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Abstract

Background: Viral infections are prevalent in human cancers and they have great diagnostic and theranostic values
in clinical practice. Recently, their potential of shaping the tumor immune microenvironment (TIME) has been
related to the immunotherapy of human cancers. However, the landscape of viral expressions and immune status
in human cancers remains incompletely understood.

Methods: We developed a next-generation sequencing (NGS)-based pipeline to detect viral sequences from the
whole transcriptome and used machine learning algorithms to classify different TIME subtypes.

Results: We revealed a pan-cancer landscape of viral expressions in human cancers where 9 types of viruses were
detected in 744 tumors of 25 cancer types. Viral infections showed different tissue tendencies and expression levels.
Multi-omics analyses further revealed their distinct impacts on genomic, transcriptomic and immune responses.
Epstein-Barr virus (EBV)-infected stomach adenocarcinoma (STAD) and Human Papillomavirus (HPV)-infected head
and neck squamous cell carcinoma (HNSC) showed decreased genomic variations, significantly altered gene
expressions, and effectively triggered anti-viral immune responses. We identified three TIME subtypes, in which the
“Immune-Stimulation” subtype might be the promising candidate for immunotherapy. EBV-infected STAD and HPV-
infected HNSC showed a higher frequency of the “Immune-Stimulation” subtype. Finally, we constructed the eVIIS
pipeline to simultaneously evaluate viral infection and immune status in external datasets.

Conclusions: Viral infections are prevalent in human cancers and have distinct influences on hosts. EBV and HPV
infections combined with the TIME subtype could be promising biomarkers of immunotherapy in STAD and HNSC,
respectively. The eVIIS pipeline could be a practical tool to facilitate clinical practice and relevant studies.

Keywords: Viral infections, Tumor immune microenvironment (TIME), Immunotherapy, Machine learning, pan-
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Background
Human oncogenic viruses have been implicated in causing
10–15% of human cancers worldwide [1]. They can lead
to carcinogenesis directly or indirectly by influencing
many of the hallmarks of human cancers, such as sustain-
ing proliferative signaling, triggering genome instability
and mutation, eliciting inflammation and avoiding im-
mune destruction [2]. The exploration of virus-cancer as-
sociations is critical, as it provides identifiable targets for
the prevention, diagnosis and treatment of human cancers
[3–6]. Hypothesis-driven methods through epidemiology
and low-throughput investigations were the primary
methods to study virus-cancer associations. These
methods had great limitations in efficiency and have
caused false associations [7, 8]. With the advent of next-
generation sequencing (NGS), successful efforts have been
made in screening viral sequences in a high-throughput
fashion. Moreover, large cohorts, such as The Cancer
Genome Atlas (TCGA) database, combined with bioinfor-
matics techniques further inspired research of detecting
viral sequences in human genomes [9–11].
Immunotherapy has revolutionized the therapeutic

strategies of human cancers. The presence of pro-
grammed cell death 1 ligand 1 (PD-L1), microsatellite
instability-high (MSI-high) or DNA mismatch-repair de-
ficiency (dMMR) and tumor mutation burden (TMB)
are the most promising biomarkers for immunotherapy.
However, these biomarkers have limited ability in select-
ing responders [12, 13]. Besides, patients lacking PD-L1,
MSI-high or high TMB markers could lose the thera-
peutic opportunity. Thus finding effective biomarkers in
this group of patients is critically urgent. Recently, a
study exploring viral infections in six cancers revealed
that certain viral infections can shape tumor immune
microenvironment (TIME) with altered immune cellular
infiltrations. Interestingly, these infected tumors harbor
neither high TMB nor MSI-high markers. This indicates
viral infections are likely to be an independent bio-
marker of immunotherapy in certain cancers [14]. Fur-
thermore, several clinical trials have reported a higher
overall response to anti-PD treatment in virus-positive
cohorts, including squamous cell carcinoma of the head
and neck [15], Merkel cell polyomavirus [16, 17], Hodg-
kin lymphomas and post-transplant lymphoproliferative
disorders [18]. And the potential of virus-cancer associa-
tions to be applied to immunotherapy has also been re-
ported in several other studies [19, 20]. However, the
landscape of viral expressions, immune status and the
interplay between them in human cancers remain in-
completely understood.
In this study, we aim to investigate viral sequences

across human cancers and find their influences on the
genome, transcriptome and TIME of their hosts. Also,
we aim to generate an integrated pipeline to detect viral

infections and identify TIME subtypes. Hopefully, the re-
vealed virus-cancer associations and the developed tools
may provide insights into immunotherapy in human
cancers.

Methods
Datasets and viral sequences detection pipeline
We downloaded 11,206 TCGA BAM format files of 33
cancer types from The Genomic Data Commons (GDC)
data portal with official authorization. We aligned raw
RNA-seq data in BAM files which came from STAR with
reference sequences of human and viral genomes to detect
viral expression. Next, we employed StringTie (version
1.3.3) to assemble transcripts for each BAM file, with
GENCODE v22 as the reference annotation. Finally, the
expression level of each transcript was normalized into
TPM (transcripts per kilobase million). For transcripts of
the same viral infection type, we selected the maximum
TPM value as the final viral mRNA expression. Of note,
we refer to an infected case as a tumor infected by a spe-
cific virus type, for example, an HPV-infected tumor of
HNSC is an HPV infection case in HNSC. By comparison,
an infected sample is a sample harboring viral sequences,
no matter how many types of viral sequences were de-
tected. Therefore, in samples co-infected by different vi-
ruses, the number of infected cases is not equal to that of
infected samples or tumor samples.
MAF format files, gene expression profiles (fragments

per kilobase million, FPKM) and corresponding clinical
information of 11,206 tumor samples were also down-
loaded from the TCGA database. Information of total
leukocyte fraction (LF), 22 types of lymphocyte infiltra-
tion, genomic features (including silent mutation rate,
nonsilent mutation rate, copy number variation (CNV),
aneuploidy score, homologous recombination defects
(HRD), intratumor heterogeneity (ITH)) of each tumor
sample was obtained from a previous study [21]. All data
involved in the analysis is available in Supplementary
Table 1.

