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Abstract 

Background:  Breast cancer screening is currently predominantly based on mammography, tainted with the occur‑
rence of both false positivity and false negativity, urging for innovative strategies, as effective detection of early-stage 
breast cancer bears the potential to reduce mortality. Here we report the results of a prospective pilot study on breast 
cancer detection using blood plasma analyzed by Fourier-transform infrared (FTIR) spectroscopy – a rapid, cost-effec‑
tive technique with minimal sample volume requirements and potential to aid biomedical diagnostics. FTIR has the 
capacity to probe health phenotypes via the investigation of the full repertoire of molecular species within a sample 
at once, within a single measurement in a high-throughput manner. In this study, we take advantage of cross-molecu‑
lar fingerprinting to probe for breast cancer detection.

Methods:  We compare two groups: 26 patients diagnosed with breast cancer to a same-sized group of age-matched 
healthy, asymptomatic female participants. Training with support-vector machines (SVM), we derive classification 
models that we test in a repeated 10-fold cross-validation over 10 times. In addition, we investigate spectral informa‑
tion responsible for BC identification using statistical significance testing.

Results:  Our models to detect breast cancer achieve an average overall performance of 0.79 in terms of area under 
the curve (AUC) of the receiver operating characteristic (ROC). In addition, we uncover a relationship between the 
effect size of the measured infrared fingerprints and the tumor progression.

Conclusion:  This pilot study provides the foundation for further extending and evaluating blood-based infrared 
probing approach as a possible cross-molecular fingerprinting modality to tackle breast cancer detection and thus 
possibly contribute to the future of cancer screening.
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Background
Breast cancer (BC) represents the most frequent cancer 
in women with a global incidence above 2 million, and 
an annual mortality above 600,000 patients in 2018 
[1, 2]. The cure rate remains correlated with the stage 
at diagnosis; therefore, early detection and screening 
programs are crucial [3–6]. Often, BC screening is based 
upon radiologic approaches, mostly mammography [4]. 
These screening modalities, predominantly applied in 
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developed countries, are associated with a significant 
reduction in mortality (19% overall reduction of the 
relative risk [1]). However, major limitations and 
debatable cost-effectiveness of these approaches persist 
[4, 6]. Due to the limited sensitivity and specificity 
of current medical diagnostics, cancer can either be 
overlooked (false negatives) or falsely detected (false 
positives), leading to either delayed interventions or 
unnecessary, potentially harmful investigations or 
psychological stress [7]. Also, BC screening in certain 
regions of the world remains rudimentary despite grim 
global projections suggesting a doubling of BC cases 
within the coming 20 years, mostly in these countries [1].

This concerning situation calls for additional strategies 
for BC screening, as detection of early-stage BC bears 
potential to significantly reduce mortality. Hence, there 
is a high need for complementing current medical 
diagnostics with efficient, non-invasive or minimally-
invasive methods that could possibly lead to new easily 
implementable high-throughput screening and detection 
approaches, prior to tissue-biopsy-based diagnostics and 
molecular profiling [8].

Liquid biopsies have attracted interest over the past 
decade as a non-invasive approach for disease detection, 
screening and cancer monitoring [9]. Molecular 
analyses of human blood derivatives, such as plasma or 
serum, provide systemic molecular information, and 
enable novel routes of diagnostics [8, 10]. So far, most 
liquid biopsies predominantly rely on the analysis of 
a few pre-selected analytes and biomarkers. Although 
the emergence of highly sensitive and molecule-
specific methods in the fields of proteomics [11–13], 
metabolomics [14, 15], and genomics [16–18] has led 
to the discovery of thousands of different biomarker 
candidates, only a few of them have been validated and 
transferred to the clinic so far [19]. Moreover, given the 
complexity of the disease as well as its etiology, increasing 
the number of analytical methods for cancer detection, 
such as in multi-omics, could potentially lead to higher 
detection rates at early stage. However, practically, this 
will lead to unfeasibly high costs for broad clinical use. 
It is thus evident that methods that have the capacity 
to capture information across the entire molecular 
landscape would be advantageous.

