfDNA [17, 18].

To date, most sequencing approaches on cfDNA for the 
detection of tumour-derived genomic alterations have 
been based on either targeted sequencing approaches 
or low-coverage whole genome sequencing (WGS) 
approaches. Higher sequencing coverage achievable via 
targeted approaches have facilitated detection of can-
cer related mutations even in samples with low ctDNA 
[19]. However targeted sequencing approaches cannot 
capture all genomic changes, such as structural rear-
rangements. Low-coverage WGS approaches are widely 
utilised to assess CNAs in ctDNA [20–23]. The size of the 
CNAs and the levels of ctDNA in the sample affects the 
efficiency of this approach [24]. In contrast to targeted 
sequencing, single nucleotide mutations cannot be accu-
rately detected using low-coverage WGS approach.

The cost associated with sequencing approaches 
has mainly hindered the use of high-coverage WGS 
approaches on cfDNA. However, simultaneous detection 
of gene mutations and CNAs in cfDNA can be achieved 
by WGS approaches [8, 25]. In this study, we aim to 
explore the utility of high-coverage WGS of cfDNA in 
cancer diagnosis. We performed high-coverage (~100X 
coverage) WGS analysis of cfDNA from patients with 
breast tumours and patients with benign tumours. We 
identified a large fraction of somatic mutations in cfDNA 
samples not detected in matched tumour samples and 
identified specific somatic mutational signatures in these 
samples. We also explored the differences in fragment 
size distribution in cfDNA samples.

Methods
Sample collection
Four patients with breast cancer (1084, 1249, 1494 and 
1524) and 2 patients with benign tumours (065 and 098) 
were included in this study. Tumour characteristics of 
these samples are provided in Supplementary Table  1. 
These patients were recruited by the Brisbane Breast 
Bank [26], which was approved by the Human Research 
Ethics Committee at the University of Queensland 
(Project ID: 2005000785) and the Royal Brisbane and 
Women’s Hospital (Ref. 2005/022). Tumour tissue sam-
ples were collected during surgery and blood samples 
were collected prior to the surgery from these patients. 
Tumour samples from benign tumour patients were not 
sequenced.

EDTA blood tubes were processed on the same day 
(between 1.5 to 5 h) of collection. Blood samples were 
centrifuged at 3000 rpm for 10 min to separate blood cells 
and plasma. The buffy coat was stored at -20οC for ger-
mline DNA extraction. Plasma aliquots were re-centri-
fuged at 13000 rpm for 10 min and the plasma was stored 
at -80οC for plasma cfDNA extraction. Tissue samples 
from tumours were snap frozen in liquid nitrogen and 
stored in − 80 degrees freezer.

DNA extraction
Plasma cfDNA was extracted using Circulating Cell 
free Nucleic Acid kit (Qiagen) according to manufac-
turer’s instructions. Germline DNA from Buffy coat 
was extracted using the QIAamp DNA Blood Mini kit 
(Qiagen) and tumour DNA from tissue samples were 
extracted using the AllPrep Universal kit (Qiagen) 
according to manufacturer’s instructions.

Library preparation
Libraries for sequencing were prepared using the TruSeq 
Nano HT Kit (Illumina) according to manufacturer’s 
instructions with minor modifications for plasma cfDNA 
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samples. Briefly germline and tumour DNA samples 
(100 ng input DNA) were fragmented to 350 bp and a size 
selection step was performed after the end repair process 
to remove small fragments. However, due to the nature 
of plasma cfDNA (20 ng input DNA), which consists of 
short DNA fragments, fragmentation and size selection 
were omitted during the library preparation. The rest of 
the process were similar for all DNA samples and pre-
pared according to the manufacturer’s instructions.

Libraries were sequenced on Illumina HiSeqXTen and 
150 bp paired-end sequencing was performed. Samples 
were sequenced at varying coverage for each sample type; 
plasma cfDNA samples were sequenced in 4 lanes of 
HiSeqXTen per sample, tumour samples were sequenced 
in 2 lanes per sample and germline DNA samples were 
sequenced in 1 lane to achieve 120X, 60X and 30X cover-
age respectively.