TMB calculation
Tumor mutation burden (TMB) is defined as the num-
ber of somatic mutations (excluding germline mutations)
within the whole genome. In this study, the TMB of
each tumor sample was calculated by measuring muta-
tions per megabase (Mb) based on MAF format files
from TCGA. For each sample, we merged all somatic
mutations calculated by four different techniques, in-
cluding MuTect [22], MuSE [23], VarScan [24], and
SomaticSniper [25]. 40Mb was considered as the size of
the exome, and the final TMB is calculated as the num-
ber of somatic mutations divided by 40. According to
the previous study [26], tumor samples were further par-
titioned into 3 groups: samples with 1–5 mutations/Mb
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are defined as “Low-TMB”; samples with 6–19 muta-
tions/Mb are defined as “Intermediate-TMB”; samples
with > = 20 mutations/Mb are defined as “High-TMB”.
TMB of each sample is available in Supplementary
Table 1.

Criteria of segregating 22 leukocyte subtypes into 9
subsets
We segregated 22 leukocyte subtypes into 9 subsets ac-
cording to the criteria from a previous study [21]:
T.cells.CD8 = T.cells.CD8,
T.cells.CD4 = T.cells.CD4.naive+T.cells.CD4.memory.r-

esting+T.cells.CD4.memory.activated+T.Cells.Follicular.-
Helper+T.Cells.gamma.delta+T.Cells.Regulatory.Tregs,
B.cells = B.cells.naive + B.cells.memory + Plasma.Cells,
NK.cells = NK.cells.resting + NK.cells.activated,
Macrophage =Macrophages.M0 +Macrophages.M1 +

Macrophages.M2,
Dendritic.cells = Dendritic.cells.resting +

Dendritic.cells.activated,
Mast.cells =Mast.cells.resting + Mast.cells.activated,
Neutrophils = Neutrophils + Monocytes,
Eosinophils = Eosinophils.
The original data of 22 leukocyte subtypes was ob-

tained from Ref (21). The original data and aggregated
data are available in Supplementary Table 1.

Gene set variation analysis
Gene set variation analysis (GSVA) was implemented
using the “GSVA” R package (3.8). Sixteen immune-
related pathways were obtained from the Molecular Sig-
natures Database (MSigDB) [27, 28], including:

1) KEGG_B_CELL_RECEPTOR_SIGNALING_
PATHWAY

2) KEGG_CELL_ADHESION_MOLECULES_ CAMS
3) KEGG_CHEMOKINE_SIGNALING_PATHWAY
4) KEGG_COMPLEMENT_

AND_COAGULATION_CASCADES
5) KEGG_CYTOKINE_CYTOKINE_RECEPTOR

_INTERACTION
6) KEGG_FC_EPSILON_ RI_SIGNALING_

PATHWAY
7) KEGG_FC_GAMMA_R_ MEDIATED_

PHAGOCYTOSIS
8) KEGG_LEUKOCYTE_TRANSENDOTHELIAL_

MIGRATION
9) KEGG_NATURAL

_KILLER_CELL_MEDIATED_CYTOTOXICITY
10) KEGG_NOD_LIKE_RECEPTOR

_SIGNALING_PATHWAY
11) KEGG_RIG_I_LIKE_RECEPTOR_SIGNALING_

PATHWAY

12) KEGG_T_CELL_
RECEPTOR_SIGNALING_PATHWAY

13) KEGG_TGF_BETA_SIGNALING_ PATHWAY
14) KEGG_TOLL_

LIKE_RECEPTOR_SIGNALING_PATHWAY
15) REACTOME_PD1_SIGNALING
16) BIOCARTA_CTLA4_PATHWAY

Detailed information about GSVA is available in a pre-
vious study [29].

Differential expression analysis
Gene expressions (FPKM) were log2-transformed after
adding one as the pseudo count and then processed by
the “limma” R package (3.36.5). Differentially expressed
genes (DEGs) were defined as genes with j logFC2 j > 0:5
and adjusted P < 0.05. Enrichment analyses were per-
formed using the “clusterProfiler” R package [30].

Soft clustering analysis
Using whole DEGs for enrichment analysis can cause re-
dundancies which is much less biologically interpretable.
In this case, subtle changes would be masked by domin-
ant alterations. Therefore, we chose fuzzy c-means
(FCM) to divide whole DEGs into different functional
modules. FCM is a soft clustering approach and we im-
plemented the method using the “Mfuzz” R package
(3.8) [31, 32]. After excluding genes with low standard
deviation and standardization, DEGs profiles were con-
verted into “ExpressionSet” objects. Fuzzier “m” was
identified using the “mestimate” function and the num-
ber of clusters was adjusted by the “Dmin” function
where the turning point in the decline curve of the mini-
mum centroid distance was selected. Cluster compari-
sons were implemented using the “compareCluster”
function of “clusterProfiler” R package (3.8.1).

K-means unsupervised clustering
We performed clustering analysis on the “LF-high” sam-
ples of six cancers including LGG, COAD, CESC, KIRC,
UVM and SKCM [33]. These cancers were reported cov-
ering various immune environment types. We used infil-
tration levels of 22 immune cell subtypes and expression
levels of 76 immune-related genes as features (Supple-
mentary Table 3). Features were first scaled and the K-
means clustering algorithm was performed by the
“kmeans” function in R (version 4.0.1). The optimal
number of the cluster was determined by the “NbClust”
function.

Kaplan-Meier analysis
The Kaplan-Meier analysis was used to estimate the em-
pirical survival probabilities. Differences between
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survival curves were tested by the log-rank test using the
“survival” R package (version 3.2–7).

TIDE and IFNG score prediction
We first normalized raw FPKM values according to the
recommended way (http://tide.dfci.harvard.edu/). First,
raw FPKM values were log2 transformed after adding a
pseudo value of one (log2(FPKM+ 1)). For each gene, we
then subtracted the mean value calculated by averaging
normalized FPKM values across all patients of the same
cancer type. Finally, we uploaded the normalized tab
files of the expression matrix to the website to get TIDE
predictions. The results include “Responder”, “TIDE
score”, “IFNG score”, “Dysfunction score”, and “Exclu-
sion score”, etc. (Supplementary Table 5).