Infrared molecular spectroscopy may be very beneficial 
here − it detects signals from all types of molecules in a 
sample in a single time- and cost-effective measurement 
in a label-free manner [20, 21]. When applied to blood 
plasma (or serum) samples, infrared spectroscopy 
delivers infrared molecular fingerprints (IMFs) reflecting 
the chemical composition of a sample, i.e. the person’s 
molecular blood phenotype [22, 23]. Even though the 
IMF of molecularly highly complex blood plasma can 

only partially be traced back to its molecular origin [24], 
it may be sensitive and specific to the health state of an 
individual. In a recent longitudinal study, we have shown 
that defined workflows to collect, store, process and 
measure human liquid biopsies lead to reproducible IMFs 
in healthy, non-symptomatic individuals that are stable 
over clinically relevant time scales [22, 23]. Numerous 
studies have shown the potential of blood-based IMFs 
for the detection of breast cancer [25–28]. Despite these 
promising initial results, the majority of these studies 
had a high risk of bias due to patient selection [29]. In 
fact, it was shown that IMFs are susceptible to external 
confounding factors, such as those related to sample 
handling and data collection, as well as to inherent 
biological variations (e.g. age, body-mass index) that can 
however affect cancer detection [30]. Since many cancer-
related therapies may leave footprints in the chemical 
composition of peripheral blood, it is essential to 
evaluate the extent of infrared fingerprint differences at 
the time when cancer patients have only been diagnosed 
with malignancy, prior to any cancer-related therapy. 
This has not been assessed previously, and the estimation 
of a blood-based infrared fingerprinting approach as a 
new BC screening modality was not evaluated. In this 
work, we measured intact blood plasma samples, with 
FTIR transmission spectroscopy directly in liquid form, 
prior to any cancer-related therapy, along with non-
symptomatic reference individuals, which have been 
carefully matched to BC cases. By applying support 
vector machine (SVM) algorithms to train models for 
binary classification, we obtained a detection efficiency 
of about 0.79 (area un- der the receiver operating 
characteristic (ROC) curve, AUC). The present study 
provides a first estimation of feasibility to directly probe 
liquid blood plasma for minimally-invasive BC detection, 
an approach that is easily implementable and could be 
extended to high-throughput BC screening applications.

Methods
Study population and sample collection
Presented results are based on a prospective, single 
center, observational clinical study. The aim of the study 
was to assess whether the combination of infrared spec- 
troscopy of liquid biopsies (blood plasma) with machine 
learning infrared spectral analyses has any capacity to 
detect breast cancer (BC). For this purpose, a cohort 
of female patients diagnosed with BC at the Oncology 
Centre, King Saud Univer- sity Medical City (KSUMC), 
Riyadh, Saudi Arabia, was compared with a cohort of 
women without BC, reference individuals. Inclusion 
criteria for participation in the study were as follows: 
Asymptomatic reference individuals were adult females 
participating in organized or voluntary BC screening, 
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assessed with mammography and (if necessary) breast 
ultrasound and/or magnetic resonance imaging (MRI). 
Patients with BC were included after confirmation of 
pathological diagnosis of invasive breast cancer and 
prior to any therapeutic intervention for breast cancer. 
Subjects included in the trial were identified by a trial-
specific code, guaranteeing their anonymity.