Pre‑processing of sequencing reads
FastQC [27] was used to assess the quality of the FastQ 
files. Trimmomatic (v0.32) [28] was used to trim Illu-
mina adapter sequences and low quality bases (base qual-
ity less than 30) in both ends of the read. Also reads less 
than 35 bp in length were discarded. Base quality was 
low towards the end of the read, therefore all reads were 
trimmed to 145 bp regardless of quality using fastx_trim-
mer (FASTX-Toolkit [29]).

Sequence reads were aligned to human genome hg19 
reference version using BWA MEM [30]. Samtools (v1.3) 
[31] was used to filter out supplementary alignments. 
MarkDuplicates option in Picard tools [32] was used to 
identify duplicated reads. Scripts used for processing of 
sequencing reads are provided in https://​github.​com/​
Devik​a1/​Plasma_​HiSeq​XTen.

Somatic variant analysis
Somatic single nucleotide variant (SNV) detection was 
performed using VarScan2 (version 2.4.4) [33] for both 
tumour and plasma samples. Samtools (v1.10) [31] mpi-
leup with default settings (except minimum mapping 
quality of 2) was used to generate the input for Varscan2 
variant calling. Samtools mpileup, by default considers 
overlapping reads and counts them only once and ignores 
duplicated reads in the read counts. VarScan2 with 
somatic option was used with default settings, except 
0.01 frequency was used for ‘min-var-freq’ option. The 
output was then processed with processSomatic option 
with default settings, except for --min-tumor-freq 0.01 
and --max-normal-freq 0.00 to identify high confidence 
somatic variants. These high confidence variants were 
further filtered with fpfilter option with default settings 
except for --min-var-freq 0.01 to remove false positive 
variants. Bam-readcount (version 0.8.0, https://​github.​

com/​genome/​bam-​readc​ount) was used to calculate 
readcounts, mapping quality and base quality at the vari-
ant positions and this information was used in the fpfilter 
to determine false positive variants. Output from fpfilter 
were filtered further using the following thresholds to 
identify high confidence somatic variants:

i)	 At least 10x coverage for germline and tumour sam-
ple

ii)	 At least 5 reads supporting the variant allele in 
tumour sample

iii)	0 reads in germline for the variant allele

Variant annotation
Somatic variants identified from VarScan2 were anno-
tated using Annovar [34] and hg19 human databases 
were used for annotation. Somatic variants which were 
shared between tumour and plasma samples were identi-
fied using custom awk scripts (provided in https://​github.​
com/​Devik​a1/​Plasma_​HiSeq​XTen).

Somatic reads enrichment
Reads supporting somatic variants were used for down-
stream analysis and these reads were extracted using a 
java package JAPSA (https://​github.​com/​mdcao/​japsa). 
The somatic reads extraction tool was deployed using 
script name jsa.hts.aareads. Filtered somatic output from 
VarScan2 (to provide position of somatic variants) and 
aligned bam file was used as input to extract reads con-
taining the somatic variant (script provided in https://​
github.​com/​Devik​a1/​Plasma_​HiSeq​XTen).

Mutational signature analysis
Mutational Patterns [35] was used to identify mutational 
signatures from the somatic mutation data. Somatic 
SNVs (specifically single base substitutions) from plasma 
and tumour samples were used for mutational signa-
ture analysis. Mutational Patterns R package was used 
for analysis (https://​github.​com/​UMCUG​eneti​cs/​Mutat​
ional​Patte​rns). De novo mutational signature extraction 
was performed using Non-negative Matrix Factorization 
(NMF). Contributions of known COSMIC mutational 
signatures (version 2) (https://​cancer.​sanger.​ac.​uk/​cos-
mic/​signa​tures_​v2) for SNVs were determined from the 
mutational profiles of each samples and this information 
was used to determine the mutational process.

Somatic CNAs analysis
Somatic copy number aberration (CNA) analysis 
was performed using IchorCNA [18]. Readcounts for 
IchorCNA analysis were generated using HMMcopy 
readcounter option (https://​github.​com/​shahc​ompbio/​
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hmmco​py_​utils). Readcounts were generated for 1 Mb 
window and reads with mapping quality of greater 
than or equal to 20 were used. CNAs in both tumour 
and plasma samples were assessed using IchorCNA 
with matched germline sample as normal control. 
For plasma samples, tumour content was expected to 
be low, therefore estimated tumour fractions of 5, 1, 
0.5 and 0.1% were used and ploidy was set to diploid. 
However, for tumour samples estimated tumour frac-
tions of 50, 60, 70, 80, 90% were used and ploidy was 
set to 2 and 3.