Construction of LF.Score
Leukocyte fraction (LF) distributions were first explored
in 9692 tumors of 30 cancer types with available LF in-
formation (including ACC, BLCA, BRCA, CESC, CHOL,
COAD, ESCA, GBM, HNSC, KICH, KIRC, KIRP, LGG,
LIHC, LUAD, LUSC, MESO, OV, PAAD, PCPG, PRAD,
READ, SARC, SKCM, STAD, TGCT, THCA, UCEC,
UCS and UVM). We found LFs of cancers lacking leuco-
cyte infiltrations [33] were mostly below the 25th per-
centile of LFs (0.086) in all samples). Using this
threshold, samples with LF > = 0.086 (the 25th percentile
of LF) were assigned to the “LF-high” group and samples
with LF < 0.086 were assigned to the “LF-low” group.
To model a LF.Score that classifies tumors into the

“LF-high” or the “LF-low” group based on gene expres-
sion profiles, we used TCGA datasets for both training
and internal validations. Since TCGA datasets are com-
prised of different tumor types with unbalanced sample
sizes, we adopted stratified sampling and randomly
assigned samples of each cancer type into a training set
and two validation sets at the same ratio of 4:3:3 (3865,
2931 and 2911 samples for training, validation1 and val-
idation2 cohorts). For feature selection, we first per-
formed correlation analyses in the training cohort. We
found 167 protein-coding genes were relevant to LF
levels (Pearson’s r > 0.5). Then we performed LASSO re-
gression, which is an L1 regularization technique, to fur-
ther shrink the size of the gene signature. 10-fold cross-
validation LASSO regression was performed using the
“cv.glmnet” function in the “glmnet” R package to define
the optimal lambda (λ = 0.00673) (Supplementary Fig.
S8). Thirty genes remained in the final gene signature
and their weights were rescaled between 0 and 1 as the
final LF.Score:
LF.Score = 0.77*AMICA1 + 0.27*ARHGAP30 +

1*CCR4 + 0.62*CD247 + 0.26*CD5 + 0.26*CD86 +
0*FGD2 + 0.25*FMNL1 + 0.55*FOXP3 + 0.38*FYB +
0.32*GPR65 + 0.24*GPSM3 + 1*GRAP2 + 0.26*HCLS1 +

0.25*HLA.DPB1 + 0.25*HLA.E+ 0.6*KLRB1 +
0.41*LILRB2 + 0.59*LILRB3 + 0.4*NCF2 + 0.33*NLRC5 +
0.38*PTAFR+ 0.28*RASSF5 + 0.28*SELPLG+
0.41*SLAMF8 + 0.43*SNX20 + 0.25*SRGN+
0.72*TIGIT+ 0.25*TNFRSF1B + 0.67*ZNF831.
The performance of the LF.Score in separating the

“LF-low” group from the “LF-high” group showed an
area under curve (AUC) of 0.855 in the training cohort
(95% CI: 0.841–0.868) (Supplementary Fig. S7). Valid-
ation1 gained an AUC of 0.847 (95% CI: 0.832–0.863)
(Supplementary Fig. S7). Validation2 gained an AUC of
0.851 (95% CI: 0.835–0.866) (Supplementary Fig. S7).
We selected LF.Score = 81.03 that got the highest you-
den index as the cutoff.

Construction of the support vector machine (SVM)
classifier
The SVM classifier is built for distinguishing the “Im-
mune-Anergy” subtype from the “Immune-Stimulation”
subtype. We used samples of LGG, COAD, CESC, KIRC,
UVM and SKCM from TCGA to develop the model.
The “Immune-Anergy” and “Immune-Stimulation” sub-
types of these samples were first randomly assigned into
a training cohort (1200 samples) and a validation cohort
(513 samples). For feature selection, DEG analysis was
performed in the training cohort where thirty-seven
genes were found differentially expressed between two
subtypes ( j logFC2 j > 2 and adjusted p < 0.05). An SVM
model was then trained using the 10-fold cross-
validation strategy by the “e1071” R package. The effi-
ciency of the classifier was evaluated by the receiver op-
erating characteristic curve (ROC) calculated by
the“pROC” R package. The classifier could distinguish
the “Immune-Stimulation” subtype from the “Immune-
Anergy” subtype in both training cohort (AUC = 0.99,
95% CI: 0.997 to 0.999) (Supplementary Fig. S9) and val-
idation cohort (AUC = 0.995, 95% CI: 0.991 to 0.999)
(Supplementary Fig. S9). The best cut-off threshold
showed great performance in both training (sensitivity:
99%, specificity: 94%, accuracy: 0.98) (Supplementary
Fig. S9) and validation (sensitivity: 98%, specificity: 93%,
accuracy: 0.97) (Supplementary Fig. S9) cohorts.

Construction of eVIIS pipeline
Based on the LF.Score classifier and the SVM classifier,
we developed the eVIIS pipeline. The pipeline was built
using Python (version 3.6.0) and shell language. It takes
several steps to predict viral infections and the TIME
subtype: (1) align RNA-seq data to human and viral ref-
erence genome sequences using STAR (version <= 2.5)
[34]; (2) assemble mapped reads by StringTie (version
<= 1.2.3) [35] to detect viral sequences; (3) obtain read
counts of genes by featureCounts (version > = 1.5.0) [36],
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quantify expression levels of genes of FPKM values, and
predict the immune status (TIME). The expression of a
virus type within a tumor is defined as the maximum
TPM value of the multiple transcripts (TPM) from the
assembly results generated by StringTie. For TIME pre-
diction, eVIIS quantifies gene expression by normalizing
counts into FPKM, according to the formulas provided
in the GDC mRNA analysis pipeline:

FPKM ¼ RCg�109
RCpc�L

where RCg and L are the number of counts mapped to
the gene and the total length of exons for the gene, re-
spectively. RCpc indicates the number of reads mapped
to all protein-coding genes (excluding mitochondrial
genes). TIME prediction was implemented based on the
two models (LASSO regression and SVM) derived from
the TCGA training cohort. For a given sample, eVIIS
first calculates its LF.Score using the LASSO regression
model based on FPKM values of 30 LF-relevant genes.
The sample will be classified as the “Immune-Exclusion”
subtype if LF.Score < 81.03. Samples with LF.Score > =
81.03 will be further processed by the SVM model. The
SVM model evaluates each sample by the 37 DEGs
(FPKM) and predict the sample as the “Immune-Stimu-
lation” or the “Immune-Anergy” subtype. The eVIIS
pipeline is available at https://github.com/HuangLab-
Fudan/eVIIS.

Statistical analyses
Wilcoxon rank-sum test was used to compare continu-
ous variables. Pearson’s Chi-squared test was used to
compare unordered categorical variables. Correlation
analysis was performed by Spearman’s rank correlation.
All tests were two-tailed with p < 0.05 as a significance
cutoff. All statistical analyses were performed using R
(version 4.0.1).