For the purpose of the study up to 19,6 ml of venous 
blood was collected per enrolled subject. The tubes 
were centrifuged for 10 min at 7000 g at a temperature 
of 4 °C and the supernatants of blood plasma were 
then aliquoted into 1.5 ml tubes (1 ml plasma each) and 
stored at 80 °C. These procedures were carried out at the 
KSUMC. The 8 aliquots of each sample were numbered 
anonymously. The correspondence list between 
the subject number and the aliquot number were 
maintained by the clinical research associate (CRA) 
coordinator at KSUMC. Samples were processed using 
same standard operating procedures and shipped from 
the KSUMC to measurement laboratories at the LMU 
on dry ice. They have all been processed simultaneously, 
and have all undergone the same number of freeze-thaw 
cycles. Once all the samples have been collected and 
stored (from all individuals involved), these have been 
all defrosted and measured as liquids within the same 
measurement campaign along the same procedure. 
Standardization of procedures and workflows applied 
assured for minimalization of possible noise due to 
sample preparation as well as facilitated sufficient 
reproducibility.

The BC patient group (n = 26) consisted of patients 
diagnosed at KSUMC with the following characteristics: 
mean age: 49 years (30-62), previous pregnancies: 17 
patients (65.4%), pre/peri-menopausal: 11 patients 
(42.3%), operable non-metastatic BC (stage IA-IIIA): 16 
patients (61.5%), invasive ductal carcinoma: 24 patients 
(92.3%), estrogen receptors positive: 14 patients (53.8%) 
and HER2 positive: 17 patients (65.4%). It is important to 
note that patients are regularly referred to KSUMC from 
secondary hospitals where cancer medications are not 
readily available (e.g. anti-HER2 monoclonal antibodies). 
Therefore, the breast cancer accrual at KSUMC does not 
reflect the usual split between breast cancer molecular 
subtypes and thus leads to, in particular, an excess of 
HER2-positive molecular subtypes.

Achieving covariate balance between cases and 
controls is a standard procedure in observational 
studies for minimizing the effect of confounding factors 
and limiting the bias throughout all derived results. In 
this work, we seek balance in terms of age and BMI. 
This is achieved by pairwise matching. Out of the 67 
samples of the initial control group (collected within 
BC screening programme), given our criteria only 26 

individuals of these were selected for inclusion into 
a control group that is in covariate balance with the 
collected BC cases. Table  1 shows the characteristics 
of the balanced cohort, used for further analysis. In 
addition, a detailed anonymized file (metafile.xlsx) 
that lists all available information of the recruited 
individuals (28 potential cases and 67 potential 
controls, before matching) is provided along with the 
manuscript.

Spectroscopic analysis
The spectroscopic measurements were performed in 
liquid phase with an automated FTIR device (MIRA-
Analyzer, micro-biolytics GmbH) with a flow-through 
transmission cuvette (CaF2 with 8 μm path length). The 
spectra were acquired with a resolution of 4 cm− 1 in a 
spectral range between 950 cm− 1 and 3050 cm− 1. A 
water reference spectrum was recorded after each sam-
ple measurement to reconstruct the IR absorption spec-
tra. To track potential experimental errors throughout 
the entire experiment [31], a measurement of pooled 
human plasma (BioWest, Nuailĺe, France) was per-
formed after every 5 samples. Negative values of absorb-
ance, which occurs because the liquid sample contains 
less water than the reference (pure water), was corrected 
for by a previously described approach [22]. It is known 
from measurements of dried plasma that there is no 
significant absorption in the wavenumber region 2000-
2300 cm− 1, resulting in a flat absorption baseline. This 
is also confirmed to approximately hold for the case of 
liquid plasma. We used this fact as a criterion for adding 
to each spectrum a previously measured water absorp-
tion spectrum to account for the missing water in the 
sample measurement and minimize the average slope 
in this region in order to obtain a flat baseline. All spec-
tra were truncated to 1000-3000 cm− 1 and removed the 
entire silent region (1800-2800 cm− 1). Finally, to correct 
for experimental (instrumental/measurement) variations 
that can affect the overall absorbance of a fingerprint, 
all spectra were normalized as vectors, using Euclidean 
(L2) norm. Panel (a) of Fig.  1 shows the distributions 
of measured spectra (after water correction) of the BC 
cases and their associated controls. The infrared spectral 

Table 1  Characteristics of the balanced cohort

Covariates BC cases (n = 26) References 
(n = 26)

Age in years (mean ± std) 49 ± 9 44 ± 7

BMI in kg/m2 (mean ± std) 29 ± 6 27 ± 6

Gender (% female) 100 100
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pre-processing was performed similarly to a previous 
work [22].