Fragment size distribution
Samtools (v1.10) was used to extract reads less than 
2000 bp insert size. A customised python script (pro-
vided in https://​github.​com/​Devik​a1/​Plasma_​HiSeq​
XTen) was used to compute the number of reads per 
fragment size. We calculate the number of reads in 
each category (all reads, reads which have a somatic 
mutation, reads with a somatic mutation which is 
shared with tumour, reads with a somatic mutation 
which is unique to plasma) as a function of the length 
of the read, x. We calculate the ratio of shared to 
unique mutations for all reads with length less than or 
equal to x bp, as well as the ratio of unique to shared 
for all reads with length greater than x bp.

Results
Generation of high coverage cell‑free DNA sequencing 
data
Matched germline, tumour and plasma samples were 
sequenced on Illumina HiSeqXTen and Table  1 sum-
marizes the sequencing output achieved per sample. 
Sequencing coverage (Table  1) varied between samples, 
however expected sequencing coverage of 30X and 60X 
were achieved for germline and tumour DNA samples, 
respectively. Sequencing yield for plasma DNA samples 
was less than expected, nevertheless an average of 100X 
sequencing coverage was achieved for plasma DNA sam-
ples, representing one of the few high-coverage WGS 
datasets for cfDNA.

Somatic variant analysis
VarScan2 [33] was used to detect somatic single nucle-
otide variation (SNV) in plasma and tumour samples. 
DNA samples from blood buffy coat were used as ger-
mline controls to exclude germline variants in plasma 
and tumour samples. Somatic variants were filtered as 
described in Methods to identify high confidence somatic 
variants. Table  2 summarizes the number of somatic 
SNVs detected in plasma and matched tumour sam-
ples and the number of shared SNVs observed between 
matched tumour and plasma samples. All coding muta-
tions in both plasma and tumour samples are provided in 
Additional File 1.

Table 1  HiSeqXTen Sequencing output per sample

a N0 germline, T0 tumour, P0 plasma
b Sequencing coverage was estimated using Isaac [36] provided by the sequencing provider; duplicated reads and overlapping bases are excluded for the coverage 
calculation
c Sequenced in a separate batch

Specimen Type Samplea Number of reads Sequencing Yield 
(Mb)

% Bases > = Q30 % Duplicated 
reads

Sequencing 
Coverageb

Germline DNA 1084_N0c 885,589,680 132,838 83.88 15.82 35

1249_N0 927,175,866 138,149 87.61 37.67 28

1494_N0 830,442,242 123,736 85.08 27.42 29

1524_N0 937,319,184 139,661 86.33 25.54 34

065_N0c 897,176,584 134,576 85.10 8.30 40

098_N0c 1,014,190,632 152,129 86.09 11.31 44

Tumour DNA 1084_T0 1,785,014,202 265,967 82.32 31.09 58

1249_ T0 1,919,380,364 285,987 83.99 26.70 67

1494_T0 1,833,108,412 273,133 80.67 22.14 66

1524_T0 1,819,092,474 271,044 83.42 24.43 65

Plasma DNA 1084_P0 3,978,736,468 592,832 88.76 25.10 97

1249_P0 3,742,076,682 557,569 87.92 28.30 82

1494_P0 3,703,572,042 551,832 89.22 29.78 83

1524_P0 3,993,601,472 595,047 89.77 26.60 93

065_P0c 4,247,100,536 637,065 85.56 12.77 112

098_P0c 4,145,998,174 621,900 84.70 10.96 116

https://github.com/shahcompbio/hmmcopy_utils
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We detected a similar number of somatic variants in 
all 6 plasma samples (average 4316 SNVs), whereas the 
number of somatic variants varied between different 
tumour samples (range 1120–6070 SNVs), which could 
be due to the inherent heterogeneity in breast can-
cer genomes, as well as the variable tumour purity of 
individual samples (sample 1249 had very low tumour 
purity of 14%, whereas other tumours were greater 
than 65%; Refer Supplementary Table  1). Approxi-
mately 4–35% of the somatic variants observed in 
tumour samples were detected in matched plasma sam-
ples, however these shared variants accounted for only 
6–10% of the total somatic variants detected in plasma. 
The majority of somatic variants were unique to each 
plasma and tumour sample (Supplementary Fig. 1).