Results
The landscape of viral expressions in human cancers
We designed a pipeline to detect 212 types of viral se-
quences by interrogating RNA-Seq data of 11,206 tumor
samples of 33 cancer types from TCGA (Fig. 1A). Over-
all, 9 types of viral sequences were detected in 744 tu-
mors of 25 cancer types (Table 1). Over 1% of tumors
were found infected in 20 cancer types and over 5% of
tumors were infected in 6 cancer types (Fig. 1B). The
well-known oncogenic virus-related cervical squamous
cell carcinoma and endocervical adenocarcinoma (CESC,
94.14%) and liver hepatocellular carcinoma (LIHC,
33.16%) exhibited the highest proportions of viral infec-
tions, followed by acute myeloid leukemia (LAML,
27.50%), stomach adenocarcinoma (STAD, 17.61%),

head and neck squamous cell carcinoma (HNSC,
14.58%) and esophageal carcinoma (ESCA, 8.65%). A
comprehensive landscape of viral expressions of all in-
fected tumors is presented in Fig. 1C.
For CESC, all infected tumors were related to Human

Papillomavirus (HPV), in which the high-risk HPV16
and HPV18 dominantly accounted for 60.90 and 14.53%,
respectively. Besides, we detected 2 cases of HBV infec-
tion in CESC. For LIHC, 93.6% tumors (117 out of 125)
were infected by Hepatitis B virus (HBV). Additionally,
four tumors were infected by HPV (HPV16 and HPV35),
four tumors were infected by Hepatitis C virus (HCV),
and one tumor was infected by Epstein-Barr virus (EBV).
For STAD, 55.1% of tumors (43 out of 78) were infected
by EBV and 51.3% of tumors (40 out of 78) were in-
fected by Cytomegalovirus (CMV). Besides, one tumor
was infected by HPV18, one tumor was infected by
Kaposi’s sarcoma-associated herpesvirus (KSHV), and
one tumor was infected by Human Immunodeficiency
Virus (HIV). Of note, we found co-infection of EBV and
CMV occurred frequently in gastrointestinal tumors.
Apart from STAD, ESCA showed 3.2% of tumors (6 out
of 185) with EBV infection and 5.9% of tumors (11 out
of 185) with CMV infection. For HNSC, 89.61% of tu-
mors (69 out of 77) were infected by HPV and HPV16
was the dominant subtype (79.7%; 55 out of 69). Also,
we found one tumor infected by EBV, 3 tumors infected
by CMV, 2 tumors infected by HBV. For LAML, we de-
tected CMV infection in all tumors and SV40 infection
in 83.6% of tumors (46 out of 55). We compared the
above results with the clinical information provided by
TCGA. For HPV infection, 22 out of 23 records of CESC
and 91 out of 96 records of HNSC agreed with our de-
tection. Additionally, we detected other subtypes of
HPV, including HPV45, HPV52, HPV58 and HPV70. As
for EBV infection, EBV infections were detected in 27
out of 30 tumors that were accordingly defined as the
GI.EBV subtype by TCGA (Supplementary Table 1) [37].
Within the nine types of viruses we detected, HPV,

HBV, EBV and CMV are the most prevalent types. We
found these viral infections showed different tissue ten-
dencies (Fig. 1D). HPV infections occurred mostly in
CESC (71%) and HNSC (17%); HBV infections occurred
mostly in LIHC (83%); EBV infections occurred mostly
in STAD (78.2%) and ESCA (10.9%); and CMV infec-
tions occurred mostly in LAML (38.2%), STAD (27.8%),
colon adenocarcinoma (COAD; 7.6%) and ESCA (7.6%).
Besides their main hosts, these viruses were sporadically
detected in a wide range of human cancers. For example,
HPV infections were also detected in bladder urothelial
carcinoma (BLCA; 2%), COAD (1.7%) and uterine cor-
pus endometrial carcinoma (UCEC; 1.5%); HBV infec-
tions were also detected in skin cutaneous melanoma
(SKCM; 4.3%), prostate adenocarcinoma (PRAD; 2.1%);
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Fig. 1 (See legend on next page.)
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CMV infections in ovarian serous cystadenocarcinoma
(OV; 4.9%), HNSC (3.5%), BLCA (3.5%), rectum adeno-
carcinoma (READ; 2.8%) and pancreatic adenocarcin-
oma (PAAD; 2.1%). Compared to the main hosts, viral
expressions were generally lower in these uncommon
hosts. However, some uncommon hosts exhibited high
viral expressions, such as HPV-infected BLCA, HPV-
infected UCEC, HBV-infected HNSC, HBV-infected
KIRP, HBV-infected UCEC, EBV-infected SKCM, EBV-
infected DLBC, CMV-infected OV and CMV-infected
BLCA (Fig. 1D). As for the less prevalent types, 46 tu-
mors of LAML and 5 tumors of OV were infected by
Simian virus 40 (SV40); 4 tumors of LIHC were infected
by Hepatitis C virus (HCV); 1 tumor of STAD and 1
tumor of READ were infected by Human Immunodefi-
ciency Virus (HIV); 1 tumor of STAD was infected by
Kaposi’s sarcoma-associated herpesvirus (KSHV); and 1
tumor of OV was infected by Merkel cell polyomavirus
(MCV) (Table1). These nine viruses showed consider-
ably varied viral expressions. HPV and HBV were the
highest, followed by CMV, EBV and SV40, and HCV
and HIV showed the lowest levels of viral expressions
(Fig. 1E; Table 2).
We also analyzed demographic characteristics of dif-

ferent viral infections. EBV, HBV and HPV infections
appeared more frequently in males of STAD, LIHC and
HNSC, respectively (P < 0.05, Pearson’s Chi-squared test)
(Fig. 2A, Supplementary Table 4). Ancestry analysis
showed that, within the most prevalent virus-cancer as-
sociations (including EBV-STAD, CMV-STAD, HBV-
LIHC, HPV-CESC, HPV-HNSC and CMV-LAML), only
HBV infection showed a significant difference in LIHC
where tumors of the Asian ancestry were more prone to
HBV infection (P < 0.0001, Pearson’s Chi-squared test)
(Fig. 2B, Supplementary Table 4). HPV-infected CESC
(P = 0.0134), HPV-infected HNSC (P = 0.0034), and
HBV-infected LIHC (P < 0.0001) showed an earlier age

of diagnosis (Pearson’s Chi-squared test) (Fig. 2C, Sup-
plementary Table 4).

