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Abstract 

Background: Administration of poly (ADP-ribose) polymerase (PARP) inhibitors after achieving a response to 
platinum-containing drugs significantly prolonged relapse-free survival compared to placebo administration. PARP 
inhibitors have been used in clinical practice. However, patients with platinum-resistant relapsed ovarian cancer still 
have a poor prognosis and there is an unmet need. The purpose of this study was to examine the clinical significance 
of metabolic genes and focal adhesion kinase (FAK) activity in advanced ovarian high-grade serous carcinoma (HGSC).

Methods: The RNA sequencing (RNA-seq) data and clinical data of HGSC patients were obtained from the Genomic 
Data Commons (GDC) Data Portal and analysed (https:// portal. gdc. cancer. gov/). In addition, tumour tissue was 
sampled by laparotomy or screening laparoscopy prior to treatment initiation from patients diagnosed with stage 
IIIC ovarian cancer (International Federation of Gynecology and Obstetrics (FIGO) classification, 2014) at the Saitama 
Medical University International Medical Center, and among the patients diagnosed with HGSC, 16 cases of available 
cryopreserved specimens were included in this study. The present study was reviewed and approved by the Institu-
tional Review Board of Saitama Medical University International Medical Center (Saitama, Japan). Among the 6307 
variable genes detected in both The Cancer Genome Atlas-Ovarian (TCGA-OV) data and clinical specimen data, 35 
genes related to metabolism and FAK activity were applied. RNA-seq data were analysed using the Subio Platform 
(Subio Inc, Japan). JMP 15 (SAS, USA) was used for statistical analysis and various types of machine learning. The 
Kaplan-Meier method was used for survival analysis, and the Wilcoxon test was used to analyse significant differences. 
P < 0.05 was considered significant.

Results: In the TCGA-OV data, patients with stage IIIC with a residual tumour diameter of 1-10 mm were selected for 
K means clustering and classified into groups with significant prognostic correlations (p = 0.0444). These groups were 
significantly associated with platinum sensitivity/resistance in clinical cases (χ2 test, p = 0.0408) and showed signifi-
cant relationships with progression-free survival (p = 0.0307).

Conclusion: In the TCGA-OV data, 2 groups classified by clustering focusing on metabolism-related genes and FAK 
activity were shown to be associated with platinum resistance and a poor prognosis.
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Background
Gynecological malignancies include cervical cancer, uter-
ine cancer, and ovarian cancer, among others. Ovarian 
cancer is the 5th leading cause of cancer deaths among 
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women worldwide and is considered to have an extremely 
poor prognosis [1–3]. One of the reasons for the poor 
prognosis is that most patients are asymptomatic, and 
most cases are discovered at an advanced stage, i.e., with 
dissemination or metastasis in the abdominal cavity [4]. 
Although the prognosis of ovarian cancer patients has 
dramatically improved since the advent of paclitaxel and 
carboplatin combination therapy (TC therapy), the prog-
nosis is still poor for advanced stage III and IV patients, 
who account for 60% of ovarian cancer patients [4–7]. 
One of the reasons for the poor prognosis of patients 
with advanced stage is the tendency for relapse. Ovar-
ian cancer is reported to respond well to initial treatment 
(platinum drugs including carboplatin as mentioned 
above); however, approximately half of cases will relapse 
[1]. Since achieving a radical cure is difficult after relapse, 
treatment after relapse mainly aims to prolong survival 
and alleviate symptoms [5–9]. Thus, treatments that do 
not cause relapse or metastasis and treatments that pro-
vide hope for remission even after relapse/metastasis are 
urgently needed.

Recently, clinical trials have shown that administration 
of poly (ADP-ribose) polymerase (PARP) inhibitors to 
ovarian cancer patients after achieving a response to plat-
inum-containing drugs significantly prolonged relapse-
free survival compared to placebo administration. PARP 
inhibitors are used in actual clinical practice [10–17]. 
Thus, a promising medication has emerged for platinum-
sensitive patients. However, the prognosis of platinum-
resistant patients is still poor. Thus, new drugs must be 
developed because platinum sensitivity or platinum 
resistance cannot be identified without administration of 
a platinum-containing drug. If a method is developed to 
predict platinum resistance or platinum sensitivity before 
administration, proper treatment can be offered to each 
individual patient [18, 19].