Variant allele frequency
We analysed the variant allele frequency (i.e. sequence 
coverage for variant alleles) of somatic variants in tumour 
and plasma samples. We also assessed the distribution of 
the variant allele frequency of variants which were shared 
between matched tumour and plasma samples and 
unique variants which were only present in either tumour 
or plasma samples.

Variant allele frequency distribution of all somatic vari-
ants in tumour samples (Fig. 1a) varied between samples 
possibly due to the tumour purity of the samples (Sup-
plementary Table  1). Similarly, variant allele frequency 
of shared and unique somatic variants in tumour sam-
ples differed between samples. Between 16 and 51% of 
the unique variants in tumour samples had less than 20% 

Table 2  Summary of somatic variants in sequenced samples

* T0 tumour, P0 plasma, * Patients with breast cancer - 1084, 1249, 1494 and 1524; patients with benign tumours - 065 and 098

Sample* Number of 
somatic SNVs

Number of 
Mutations/
Mb

Annotation of Somatic SNVs Number of shared 
somatic SNVs

% of shared SNVs

Exonic Intronic

Total Non-synonymous

1084_P0 4056 1.35 37 25 854 228 5.6%

1084_T0 6070 2.02 77 59 1950 3.8%

1249_P0 4142 1.38 39 27 897 387 9.3%

1249_T0 1120 0.37 13 10 288 34.6%

1494_P0 3433 1.14 22 11 783 262 7.6%

1494_T0 1271 0.42 18 11 392 20.6%

1524_P0 4771 1.59 39 23 1090 281 5.9%

1524_T0 2841 0.95 37 23 840 9.9%

065_P0 3857 1.29 38 24 897 – –

098_P0 5637 1.88 47 28 1356 – –

Fig. 1  Allele frequency distribution of somatic variants in (a) tumour and (b) plasma samples. All refers to all somatic variants in the sample; shared 
refers to variants which were shared between matched tumour and plasma samples and unique refers to variants which were only present in either 
tumour or plasma samples. Samples 065 and 098 were from benign tumour patients and other samples were from breast cancer patients
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variant allele frequency. This could explain why only 4 to 
35% of the tumour mutations (Table 2) were detected in 
plasma samples.

Variant allele frequency distribution of all somatic 
variants in plasma samples (Fig. 1b) from cancer patients 
(samples 1084, 1249, 1494 and 1524) showed less vari-
ation between samples compared to tumour samples. 
Between 40 and 59% of all somatic variants in plasma 
samples had less than 20% variant allele frequency. Less 
than 30% of the shared variants in plasma samples had 
less than 20% allele frequency indicating that majority of 
the shared variants had higher variant allele frequency. 
Approximately 50% of the unique variants in plasma 
samples had allele frequency less than 20%.

Annotation of somatic variants
We performed gene analysis on somatic variants for 
both plasma and tumour samples and identified mis-
sense and nonsense mutations in several coding genes 
(Refer to Additional File 1). We also detected mutations 
in cancer associated genes reported in COSMIC Cancer 
Gene Census (CGC) [37] for both plasma and tumour 
samples. Table  3 summarises the number of mutations 
observed in Cosmic CGC genes (exact genomic mutation 
changes are provided in Additional File 2). Mutations in 
multiple breast cancer driver genes such as NOTCH1, 
PIK3CA, and TP53 were detected in tumour samples, 
however these mutations were not detected in matched 
plasma samples. Mutations in COSMIC CGC genes such 
as BCLAF1, MUC4, and RGPD3 were observed in multi-
ple plasma samples. There were no mutations in Cosmic 
CGC which were shared between matched plasma and 
tumour samples.

Somatic signatures
Different mutational processes create characteristic 
mutational signatures on the genome. Hence, patterns of 
somatic mutations can indicate the mutational processes 
which have been active in a tumour. Large-scale analyses 
of cancer genome data across various cancer types have 
revealed recurrent mutational signatures [38, 39]. We 
used Mutational Patterns [35] to extract these mutational 
signatures in our samples.