EBV and HPV infections showed decreased genomic
variations
To assess the effects of viral infections upon the host
genome, we analyzed tumor mutation burden (TMB),
mutation rate (silent and non-silent), copy number vari-
ation (CNV, both segment and fraction of genomic alter-
ations), aneuploidy, homologous recombination defects
(HRD) and intratumor heterogeneity (ITH) for the most
prevalent virus-cancer associations (including EBV infec-
tion in STAD, HBV infection in LIHC and HPV infec-
tion in HNSC). We found all eight features decreased
consistently in HPV-infected HNSC and features includ-
ing CNV, HRD and ITH were decreased in EBV-infected
STAD (p < 0.05; two-tailed Mann-Whitney U test). By
comparison, five features (SNV, CNV- segment, CNV-
fraction, aneuploidy and HRD) were increased in HBV-
infected LIHC (p < 0.05; two-tailed Mann-Whitney U
test) (Fig. 3A and Fig. 3B; Supplementary Table 2). Using
TMB as an indicator, we further compared infected tu-
mors with tumors with high microsatellite instability
(MSI-high) [38, 39]. Most virus-infected tumors were
classified as “intermediate TMB” or “low TMB”, com-
pared to that most MSI-high tumors were classified as
“high TMB” (Fig. 3C). Beside, we found a significant
negative correlation between HPV expressions and TMB
in all HPV-infected tumors (P < 0.05, Spearman’s rank
correlation) (Fig. 3D).

EBV and HPV infections displayed significantly changed
gene expressions
To explore the impact of viral infections upon the tran-
scriptome, we performed differential expression analysis.
For HPV-infected HNSC, we identified 3367 differen-
tially expressed genes (DEGs), of which 2446 DEGs were

(See figure on previous page.)
Fig. 1 The landscape of viral expressions in human cancers. A Pipeline of viral sequence detection and downstream analyses. We downloaded
11,206 BAM files, expression profiles (fragments per kilobase million, FPKM) and clinical data including 33 cancer types from TCGA. For viral
sequence detection, we aligned raw RNA-seq data in BAM files came from STAR with reference genomic sequences of human and 212 types of
virus to detect viral sequences. We assembled transcripts with StringTie and the expression level of each transcript was normalized by TPM
(transcripts per kilobase million). For transcripts of the same viral infection type, the maximum TPM value was selected as the final viral mRNA
expression. Viral expression data, RNA-seq expression data and clinical data were then used for downstream statistical, genomic, transcriptional
and immune analyses. B Fractions of viral infection in human cancers. The value of the fraction of viral infection is log10-transformed after adding
a pseudo value of one. 20 types of cancer showed viral infections in over 1% of tumors, and 6 types of cancers showed viral infections in over
5% of tumors. C The landscape of viral expressions in human cancers. We showed viral expressions of all 744 infected samples from 25 types of
cancer. Cancers are ordered according to the amount of infected samples. Cancers with highest amounts of viral infections are labelled, including
CESC, LIHC, STAD, HNSC, LAML and COAD. The unlabeled cancers are ESCA, BLCA, OV, SKCM, READ, PAAD, UCEC, LGG, KIRC, SARC, PRAD, LUSC,
KIRP, THCA, CHOL, DLBC, UCS, MESO, LUAD (from left to right). We detected 9 types of viral sequences in total, with 20 subtypes in HPV
infections. Viral expressions were normalized into TPM values which are indicated with discrete colors notations. While most samples have a
dominant type of viral infection, co-infections are also widespread. D Distributions of HPV, HBV, EBV and CMV infections in human cancers. Some
cancers with low fractions are not labeled. The color of each sector indicates the average viral expression of tumors of that cancer type. E
Distributions of viral expression levels. We plotted Kernel density plot for each virus (except for KSHV and MCV which only have a single sample).
Viral expressions were log10-transformed and viruses are grouped based on their average expression levels
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upregulated and 921 DEGs were downregulated. For
EBV-infected STAD, we identified 986 DEGs, of which
511 DEGs were upregulated and 475 DEGs were down-
regulated. In contrast, only 163 DEGs were identified in
HBV-infected LIHC, of which 93 DEGs were upregu-
lated and 70 DEGs were downregulated. Compared to
HPV-related DEGs and EBV-related DEGs, changes of
HBV-related were much smaller. For all virus-related
DEGs, 9 genes were overlapped, including CDT1, CENP
M, HLA-DPA1, LMNB1, MCM2, MCM5, PAFAH1B3,

RRM2 and TK1 (Fig. 4A). Expressions of these genes
were positively correlated with the expressions of EBV
and HPV (Fig. 4B). Except that HLA-DPA1 is related to
antigen presentation, the rest genes are exclusively asso-
ciated with cell proliferation. To gain a better under-
standing of the biological functions of these DEGs, we
performed fuzzy c-means (FCM) clustering analysis. We
identified 3 gene clusters in STAD (S1, S2, S3), 4 gene
clusters in LIHC (L1, L2, L3, L4) and 4 gene clusters in
HNSC (H1, H2, H3, H4) (Supplementary Fig. 1). 385