The involvement of cancer stem cells (CSCs) in can-
cer relapse and treatment resistance has been reported 
in recent years, indicating that cancer tissues are heter-
ogeneous and that some cancer cells, such as CSCs, are 
involved in relapse and treatment resistance [20–23]. 
Even if non-cancer stem cells (non-CSCs) are treated, 
they can lead to relapse as long as a CSC is alive. Con-
versely, if CSCs are eradicated, the remained cancer tis-
sue (non-CSCs) will eventually be eliminated by host 
antitumor immunity. From the results of RNA sequenc-
ing (RNA-seq) and metabolomic analysis using cell lines, 
the authors found that the metabolic pathway and Focal 
adhesion kinase (FAK) activity associated with CSCs for 
gynecologic cancer may differ from those of non-CSCs 
[24].

Therefore, the purpose of this study was to examine 
the clinical significance of metabolic genes and FAK 

activity in advanced ovarian high-grade serous carci-
noma (HGSC). Specifically, RNA-seq was performed 
on cancer specimens before treatment initiation to 
examine relationships with the effects of platinum-
containing drugs with an emphasis on metabolic genes 
and FAK activity. Machine learning including cluster 
analysis was used for analysis.

Using machine learning, predicting prognoses for 
cancer patients and the therapeutic effects of plat-
inum-containing drugs can be widely performed 
[25–36]. In this study, by showing that the therapeu-
tic effect can be predicted using metabolic genes and 
FAK activity, these variables were confirmed to be 
clinically significant.

Methods
Patient and sample collection
The present study was reviewed and approved by the 
Institutional Review Board of Saitama Medical Uni-
versity International Medical Center (approval no.13-
165). Patients diagnosed with ovarian cancer stage 
IIIC (International Federation of Gynecology and 
Obstetrics (FIGO) classification 2014) who started 
treatment at Saitama Medical University Interna-
tional Medical Center between November 2008 and 
August 2016 were targeted. There were 101 patients 
with HGSC who had stage IIIC tumours in that 
period, and tumour tissue sampling was performed 
during open surgery or exploratory laparoscopy 
before treatment initiation. Among them, representa-
tive 16 cases with available cryopreserved specimens 
were analysed.

Tumour specimens were collected by surgery and 
immediately cryopreserved at -80 °C. Total RNA was 
extracted as previously reported [37]. In brief, RNA 
was extracted from the frozen tissues using NucleoSpin 
RNA (Takara, Japan). Quality control was performed 
using a Bioanalyzer (Agilent, USA), and all RNA integ-
rity number (RIN) values were > 8.0.

The clinical information of the 16 cases were 
obtained from the electrical health record, and 
is shown in Table  1. Platinum-based neoadjuvant 
chemotherapy (NAC) was performed as primary 
treatment, and an interval debulking surgery (IDS) 
was performed when the effect was confirmed. The 
Response Evaluation Criteria in Solid Tumours 
(RECIST) were used to determine the therapeutic 
effect [38]. As a guideline to measure the effect of 
chemotherapy, the period from administration of 
the last platinum-containing chemotherapy until 
disease deterioration (platinum-free interval, PFI) 
was examined [39].
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RNA‑seq
RNA sequencing was performed using the Illumina 
NovaSeq 6000 platform with a standard 100-bp paired-
end read protocol as previously described [40]. Librar-
ies for RNA-seq were prepared using the TruSeq 
Stranded mRNA LT Sample Prep Kit for Illumina 
(New England BioLabs, USA). The reference genome 
sequence of Homo sapiens (hg19) and annotation data 
were downloaded from the UCSC table browser (http:// 
genome. ucsc. edu). The results of sample qualities were 
shown in Figs. S1, S2 and S3.

The cancer genome atlas‑ovarian (TCGA‑OV)
The RNA-seq data and clinical data of ovarian cancer 
patients were obtained from the Genomic Data Com-
mons (GDC) Data Portal (https:// portal. gdc. cancer. 
gov/) [41–51].

RNA seq data for ovarian cancer patients available at 
TCGA were extracted on October 30, 2019. The RNA-
Seq dataset consisted of 378 samples. A total of 373 pri-
mary tumour samples and 5 recurrent tumour samples 
were included.