Mutational changes due to C > T and T > C were pre-
dominant in both plasma and tumour samples (Supple-
mentary Fig. 2 and Supplementary Fig. 3). We performed 
de-novo mutational signature detection using non-
negative matrix factorization (NMF). We extracted 
mutational signatures and compared their relative con-
tribution in plasma and tumour samples (Fig.  2). Based 
on the extracted signatures, it was evident that the muta-
tional profiles were different between plasma and tumour 
samples. Signature A and Signature C was prominent in 

tumour samples whereas Signature B was prominent in 
all plasma samples (Supplementary Fig. 4).

We compared the extracted mutational profiles of 
plasma and tumour samples to the known COSMIC 
mutational signatures (version 2). Supplementary Table 2 
shows the Cosine similarity [35] between the extracted 
signatures and COSMIC signatures. Signature A was 
similar to COSMIC signatures 3 and 8 (which are com-
monly seen in Breast cancer [40] and signature 5 (which 
is common to all cancers [41]), whereas Signature C was 
similar to signature 5. On the other hand, Signature B, 
which was enriched in all plasma samples, was similar 
to signatures 5 (common to all cancers) and 16 (found in 
liver cancer [42]).

We compared the mutational profiles of plasma and 
tumour samples directly with known COSMIC muta-
tional signatures (version 2). Figure  3a shows the COS-
MIC mutational signatures observed in plasma and 
tumour samples. Supplementary Table  3 shows the 
Cosine similarity for the mutational profiles and COS-
MIC signatures. Signature 5 was observed in all plasma 
and tumour samples and notably had higher contribution 
in plasma samples compared to matched tumour sam-
ples. Signature 5 has been found in all cancer types and 
the aetiology is unknown [41]. Signature 16 was also pre-
sent in all plasma samples. Signature 16 has been found 
in liver cancer and the aetiology is unknown [42]. Signa-
tures 1, 3 and 8 were found in multiple tumour samples. 
Signature 3 has been found in breast, ovarian, and pan-
creatic cancers, and associated with failure of DNA dou-
ble-strand break-repair by homologous recombination 

Table 3  Mutations observed in genes reported in COSMIC 
Cancer Gene Census (CGC)

a The exact mutation for BCLAF1 (c.G2243T: p.R748L)
b The exact mutation for RGPD3 (c.T2811G: p.S937R)

Sample Missense mutations Nonsense 
mutations

Number 
of SNVs

Cosmic CGC genes Number 
of SNVs

Cosmic 
CGC 
genes

1084_P0 2 BCLAF1, MUC4 – –

1084_T0 3 CARD11, CCR4, KDSR – –

1249_P0 2 BCLAF1a, MUC4, RGPD3b – –

1249_T0 1 COL3A1 – –

1494_P0 – – – –

1494_T0 2 KAT6A, PPARG​ 1 TP53

1524_P0 3 BCLAF1a, KMT2C, MUC4 – –

1524_T0 4 MUC4, NOTCH1, PIK3CA, 
TP53

– –

065_P0 – – – –

098_P0 2 BCLAF1a, RGPD3b – –
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and signature 8 is found in breast cancer and medullo-
blastoma and the aetiology is unknown [40]. There were 
not any significant differences in COSMIC mutational 
signature contribution between plasma samples from 
benign tumour patients (065_P0 and 098_P0) and cancer 
patients. The relative contribution of COSMIC muta-
tional signatures in plasma and tumour samples is shown 
in Supplementary Fig. 5.

We assessed the mutational signatures in plasma sam-
ples for somatic mutations which were shared with 
matched tumour and somatic mutations which were 
unique to plasma (i.e. not detected in matched tumour) 
(Fig.  3b). The contribution of Signature 5 was more 
prominent in unique mutations compared to shared 
mutations. Signatures which were prominent in tumour 
samples, such as signatures 1, 3 and 8 (Fig.  3a) were 

Fig. 2  Relative contribution of de novo mutational signatures in plasma and tumour samples. P0 – denotes plasma samples and T0 – denotes 
tumour samples
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also observed in plasma shared mutations. Compari-
son with unique mutations in plasma and tumour sam-
ples revealed that Signature 5 was present in all samples 
(Supplementary Fig. 6). However, Signature 5 was more 
prominent in plasma unique mutations compared to 
tumour unique mutations. This indicates that the unique 
mutations in plasma samples contain mutations which 
are different from tumour and possibly acquired from 
somatic changes in other tissues.