Table 1 Viral infection in 33 cancer types from TCGA

TCGA Tumor
samples

Infected
samples

Infected
fraction

Infected cases

HPV HBV EBV CMV HCV HIV KSHV MCV SV40

CESC 307 289 94.10% 311 2 0 0 0 0 0 0 0

LIHC 377 125 33.20% 4 117 1 0 4 0 0 0 0

LAML 200 55 27.50% 0 0 0 55 0 0 0 0 46

STAD 443 78 17.60% 1 0 43 40 0 1 1 0 0

HNSC 528 77 14.60% 69 2 1 5 0 0 0 0 0

ESCA 185 16 8.60% 0 0 6 11 0 0 0 0 0

COAD 459 19 4.10% 7 0 1 11 0 0 0 0 0

READ 169 7 4.10% 1 0 1 4 0 1 0 0 0

PAAD 185 7 3.80% 2 2 0 3 0 0 0 0 0

BLCA 412 14 3.40% 8 0 0 5 0 0 0 0 1

CHOL 36 1 2.80% 0 1 0 0 0 0 0 0 0

DLBC 50 1 2.00% 0 0 1 0 0 0 0 0 0

UCS 57 1 1.80% 0 0 0 1 0 0 0 0 0

SKCM 470 8 1.70% 1 6 1 0 0 0 0 0 0

OV 602 9 1.50% 1 0 0 7 0 0 0 1 5

SARC 261 4 1.50% 2 2 0 0 0 0 0 0 0

UCEC 559 7 1.30% 6 1 0 0 0 0 0 0 0

MESO 87 1 1.10% 1 0 0 0 0 0 0 0 0

KIRP 291 3 1.00% 2 1 0 0 0 0 0 0 0

LGG 516 5 1.00% 4 1 0 0 0 0 0 0 0

KIRC 535 5 0.90% 4 1 0 0 0 0 0 0 0

LUSC 504 4 0.80% 3 0 0 1 0 0 0 0 0

PRAD 498 4 0.80% 1 3 0 0 0 0 0 0 0

THCA 507 3 0.60% 1 2 0 0 0 0 0 0 0

LUAD 580 1 0.20% 0 0 0 1 0 0 0 0 0

ACC 92 0 0.00% 0 0 0 0 0 0 0 0 0

BRCA 1098 0 0.00% 0 0 0 0 0 0 0 0 0

GBM 599 0 0.00% 0 0 0 0 0 0 0 0 0

KICH 66 0 0.00% 0 0 0 0 0 0 0 0 0

PCPG 179 0 0.00% 0 0 0 0 0 0 0 0 0

TGCT 150 0 0.00% 0 0 0 0 0 0 0 0 0

THYM 124 0 0.00% 0 0 0 0 0 0 0 0 0

UVM 80 0 0.00% 0 0 0 0 0 0 0 0 0

SUM 11,206 744 429 141 55 144 4 2 1 1 52
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DEGs of S2 and 440 DEGs of H1 were exclusively up-
regulated, while 18 DEGs of L3 were all downregulated.
Enrichment analysis showed these gene clusters were
mainly associated with immunity. All DEGs in L2 and
H3 were upregulated, while a large portion of DEGs of
S1 was decreased. Enrichment analysis showed these
gene clusters were relevant to cell proliferation (Fig. 4C).
Moreover, we found pathways involving DNA replica-
tion, mismatch repair, base excision repair, and nucleo-
tide excision repair were upregulated in S1 and H3 (Fig.
4D; Supplementary Fig. S2).

EBV and HPV infections showed effective anti-viral
immune responses and upregulated PD1 signaling
pathway
We then focused on the influences of viral infections on
immune cellular infiltrations. Distributions of the inte-
grated 9 immune cells of STAD, LIHC and HNSC are
presented in Fig. 5A. For STAD, the leukocyte fraction
(LF) and infiltrations of CD8+ T cells and macrophages
were higher in EBV-infected tumors (p < 0.05; two-tailed
Mann-Whitney U test). For LIHC, LF, CD4+ T cells and
mast cells were decreased in HBV-infected tumors (p <
0.05; two-tailed Mann-Whitney U test). For HNSC, infil-
trations of CD8+ T cells and B cells were increased,
while LF, macrophages and mast cells were decreased in
HPV-infected tumors (p < 0.05; two-tailed Mann-
Whitney U test) (Fig. 5B). In all EBV- and HPV-
associated cancers, infiltrations of CD8+ T cells were
higher in infected tumors (Supplementary Fig. S3). For
all EBV-infected tumors, a positive correlation was ob-
served between EBV expressions and infiltration levels
of CD8+ T cells (r = 0.37, P = 0.0086, Spearman’s rank
correlation) (Supplementary Fig. S4). Shannon entropy
and species richness are indicators of T cell infiltration
levels, and TCR evenness could stand for the diversity of
T cell receptors. We noticed that Shannon entropy and
species richness were increased, while TCR evenness
was decreased in EBV-infected STAD. This implies that
EBV-infected tumors may have undergone a clonal

expansion [14] (Supplementary Fig. S5). This is consist-
ent with the observation that ITH was decreased in
EBV-infected tumors.
We further examined how immune-related functions

were regulated in these virus-infected tumors [27, 28]. In
terms of immune stimulation,12 pathways responsible
for immune cell migration and infiltration, antigen rec-
ognition, innate immune response and adaptive immune
response were upregulated in EBV-infected STAD; and
4 pathways representing B cell receptor signaling, NK
cell-mediated cytotoxicity, RIG-1 like receptor signaling
and T cell receptor signaling were upregulated in HPV-
infected HNSC. As for immune suppression, suppressive
pathways like PD1 signaling and CTLA-4 pathways were
upregulated in EBV-infected STAD and HPV-infected
HNSC (two-tailed Mann-Whitney U test) (Fig. 5C).
Immune-suppressive molecules, including LAG3,
PDCD1, CD274 (PD-L1), CTLA4 and IL10 were also up-
regulated in EBV-infected STAD and HPV-infected
HNSC (two-tailed Mann-Whitney U test) (Fig. 5D). By
comparison, all immune-related pathways were de-
creased in HBV-infected LIHC (two-tailed Mann-
Whitney U test) (Fig. 5C).

Identification of TIME subtypes
Tumor immune microenvironment (TIME) is a pre-
requisite of applying immunotherapy in the clinic [40].
In this part, we proposed a method to classify tumors
into different types of TIME. The general idea of identi-
fying different TIME subtypes is to first separate tumors
with high leucocyte infiltrations from those lacking
leucocyte infiltrations. For this purpose, we first studied
LF distributions of the 30 cancer types with available
data from TCGA. We found LFs of cancers lacking
leucocyte infiltrations [33] were mostly below the 25th
percentile of LFs (0.086) (Fig. 6A). Using this threshold,
we separated tumors into a “LF-high” group and a “LF-
low” group. Then within the “LF-high” group, we wanted
to identify tumors with activated immune responses and
those with functionally impaired immune responses.
Specifically, we used infiltrations of all 22 types of im-
mune cells and expressions of 76 immune-related genes
(Supplementary Table 3) as features to perform an un-
supervised clustering analysis on all “LF-high” tumors of
LGG, COAD, CESC, KIRC, UVM and SKCM TCGA
datasets. We chose these cancer types because they have
been reported covering different immune environment
subtypes [33]. The clustering analysis identified two dif-
ferent clusters (Fig. 6B). Cluster1 is characterized by in-
creased infiltrations of both cytolytic cells (CD8+ T cells,
M1 macrophages, activated NK cells and follicular
helper T cells) and immune-suppressive cells (Tregs and
M2 macrophages). Accordingly, expressions of cytolytic
genes (GZMA, GZMB, PRF1, IFNG and TNF) and