Data analysis
RNA-seq data were analysed using the Subio Platform 
(Subio Inc, Japan) [52].

TCGA‑OV data
The read count value data were analysed. Normalization/
preprocessing was performed as follows. For log trans-
formation, the read count value was converted to a loga-
rithm with a base of 2. If the read count was 0, a missing 
value was documented. Subsequently, global normaliza-
tion was performed with the 90th percentile. Then, for 
the low signal cutoff, if the value after normalization was 
less than 50, it was replaced with 50 and used as the cut-
off value. To account for missing values, original read 
counts of 0, indicating a missing value, were assigned a 
value of 2 to the 5th power.

For centring, the expression level of each gene was con-
verted to the ratio against the average value. The value 
generated by applying the above normalization and pre-
processing is displayed as a value called the Processed 
Signal on the Subio Platform and is the log2 ratio against 
the average value of the expression levels of all samples 
for each gene.

Measurement values with a read count less than 100 
were considered to be unreliable, and genes with a read 
count value less than 50 were excluded from the analysis 
in 189 samples, reflecting half of the 378 samples. Thus, 
16,485 genes were extracted.

Clinical specimen data
Similar to the TCGA-OV data, the clinical specimen data 
were normalized and preprocessed. However, the pro-
cessing method is fine-tuned on the basis of sample size 
and the distribution of read count values.

For log transformation, the read count value was con-
verted to a logarithm with a base of 2. However, if the 
read count value was 0, logarithmic transformation was 
not possible, and the result was replaced with a missing 
value. Subsequently, global normalization was performed 
through alignment with the 75th percentile. Then, when 
the value after normalization was smaller than 100 (low 
signal cutoff), it was replaced with 100. To account for 
missing values, sites with a missing value due to an origi-
nal read count of 0 were assigned a value of 2 to the 6th 
power.

The value generated by applying the above process-
ing is displayed as the Processed Signal on the Subio 
Platform as well as the TCGA-OV data. Measurement 
values with a read count value less than 100 were con-
sidered to be unreliable, and these genes were removed. 
To exclude genes whose expression did not change and 

Table 1 Clinical specimen data

Sixteen patients diagnosed with ovarian high-grade serous carcinoma (HGSC), 
stage IIIC (FIGO classification 2014), who had started treatment were analysed

CR complete response, PR partial response, SD stable disease, PD progressive 
disease

Vital status: alive = 0, dead = 1. PFI Platinum-free interval. Cluster: Cluster 
classified by cluster analysis

Sample Age Treatment 
effect

Vital status PFI (Months) Clusters

1 66 PD 1 4 2

2 54 CR 1 4 2

3 59 PD 1 6 1

4 66 CR 1 0 2

5 75 SD 1 7 2

6 56 PR 1 5 2

7 70 CR 1 0 1

8 62 PR 0 0 2

9 72 PR 1 42 1

10 44 PR 0 22 1

11 70 PR 1 21 2

12 71 CR 0 34 1

13 66 PR 0 29 1

14 52 PR 0 17 1

15 66 CR 0 37 1

16 54 CR 0 24 2

http://genome.ucsc.edu
http://genome.ucsc.edu
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genes whose expression changed randomly, genes whose 
average Processed Signal was in the range of -0.3 to 0.3 
were removed. Thus, 6840 genes were extracted.

Finally, the Processed Signal of 6307 genes, which 
was extracted from TCGA-OV data and clinical sam-
ple data, was selected as a candidate of the variable to 
be used in the machine learning analysis. There are 
many genes related to FAK pathways and metabolism, 
however, selecting many variables for machine learn-
ing could result in overfitting [53]. And we focused on 
major metabolic and FAK pathway genes related to such 
as glycolysis, Krebs cycle, serine metabolism, glutamine 
metabolism and integrins [54–58].

Statistical analysis
JMP 15 (SAS, USA) was used for statistical analysis and 
various types of machine learning. The Kaplan-Meier 
method was used for survival analysis, and the Wilcoxon 
test was used to analyse significant differences. P < 0.05 
was considered significant.