Analysis of somatic CNAs
Somatic CNAs in both plasma and tumour samples was 
detected using IchorCNA [18]. For both plasma and 
tumour samples matched germline DNA was used as 
control. Various somatic CNAs were detected in all 4 
tumour samples and tumour fraction determined by 
IchorCNA was 70, 13, 41 and 33% for 1084_T0, 1249_T0, 
1494_T0 and 1524_T0 samples, respectively. However, 
somatic CNAs were not detected in any of the plasma 
samples and estimated tumour fractions were less than 
1% for all 6 plasma samples. Figure 4 shows the somatic 
CNAs detected in sample 1084 tumour and matched 
plasma sample. IchorCNA plots for all other samples are 
provided in Supplementary Fig. 7.

We also used all 6 plasma samples as a combined nor-
mal panel for plasma sample analysis; however, it did not 
identify any somatic CNAs in plasma samples. We used 
our in-house tool sCNASeq [43] to detect somatic CNAs, 
but it also failed to detect any somatic CNAs in plasma 
samples. This is likely due to the low tumour content in 

the plasma samples and the analysis approaches are not 
sensitive enough to analyse low tumour content samples 
despite high sequencing coverage in the samples.

Fragment size analysis
Plasma DNA fragments exhibit a unique fragment 
length profile due to the nucleosome positioning; hence 
the majority of the cfDNA fragments are approximately 
166 bp (mono-nucleosome size) and multiples thereof. 
We assessed the fragment length distribution of all 
reads with less than 2000 bp insert size and observed the 
expected fragment size distribution pattern for cfDNA 
(Supplementary Fig.  8). We extracted all somatic reads 
which contain a somatic SNV (Refer to Methods) and 
assessed the fragment length distribution of somatic 
reads. We further grouped the somatic reads based on 
the somatic SNVs which were shared or not shared (i.e., 
unique) with matched tumour samples and explored the 
differences in fragment length between all reads, somatic 
reads, somatic shared reads and somatic unique reads 
for both cancer patients and benign tumour patients. We 
noticed differences in fragment length profile between 
somatic reads and all reads in all plasma samples (Fig. 5a). 
There was not any difference in somatic fragment length 
distribution between cancer patients and benign tumour 
patients.

Fragment length comparison between somatic shared 
reads and somatic unique reads in tumour patients 
revealed that tumour-derived fragments (i.e., somatic 
shared reads) were enriched in fragments 300 bp -350 bp 

Fig. 3  Heatmap showing the relative contribution of COSMIC mutational signature for (a) all somatic mutations in plasma and tumour samples; (b) 
somatic mutations which were shared with matched tumour and mutations which were unique to plasma samples. P0 – denotes plasma samples 
and T0 – denotes tumour samples. Samples 065 and 098 were from benign tumour patients and other samples were from cancer patients
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compared to somatic unique reads (Fig. 5b). We found a 
higher proportion of somatic shared reads were enriched 
in fragments within the di- nucleosome peak compared 
to somatic unique reads (Fig.  5a and b). This suggests 
that some tumour-derived fragments could be longer and 
less fragmented. Higher enrichment of tumour-derived 
shared fragments in the longer size range indicates that it 
could be feasible to selectively enrich fragments between 
300 and 400 bp to enrich for tumour-derived fragments 
in plasma samples.

Discussion
Currently ctDNA analysis are often performed using 
targeted sequencing of small panels of genes or known 
hotspot mutations in key cancer genes. Low-coverage 
WGS analysis of cfDNA is often performed for detec-
tion of somatic CNAs. To-date, only a handful of studies 
have performed high-coverage WGS (20-50x coverage) of 
cfDNA for tumour analysis [8, 25]. Use of high-coverage 
WGS for cfDNA analysis is mainly constrained due to the 
high cost of sequencing. However, it has the potential to 
discover all somatic changes in cfDNA samples. In this 
study, we performed deep sequencing analysis of cfDNA 

samples to explore its utility for detection of tumour-
derived somatic changes in samples with low tumour con-
tent and to improve our understanding on the biology of 
cfDNA. The sequencing data generated in this study is 
one of the highest coverage cfDNA sequencing data with 
matched tumour sequencing data. This could be a valuable 
resource for researchers working in non-invasive diagnos-
tic approaches to develop novel analytical methods and to 
understand the biological characteristics of cfDNA.