Table 2 Reference intervals of viral expressions

Mean Median P25-P75

HBV 497.79 42.74 2.95–377.14

HPV 234.90 132.45 48.50–280.21

EBV 16.83 4.92 0.65–28.12

SV40 11.14 9.34 6.04–13.84

CMV 7.05 2.47 0.98–9.70

HCV 3.50 2.32 2.21–3.61

HIV 2.65 2.65 1.70–3.59

MCV 0.52

KSHV 1.14
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immunosuppressive genes (PDCD1, CD274, LAG3 and
CTLA4) are also upregulated. By contrast, infiltration
levels of immune cells and expressions of immune-
related genes are nearly all lower in Cluster2 than Clus-
ter1 (Fig. 6C). LF levels reflect the overall level of im-
mune cellular infiltrations, and different patterns of

expressions of 76 immune-related genes and infiltrations
of 22 immune cells indicate different functional condi-
tions. By aggregating LF levels and the clustering results,
we manually identified three different TIME subtypes.
The “LF-low” group is defined as the “Immune-Exclu-
sion” subtype, and Cluster1 and Cluster2 within the “LF-

Fig. 2 Demographic characteristics of viral infections. A Gender characteristic of virus-associated cancers. EBV-, HBV- and HPV-infections appear
more frequently in males of STAD, LIHC and HNSC, respectively (P < 0.05, Pearson’s Chi-squared test). B Germline analysis for viral infections. We
analyzed correlations between viral infections and different races in cancers with high proportion of viral infection. HBV infection in LIHC is the
only virus-cancer association that has significant difference in germline distribution where LIHC of Asian ancestry is more susceptible to HBV-
infection (P < 0.0001, Pearson’s Chi-squared test). C Age analysis for virus-associated cancers. The age of diagnosis showed earlier in HPV-infected
CESC (P = 0.0134, Pearson’s Chi-squared test), HPV-infected HNSC (P = 0.0034, Pearson’s Chi-squared test), and HBV-infected LIHC (P < 0.0001,
Pearson’s Chi-squared test) showed an earlier age of diagnosis
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high” group are defined as the “Immune-Stimulation”
subtype and the “Immune-Anergy” subtype separately.
We compared our TIME subtyping results with a pre-

vious research that identified different immune types
across human cancers [41]. LGG and UVM showed
higher fractions of the “Immune-Exclusion” subtype and
lower fractions of the “Immune-Stimulation” subtype.
This result is compatible with the decreased immune re-
sponses in LGG and UVM reported by the study. By
comparison, CESC, KIRC and SKCM showed relatively
higher fractions of the “Immune-Stimulation” subtype,
and these cancer types also showed stimulated immune
responses in the study(Fig. 6D). TIDE is a tool to predict
immune responses for an individual cancer type. It cur-
rently only supports predicting for SKCM and non-small
cell lung cancer (NSCLC) and the prediction of SKCM
is more robust [42]. Therefore, we chose the SKCM

TCGA dataset for comparison. Both TIDE and TIME
methods evaluate CTL infiltration levels and dysfunction
status, and TIME additionally evaluates a stimulated sta-
tus. For the evaluation of CTL infiltrations, all “CTL-
high” tumors are constituted of the “TIME-Stimulation”
(62%) and the “TIME-Anergy” (38%) TIME subtypes,
and most of “CTL-low” tumors are constituted of the
“TIME-Exclusion” (25%) and the “TIME-Anergy” (73%)
TIME subtypes (Supplementary Fig. S10). Besides, “T
cell exclusion scores” showed a significant negative cor-
relation with “LF scores” (cor = − 0.66; p-value < 2.2e-16,
Pearson’s correlation) (Supplementary Fig. S10). These
results are expected for both “T cell exclusion scores”
and “LF scores” are measurements of CTL infiltrations.
In addition, we found “T cell exclusion scores” is signifi-
cantly higher in the “Immune-Exclusion” subtype than
the “Immune-Anergy” subtype (mean: 0.88 and 0.35; p-

Fig. 3 EBV and HPV infections showed decreased genomic variations. A Genomic features of EBV-infection, HBV-infection and HPV-infection in STAD,
LIHC and HNSC, respectively. Comparisons were made between infected and non-infected tumor samples for each cancer type. Significant results are
labeled (*:0.05–0.01; **:0.01–0.001; ***:0.001–0.0001; ****: < 0.0001; two-tailed Mann-Whitney U test). B Genomic features of viral infections. We analyzed
EBV-infected STAD, CMV-infected STAD, HBV-infected LIHC and HPV-infected HNSC. All genomic features are significantly decreased in HPV-infected
HNSC, four features are significantly decreased in EBV-infected STAD. By comparison, five features are significantly increased in HBV-infected LIHC. No
significant change were found in CMV-infected STAD (p < 0.05; two-tailed Mann-Whitney U test). C Comparison between tumors with different viral
infections and MSI (microsatellite instability)-high tumors. The red, green and blue dots represent for TMB-high, TMB-intermediate and TMB-low,
respectively. D Correlation between TMB burden and HPV-infection. TMB levels showed significant negative correlation with RNA expressions in all
HPV-infected tumors (R = -0.348, p < 0.05, Spearman’s rank correlation)
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value = 5.971e-06, t-test) and the “Immune-Stimulation”
subtype (mean: 0.88 and − 1.67; p-value < 2.2e-16, t-test);
and the “Immune-Anergy” subtype is higher than the
“Immune-Stimulation” subtype (mean: 0.35 and − 1.67;
p-value < 2.2e-16, t-test) (Supplementary Fig. S10). For
the measurement of dysfunction status, we found “T cell
dysfunction scores” are significantly higher in the “Im-
mune-Stimulation” subtype than the “Immune-Anergy”
subtype (mean: 1.16 and − 0.23; p < 2.2e-16, t-test) and

the “Immune-Exclusion” subtype (mean: 1.16 and − 0.99;
p < 2.2e-16, t-test); and the “Immune-Anergy” subtype is
higher than the “Immune-Exclusion” subtype (mean: −
0.99 and − 0.23; p = 2.3e-11, t-test) (Supplementary Fig.
S10). These results are expected because, in the “Im-
mune-Stimulation” subtype, cytolytic genes and im-
munosuppressive genes are co-expressed and
upregulated. The “Immune-Stimulation” subtype gets
higher “T cell dysfunction scores” for their high