Results
TCGA‑OV data
TCGA-OV data included data from ovarian cancer 
patients with advanced stage I to stage IV disease, but 
since the prognosis differs depending on the stage of 
advancement, in this study, we analysed the data for 
the patients with stage III ovarian cancer. However, in 
the treatment of ovarian cancers, the prognosis differs 

depending on the amount of residual tumour at the time 
of surgery [59]. In other words, in the treatment of ovar-
ian cancer, surgery resulting in no residual tumour is 
considered complete surgery with a good prognosis, 
while surgery resulting in a residual tumour exceed-
ing 1 cm in diameter is considered suboptimal surgery 
without a good prognosis. Surgery resulting in a residual 
tumour with a diameter within 1-10 mm is considered 
optimal surgery. In practice, even in the TCGA-OV data, 
as shown in Fig. 1, the prognosis was poor depending on 
the amount of residual tumour during surgery. In other 
words, when considering the relationship between the 
prognosis and biological characteristics of cancer tissue, 
the results may differ depending on the residual tumour 
diameter. In this study, the medical case with a residual 
tumour measuring between 1-10 mm was extracted and 
analysed. The clinical information including the progno-
sis of 130 cases was obtained and studied.

Classification by cluster analysis
In 130 cases obtained as described above, cluster analysis 
was performed for gene expression, as shown in Table 2. 
The selection of genes is described in the Introduction 
and Discussion. The genes related to metabolism and 
FAK activity were studied.

A total of 130 cases were classified into 2 groups (Fig. 2) 
according to K means clustering [60]. As shown in Fig. 3, 
the results were classified into 2 groups, which were 
significantly related to prognosis (Wilcoxon-test, p = 

Fig. 1. Relationship between a Residual Tumour at the Time of Surgery and the Prognosis of Patients with Advanced Stage IIIC. A larger residual 
tumour diameter corresponds to a worse prognosis (p = 0.0067)
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0.0444). The mean value and manifestation of each gene 
in these groups are shown in Fig. S4. Regarding metabolic 
genes, both high and low expression levels and the overall 
balance were involved in the metabolic phenotype [61]. 
Therefore, in this examination, the difference between 
these 2 groups was unclear.

Analysis including clinical specimen data
Subsequently, similar clustering including clinical speci-
men data was performed with the TCGA-OV data. Only 
4 cases among 130 cases were classified differently from 
the abovementioned clustering (Fig. 4). Actually, almost 
similar results were obtained regarding prognosis (Fig. 5). 
The relationship between platinum resistance/sensitivity 
in clinical specimens and this classification is shown in 
Table 1. In this examination, samples 1-8 are defined as 

platinum resistant, and samples 9-16 are defined as plati-
num sensitive. Generally, sample 5 is defined as platinum 
sensitive because the PFI is 7 months > 6 months. How-
ever, the median PFI according to this examination was 
12 months. Therefore, sample 5 was defined as platinum 
resistant in this study. In clusters 1 and 2, cluster 2 was 
significantly associated with platinum resistance (Fig.  6 
and Table 1, χ2 test, p = 0.0408).

In this classification, progression-free survival (PFS) 
after platinum-containing drug administration was exam-
ined, and a significant correlation was found (Fig. 7a, p = 
0.0307). In other words, the group classified as cluster 2 
had a significantly shorter PFS than the group classified 
as cluster 1 in the clinical data. Further, cluster 2 had a 
worse prognosis tendency with respect to the overall sur-
vival (OS) in the clinical data. However, a significant dif-
ference was not observed (Fig. 7b, p = 0.0638).

Discussion
By using machine learning including deep learning, in 
recent years, many studies on applying machine learn-
ing in cancer research have been performed [26, 29, 
30, 33, 62, 63]. Using machine learning, predicting the 
prognoses of ovarian cancer patients and the therapeu-
tic effects of platinum-containing drugs can be widely 
performed [64–72]. In most cases, machine learning 
from results such as RNA-seq results is first applied 
[26, 30]. After extracting the gene cluster related to 
prognosis, the significance is examined using pathway 
analysis. These methods can accurately predict the 

Table 2 Genes used for clustering analysis

Among the 6307 genes detected in both TCGA-OV data and clinical specimen 
data for FAK activity, 35 genes related to metabolism were analysed