Data analysis
To derive classification models, we used Scikit-Learn (v. 
0.23.2), an open-source machine-learning framework in 
Python (v.3.7.6). We trained binary-classification mod-
els using linear SVM. Performance evaluation was car-
ried out using repeated stratified 10-fold cross-validation 
and its visualization using the notion of the ROC curve. 
The results of the cross validation are reported in terms of 
descriptive statistics: the mean value of the resulting AUC 
distribution and its standard deviation. For statistically 
comparing two groups of spectra (i.e. cases, references), we 
followed three approaches. First, we calculated the “differ-
ential fingerprint” (differential infrared spectrum), defined 
as the difference between the mean absorbance per wave-
number of the cases a contrasted against the standard 
deviation of the reference group for obtaining a visual 
understanding of which wavenumbers are potentially 
useful for distinguishing/classifying the two populations. 
Such a graph serves as a visual representation of what is 
known as the “effect size” [32], which can be obtained by 
standardizing the differential fingerprint and has an evi-
dent relation to the AUC per wavenumber. Secondly, we 
performed t-test (testing the hypothesis that two popula-
tions have equal means) for extracting two-tailed p-values 
per wavenumber. As a last, third step, we make use of the 
Mann–Whitney U test (also known as Wilcoxon rank-sum 
test) for extracting the U statistic and calculating the AUC 
per wavenumber by the relation AUC​ = U/(n1 × n2), where 
n1 and n2 are the sizes of the two groups.

Results
Infrared molecular fingerprinting for classification 
of breast cancer
To evaluate whether IMF probing of liquid plasma 
has any capacity to detect BC, we performed binary 

classification for distinction between the BC patients 
and the matched asymptomatic reference individuals 
(Table 1 and Fig. 1a). The detection efficiencies achieved 
on the test sets correspond to an AUC value of 0.79 
for normalized FTIR spectra. A higher AUC value of 
0.81 could be achieved using non-normalized spectra 
(Fig.  1b). Despite the higher AUC obtained for non- 
normalized spectra, we consider the analysis of nor-
malized data to be more reliable. Vector normalization 
reduces measurement uncertainty which can be a major 
factor of bias, especially in cases of small sample sizes. 
Overall, these results deliver the first evidence that 
the molecular differences between reference individu-
als and matched therapy-naive BC patient females can 
be detected with infrared fingerprinting of fluid blood 
plasma.

Infrared spectral probing of breast cancer
In order to understand infrared spectral information 
responsible for BC identification, we have evaluated the 
infrared spectral signatures that are relevant for distin-
guishing breast cancer cases from the reference, control 
individuals. For this purpose, we evaluated the differen-
tial fingerprints that we defined as the difference between 
the mean IMF of the case cohort and that of the refer-
ence cohort (Fig.  2a). This quantity, when compared to 
the standard deviation of the reference group (shaded 
area in Fig.  2a), reveals the locations along the spec-
trum for which the difference between the means of the 
two groups is larger than the sample standard deviation. 
These differences become even more apparent in Fig. 2b, 
which depicts the effect size, defined as the differential 
fingerprint divided by the standard deviation of the ref-
erence group. We reveal that at specific spectral loca-
tions, the effect size exceeds the barrier of one standard 
deviation, indicating potentially significant differences 
between the sample means of the two distributions.