Despite the high sequencing coverage, we only detected 
less than 10% of somatic SNVs in plasma which were 
shared with matched tumour. One of the main reasons 
for this is the low-tumour content in the plasma samples. 
The CNA analysis estimated that the tumour content in 
the samples to be less than 1%. Theoretically with 100X 
coverage, a variant with 1% allele frequency would only 
have 1 variant supporting read, which is not sufficient 
to reliably call the variant allele. Variation in sequence 
coverage across the genome could detect these low fre-
quency variants. It was evident from the allele frequency 
distribution analysis that greater than 70% of the shared 
variants in the plasma samples had greater than 20% vari-
ant allele frequency, indicating that only high frequency 
tumour variants were detected in the matched plasma.

Fig. 4  Somatic CNAs detected in patient 1084 (a) tumour and (b) plasma samples. Copy number across chromosome 1 to 22 are plotted. The 
colour of the data points denotes copy number; dark green - 1 copy, blue - 2 copy, brown – 3 copy and red – 4 copy. Light green horizontal line 
represents a subclonal prediction
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We performed a stringent variant filtering for somatic 
variant analysis to reduce false positives. Only 32–45% 
of the tumour mutations were detected in plasma sam-
ples. Variant allele frequency distribution indicated that 
the variants which were not detected in plasma were 
mostly low frequency variants. However, some of the key 
tumour driver mutations such as TP53 and PICK3CA 
had high variant allele frequency in tumour, yet these 
were not detected in plasma. This could be due to the 
detection limit of the somatic variant caller we have used 
and may be resolved by other somatic mutation detection 
tools such as Mutect [44] and LoFreq [45], however their 
detection sensitivity for low frequency variants needs 
to be explored. Though, VarScan2 combined with strict 

variant filtering as performed in our study is recom-
mended for detecting low frequency mutations [46].

Greater than 90% of the somatic mutations detected 
in plasma samples were unique to plasma samples. 
Most studies to date on plasma somatic variant analy-
sis have only used targeted sequencing and they have 
also reported mutations in plasma samples which were 
not detected in matched tumour samples (approxi-
mately 50–90% of variants were not shared with matched 
tumours) [18, 47]. One of the possible reasons for this 
divergence could be the bias in tumour sampling and 
associated tumour heterogeneity, where only a fraction of 
the tumour is sampled and analysed. Some of the somatic 
mutations identified in the plasma could have been 

Fig. 5  (a) Cell-free DNA fragment length distribution for all reads and somatic reads in both tumour patients and benign tumour patients plotted 
as cumulative density plot. (Tumour_all_frag – all reads from 4 cancer patients; Tumour_somatic_frag – all somatic reads from 4 cancer patients; 
Tumour_somatic_shared_frag - all shared somatic reads (i.e. reads from somatic variants which were present in matched tumour) from 4 cancer 
patients; Tumour_somatic_uniq_frag – all unique somatic reads (i.e. reads from somatic variants which were not present in matched tumour) 
from 4 cancer patients; Benign_all_frag – all reads from 2 benign tumour patients; Benign_somatic_frag – all somatic reads from 2 benign tumour 
patients) (b) Fragments less than and greater than x bp are compared between shared somatic reads and unique somatic reads in cancer patients. 
The plot shows the interquartile range, and the lines refers to 50% quantile, GT – greater than x and LTE – less than or equal to X. The reads are 
combined from all 4 cancer patients
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present in the tumour, but it might not been present in 
the precise piece of tumour sequenced, due to sampling 
variations. Also, the presence of metastatic tumours 
could also contribute to somatic variations in the plasma.

The mutational burden of the plasma samples (average 
1.44 somatic mutations/Mb of genome) was higher than 
the tumour samples (average of 0.94 somatic mutations/
Mb of genome). High-coverage targeted sequencing of 
gene panels on plasma of controls and cancer patients 
have revealed mutations due to clonal hematopoiesis [48, 
49] and often most of these mutations were detected in 
matched blood samples in low-frequency. Clonal hemat-
opoiesis describes the expansion of a clonal population 
of hematopoietic stem cells regardless of disease state 
[50, 51]. These contribute to low-frequency somatic 
clones in blood, which are released into plasma and then 
detected in plasma cfDNA. Although, in this study we 
used matched blood samples to exclude germline vari-
ants, it is likely some of the low-frequency variants in the 
blood samples were not detected due to relatively low-
coverage (30x) of germline DNA samples compared to 
plasma DNA samples. Hence, it is possible that some of 
the somatic mutations detected in the plasma samples in 
our study could have been due to clonal hematopoiesis.