Gene name

CAV1 GLUD1 GOT1 GPT GPT2

HK1 HOOK1 ITGA1 ITGA11 ITGA2

ITGA3 ITGA4 ITGA5 ITGA6 ITGA7

ITGA9 ITGAL ITGAM ITGAV ITGAX

ITGB1 ITGB2 ITGB3 ITGB4 ITGB5

ITGB6 LDHA LDHB PHGDH PSAT1

PSPH ROCK2 SLC1A5 SLC7A5 SRC

Fig. 2 Clustering Results. Results classified by K means clustering. The 2 groups were clearly classified
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prognosis. In fact, when the analysis was performed 
similarly to this examination, after focusing on the 
group of genes in references, platinum resistance/sensi-
tivity could be significantly predicted (Table S1, χ2 test, 

p = 0.0023). The effects of platinum-containing drugs 
can be accurately predicted by homologous recombi-
nation deficiency (HRD) scores [67, 68]. In these pre-
dictions, many pathways are used for prediction, or 

Fig. 3 Relationships with Prognosis based on Clustering Results. Among the clusters classified by K means clustering, cluster 2 had a significantly 
worse prognosis than cluster 1 (p = 0.0444)

Fig. 4 Clustering Results including Clinical Specimen Data. The results were almost the same as those in Fig. 2. The red ‘+’ indicates items 
classified as cluster 2 in Fig. 2. The blue ‘○’ indicates items classified as cluster 1 in Fig. 2. Only 4 cases had a cluster classification different from the 
classification in Fig. 2. ‘・’ indicates the results of clinical specimens
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several cases already awaiting treatment are used [31]. 
This examination focuses only on gene expression lev-
els related to metabolic pathways and the FAK pathway 
identified in previous basic experiments and there-
fore differs from the other examinations. We applied 
machine learning including neural networks, however, 

K means clustering was the best to classify groups of 
platinum resistance/sensitivity in our cases.

In recent years, metabolism in cancer has received 
considerable attention with the development and popu-
larization of metabolomic analysis [73–76]. Metabolic 
changes reflect expression levels at the cellular level, and 

Fig. 5 Relationships with Prognosis based on Clustering Results including Clinical Specimen Data (TCGA OV Data). Similar to Fig. 2, among the 
clusters classified by K means clustering, cluster 2 had a significantly worse prognosis than cluster 1 (p = 0.0143)

Fig. 6 Clustering Results for Clinical Specimens. Each number is the sample number in Table 1
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this analysis is closely related to how a cell behaves in the 
body (that is, whether a cell is highly malignant). In fact, 
references and self-study cases indicate that targeting 
the metabolic pathway may have a therapeutic effect on 
chemotherapy-resistant ovarian cancer [24, 73–76].

The same is true for the FAK pathway. Gene expression 
related to the FAK pathway was incorporated as a vari-
able in this examination based on reports and previous 
research indicating that recurrence of ovarian cancer, 
treatment resistance, and CSCs are related to FAK activ-
ity [24, 77–80].

Thus, sensitivity and resistance to platinum-containing 
drugs can be predicted by focusing on metabolic genes 
and groups of genes related to FAK activity. As a result, 
the possibility of predicting the prognosis was shown in 
this examination. Based on this study, metabolism and 
the FAK pathway may be potential therapeutic targets in 
the future. In fact, in the test case, the examination using 
ovarian clear cell carcinoma cell lines, which are likely to 
be chemotherapy-resistant, showed a synergistic effect of 
inhibiting glutamine metabolism and the FAK pathway 
[24]. However, metabolic activity is determined by the 
overall balance and not only by high or low levels of each 
group of genes; thus, suggestions for treatment targeting 
specific gene expression levels have not been determined 
from this examination. Also, there are limitations from a 
selection bias and a small sample size.

We believe CSC-like properties are a useful model 
which gives us insight into chemo-resistance. Especially, 
we assumed that investigating CSC-like properties of 
clear cell carcinoma could give us insight into platinum 
resistance because most of the patients with ovarian clear 

cell carcinoma are platinum-resistant. We conducted 
this study to ensure the results we obtained from our 
previous in-vitro studies. However, there is a possibility 
that mechanisms of platinum resistance in serous carci-
noma is different from that in clear cell carcinoma. In the 
future, new targets for drug discovery are expected to be 
found by focusing on metabolism-related genes and FAK 
activity in treatment-resistant ovarian cancer.
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