Fig. 1  Infrared spectra and classification. a Distributions of measured spectra (after water correction) for cases and controls. Solid lines indicate the 
means of all measurements in each group and shaded areas depict the corresponding standard deviations. b Average ROC curves extracted from a 
repeated 10-fold cross-validation over 10 times for binary classification using linear SVM
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Fig. 2  Spectral features. a Mean absorbance difference per wavenumber between cases and references (differential fingerprint) b Effect size per 
wavenumber. This quantity is known as the Cohen’s d in signal detection theory and corresponds to the standardized difference between the mean 
absorbance of the cases and references. The dashed line indicates effect size of one standard deviation. c P-values per wavenumber, by performing 
local two-sided t-tests. d ROC AUC extracted by the Mann-Whitney U-test. The dashed line corresponds to the AUC value of the trained SVM model. 
The shaded rectangular areas, in all panels, indicate spectral regions where highly-significant differences have been identified
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To evaluate the statistical significance of the differences 
detected in latter analysis when comparing two groups of 
data, we additionally determined the p-value per wave-
number by performing two-sided t-tests. Importantly, we 
find that p-values of highest significance, as low as 10− 4, 
are observed in the spectral regions that directly corre-
spond to large effect size (Fig. 2c). Moreover, to further 
examine the comparison, we calculated the AUC per 
wavenumber using the U statistic of a Mann-Whitney U 
test (as described in the Methods section). We observe 
that the AUC per wavenumber follows a similar pattern 
as the effect size (Fig. 2d). Interestingly, for the wavenum-
bers with the lowest p-values and the most significant 
differences, the single-feature AUC reaches (and in some 
cases exceeds) the one obtained from the application of 
the SVM model trained on the entire spectrum (dashed 
line in Fig. 2d).

The results we provide are the first indication that 
the presented approach is feasible for the purpose of 
BC detection and that the predictive power of machine 
learning can be further leveraged in future analyses 
requiring larger sample sets. Our presented feasibility 
evaluation is instrumental for the establishment of a 
lower bound of the AUC and motivates the collection 
of larger data and sample sets which shall increase the 
prediction performance and capacity of the approach.

Efficiency of breast cancer detection at different stages 
of malignancy
Cancer detection is challenged by the enormous 
biological and clinical complexity of cancer, and detection 
is further complicated by the significant intra-tumor 
heterogeneity as well as by the impact of the tumour 
micro-environment [33]. To evaluate whether the blood-
based IMFs are sufficiently sensitive to detect tumors 
at different stages of progression, we first investigated 
whether the IMF characteristics depend on the stage 
of the tumor, characterized in terms of clinical TNM 
(tumor node metastasis) staging [34]. For this purpose, 
we split the BC cases into two groups and compared 
them separately with the non-symptomatic, reference 
individuals. The first group corresponds to the non-
metastatic (M0) patients (stages I, II, III) and the second 
group to metastatic (M1) patients at tumor stage IV. The 
characteristics of the two groups are shown in Table 2.

Panels (a) and (b) in Fig.  3 depict the differential fin-
gerprints, and the effect size per wavenumber and the 
area enclosed by the differential fingerprint, for each 
case group compared separately to the controls. P-val-
ues lower than 10− 2 are observed in the spectral regions 
that correspond to large effect size (3 c). Altogether, we 
observe that the differences between cases and references 

are much more pronounced across the entire shown 
spectral range for the metastatic cases with stage IV 
tumours.

Discussion
This study provides the first indication that the 
molecular differences of blood plasma between reference 
individuals and matched therapy-naive breast cancer 
females have the potential to be detected with infrared 
fingerprinting of crude, native liquid plasma. Although 
previous studies on BC detection have yielded fairly high 
classification efficiencies [28], they have used dried sera 
samples, which is known for its limitations.

As a novelty of the approach, here we showed that 
similar efficiencies can be achieved using measurements 
of liquid plasma directly. This is advantageous, especially 
as native plasma sample measurements are more 
reproducible, require only minimal sample processing 
and are thus more time efficient, while not leading to 
known artifacts such as the so called “coffee-ring effect” 
[35].