The other possible explanation for higher muta-
tional burden in plasma samples, could be due to clonal 
somatic changes in germline tissues. Multiple somatic 
variants were identified in normal tissues suggesting a 
macroscopic clonal expansions in normal tissues lead-
ing to somatic mosaicism [52, 53]. Given that plasma 
cfDNA contains DNA from various organs and tis-
sues [4, 5], any somatic changes in these cells could 
be detected in plasma. Hence it is possible that some 
of these somatic variants in plasma are derived from 
other tissues. However, methylation or transcriptomic 
or nucleosome positioning analysis needs to be per-
formed to ascertain what fraction of somatic variants 
are derived from other tissues.

Mutational signature analysis on plasma samples 
revealed higher contribution of signature 5, which has 
been found in all cancer types and most cancer samples 
[38, 39]. Furthermore, unique somatic mutations in 
plasma samples had higher contribution of signature 5 
compared to shared somatic mutations indicating that 
these mutations are distinct to tumour-derived muta-
tions. It has been reported that Signature 5 is driven by 
the loss of FHIT gene [41]. Depletion of FHIT causes 
replication stress-induced DNA double-strand breaks 
and defects in replication fork progression and pre-
vents activation of DNA damage response [54]. It is 
likely that the majority of somatic mutations in plasma 
are likely due to the result of replication errors and lack 
of DNA damage responses.

Tumour-derived somatic CNAs are detected in 
plasma samples of cancer patients using low-coverage 
WGS [21, 22]. However, samples with high tumour 
content are often used in these analyses. Plasma sam-
ples in our study had low tumour content, hence 
detection of somatic CNAs was not feasible. Most 
somatic CNA detection tools use large number of nor-
mal cfDNA samples as a reference panel. Although 
IchorCNA could use single matched germline sample 
as the normal control, performance of CNA detection 
is improved with large normal panels [18]. Due to the 
lack of large normal cfDNA high coverage WGS data, it 
was not feasible to detect somatic CNAs in low tumour 
content samples, despite high sequencing coverage.

Cell-free DNA fragments commonly show a promi-
nent peak at 166 bp, due to nucleosome positioning and 
suggesting apoptosis based DNA fragmentation [5, 55]. 
Size distribution of tumour-derived DNA have revealed 
enrichment in fragment sizes between 90 and 150 bp 
for multiple tumour types [56] and longer ctDNA frag-
ments (> 1000 bp) are also enriched in some cancer 
types [57]. However, we did not detect any enrichment 
in tumour-derived fragments in < 150 bp, this is likely 
due to the low tumour content in our plasma DNA 
samples. Mouliere et al. (2018) have demonstrated that 
low ctDNA samples have less fragments below 150 bp 
compared to samples with high ctDNA content [56]. 
We detected an enrichment in somatic shared frag-
ments in 300 bp - 350 bp, indicating higher fraction of 
tumour-derived fragments in cfDNA di-nucleosome 
peak. Higher enrichment in the longer fragment range 
of 300 bp - 350 bp indicates that it could be feasible 
to selectively enrich these longer size fragments to 
improve the detection sensitivity of tumour-derived 
fragments in plasma samples with low tumour content.

It was evident from our analysis, that despite the high 
sequencing coverage of 100X in plasma samples, it was 
not sufficient to detect all somatic changes in low-tumour 
content samples. We believe the sequencing dataset gen-
erated in this study will be valuable for other researchers 
to develop novel analytical tools to improve the detection 
sensitivity for somatic changes and to further explore the 
characteristics of cfDNA.

Conclusion
In summary, high-coverage WGS analysis of cfDNA 
samples revealed a large fraction of unique somatic vari-
ants in plasma, which are likely derived from somatic 
clonal changes in germline tissues. Characteristics of 
these somatic mutations are different to the tumour-
derived somatic mutations in plasma samples. High-
coverage WGS analysis did not detect all tumour-derived 
somatic changes in samples with low-tumour content. 
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