This work provides an assessment of the feasibility 
of infrared molecular probing for breast cancer detec-
tion by implementing robust matching that eliminates 
age and BMI as possible confounding factors. Although 
the matching excluded a lot of collected data, it is set 
such that it provides unambiguous assessment of the 
suitability of the approach. Albeit being very promising, 
the results of this study need to be further extended and 
evaluated in larger populations, as we could not involve 
many of the collected samples into our final investiga-
tion, and furthermore, samples from multiple clinical 
sites need to be further investigated. The findings of 
this study indicate that the predictive power of machine 
learning can be further leveraged in future analyses 
requiring larger sample sets. Our presented feasibil-
ity evaluation is instrumental for the establishment of a 
lower bound of the AUC and motivates the collection 
of larger data and sample sets which shall increase the 
prediction performance and capacity of the approach. 
Importantly, given the ease and stability of FTIR oper-
ational workflows to probe bulk fluid plasma, the 
approach presented here is robust and reproducible [22] 
and shall be extendable to larger cohorts in a straightfor-
ward way to any given population.

Table 2  Breakdown of cases in terms of cancer staging

Covariates M0 cases (n = 16) M1 cases (n = 10)

Age in years (mean ± std) 48 ± 10 50 ± 7

BMI in kg/m2 (mean ± std) 29 ± 6 29 ± 6

Gender (% female) 100 100
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Given that this clinical study has been performed on 
a population enrolling women living in Saudi Arabia, 
it will be important to evaluate whether blood-based 
infrared fingerprinting - as a new phenotyping modality 

- is in position to detect breast-cancer-specific signals 
independent of different genetic backgrounds and 
lifestyles. In particular, it will be essential to investigate 
whether the presented approach could possibly 

Fig. 3  Tumor staging. a Mean absorbance difference per wavenumber (differential fingerprint) between cases and references, for metastatic and 
non-metastatic patients. The inset shows the relative sizes of the area enclosed by the two differential fingerprints. b Effect size per wavenumber, for 
metastatic and non-metastatic patients. The dashed line indicates effect size of one standard deviation. c P-values per wavenumber, by performing 
local two-sided t-tests
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contribute to lowering the rate of false positive outcomes 
from current screening programs, to possibly provide 
an additional new approach to be combined with 
mammography.

Overall, we find a consistent pattern of infrared spectral 
changes encoded in the IMFs which is more pronounced 
in the case of more progressed BC stages (either larger 
tumour volume, or metastatic spread). Although per-
formed within a limited study setting, these findings sug-
gest that the information retrieved from the measured 
differences between the IMFs of BC cases and references 
is connected to cancer-related molecular changes. These 
changes may be due to larger tumour load leaving a more 
extensive footprint on the composition of peripheral blood, 
or to the fact that tumour progression could have caused a 
higher systemic response, or to a combination of both.

Conclusions
This is a pilot study applying infrared spectroscopy of liq-
uid blood plasma in combination with machine learning 
for the detection of cancer, showcased on the example 
of BC. This approach to BC detection, using liquid biop-
sies, enabled us to differentiate between patients with 
BC and non-symptomatic reference individuals with an 
AUC of 0.79, importantly, prior to any cancer-related 
therapy. In addition, statistical testing shows that the 
informative signals, captured by the IMFs, are related to 
the progression of the disease. This pilot study has been 
performed on a limited cohort with specific characteris-
tics and thus further studies for validating the results on 
independently-collected samples are necessary. A large-
scale validation study is in progress, and additional studies 
on the detection of several other tumour types are on the 
way. If proven for its feasibility, given the ease of technical 
implementation along with the possibility to be extended 
to high-throughput populational level, this approach pos-
sesses the capability to address currently unmet needs in 
oncology, and has a potential to contribute to the future 
of precision medicine. Given the time- and cost-efficiency 
of the approach, we envisage it to be possibly applied in 
the initial phase of primary disease diagnostics. The main 
objective may not be to isolate new biomarker candidate 
molecules, but to efficiently probe with minimally-inva-
sive liquid biopsies in the first instance, before individuals 
proceed to further diagnostic approaches (based on gold-
standard diagnosis by tissue biopsy/radiology).
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