Fig. 4 EBV and HPV infections displayed significantly changed gene expressions. A Volcano plots of differentially expressed genes (DEGs) regarding
EBV-infection in STAD, HBV-infection in LIHC and HPV-infection in HNSC. DEGs are defined as genes with the absolute value of log2-fold change
(|log2FC|) > 0.5 and adjust.P < 0.05. The red dots represent upregulated DEGs and the blue dots represent downregulated DEGs. The total number and
|log2FC| values of DEGs regarding EBV- and HPV-infection are significantly larger than DEGs regarding HBV-infection. Nine genes are overlapped in all
types of viral infection-regarding DEGs which are annotated in the figure. (B) Correlations between mRNA expressions of the nine overlapped DEGs
and EBV, HPV viral expressions in STAD and HNSC, respectively (Pearson’s correlation). C Heatmap of viral infection-regarding DEGs in each gene
subset for STAD, LIHC and HNSC. The color bar indicates the scale of the log2FC value for each DEG. The total number of genes in each gene subset is
annotated above and the corresponding biological function are labeled with different colors. D Pathway analysis for different viral infection-regrading
DEGs. Comparisons were made of enriched pathways of DEGs in different gene subsets for each cluster. Upregulated and downregulated DEGs were
analyzed separately. The number of DEGs enriched in a pathway is indicated by the size of the circle and the color indicates the corresponding
adjust.P value
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Fig. 5 (See legend on next page.)
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expressions of immune-suppressive genes. By compari-
son, the “Immune-Anergy” subtype lacks immune sig-
nals, so “T cell dysfunction scores” are expected to be
lower. We also compared expression levels of the IFN-Y
signature among TIME subtypes. The “Immune-Stimu-
lation” subtype showed the highest level of “IFNG
scores” (mean: 2.09), which is higher than the “Immune-
Anergy” subtype (mean: − 0.26; p < 2e-16, t-test) and the
“Immune-Exclusion” subtype (mean: − 1.68; p < 2e-16, t-
test). and “IFNG scores” are higher in the “Immune-An-
ergy” subtype also shows a higher level of “IFNG scores”
than the “Immune-Exclusion” subtype (p < 2e-16, t-test)
(Supplementary Fig. S11). These results are expected as
the IFN-Y signal is strengthened by stimulated immune
responses and increased immune infiltration.

Correlations between viral infections and TIME subtypes
To predict TIME subtypes in STAD, LIHC, HNSC, as
well as other cancers, we developed a workflow, includ-
ing a LASSO regression model to predict the LF level
and an SVM classifier to separate two clusters. The LF
model was trained on the training cohort (3865 samples)
and validated in the two validation datasets (2931 and
2911 samples) from the whole TCGA datasets. And the
SVM model was trained (1200 samples) and validated
(513 samples) on samples of the “Immune-Anergy” and
the “Immune-Stimulation” TIME subtypes of LGG,
COAD, CESC, KIRC, UVM and SKCM from TCGA
datasets (Supplementary Figs. S7, S8, and S9).
EBV and HPV significantly influenced the TIME sub-

types of STAD (p = 5.8e-9, Pearson’s Chi-squared test)
and HNSC (p = 1.4e-7, Pearson’s Chi-squared test), re-
spectively. However, HBV infection showed no signifi-
cant impact on the TIME subtypes of LIHC (Fig. 7A).
Compared to non-infected tumors, EBV-infected STAD
(59.52% vs 17.61%) and HPV-infected HNSC (44.12% vs
16.12%) presented higher fractions of the “Immune-
Stimulation” subtype. Fractions of the “Immune-Anergy”
subtype were lower in EBV-infected STAD (35.71% vs
74.93%) and HPV-infected HNSC (47.06% vs 78.04%)
(Fig. 7A). Kaplan-Meier analysis further demonstrated

prognostic significance of TIME subtypes in STAD and
HNSC. The “Immune-Exclusion” subtype exhibited the
best overall survival (OS) (P = 0.026, log-rank test) and
progression-free interval (PFI) (P = 0.041, log-rank test)
in STAD, and the “Immune-Stimulation” subtype
showed the best OS (P = 0.014, log-rank test) and PFI
(P = 0.029, log-rank test) in HNSC (Fig. 7B). In contrast,
TIME subtypes showed no significant difference in the
prognosis of LIHC (Supplementary Fig. S6).

Construction of the eVIIS pipeline
We combined the viral sequence detection pipeline and
the TIME subtyping workflow to develop an integrated
eVIIS pipeline. Given an RNA-seq dataset, eVIIS simul-
taneously evaluates viral infection and immune status
(Fig. 8). eVIIS provides a stepwise or one-step analysis
for each sample. Users can choose the appropriate mode
for different purposes and different forms of the dataset.
Details about the usage of the eVIIS pipeline are de-
scribed in the README file (https://github.com/
HuangLab-Fudan/eVIIS).
For independent validation, we used an extra dataset

including 83 human primary gastric tumor tissue sam-
ples from the surgical specimen archives from Fudan
University Shanghai Cancer Center (FUSCC). The re-
sults showed that 4 EBV-infected samples and 12 CMV-
infected samples, in which 6 samples (7.23%) were pre-
dicted as the “Immune-Stimulation” subtype. The results
were consistent with the prevalence of EBV and CMV
infections in gastrointestinal tumors observed in the
TCGA cohort.

Discussion
In this study, we designed an NGS-based pipeline to de-
tect 212 types of viral sequences. We obtained a com-
prehensive landscape of viral expressions of 11,206
tumors of 33 cancer types from TCGA. Of all the in-
fected cancers, stronger virus-cancer associations were
observed in CESC, LIHC, LAML, STAD, HNSC and
ESCA. And HPV, HBV, EBV and CMV were the most
prevalent infection types. Our results are consistent with

(See figure on previous page.)
Fig. 5 EBV- and HPV-infected tumors showed effective anti-viral immune responses and upregulated PD1 signaling pathway. A Landscapes of
immune infiltrations in tumors of STAD, LIHC and HNSC. Immune cellular compositions were scaled for each tumor. Non-infected tumors are
showed on the left side and infected tumors are showed on the right side. B Immune infiltration analysis for different types of viral infections. We
compared leukocyte fraction (LF) and nine aggregated immune infiltrations of EBV-, HBV- and HPV-infected tumors and non-infected tumors in
STAD, LIHC and HNSC. The figure only shows results with significant difference (p < 0.05; two-tailed Mann-Whitney U test). C Gene set variation
analysis (GSVA) of immune-related gene sets for different viral infections. Expression levels of each immune-related pathway are compared
between EBV-infected, HBV-infected and HPV-infected tumors and non-infected tumors of STAD, LIHC and HNSC, respectively. The figure only
showed results with significant difference (*:0.05–0.01; **:0.01–0.001; ***:0.001–0.0001; ****: < 0.0001; two-tailed Mann-Whitney U test). Pathways
regrading immune activation are shown on the left side and pathways regrading immune suppression are shown on the right side. D Immune-
suppressive status analysis for EBV- and HPV-infection. Expression levels of five immunosuppressive molecules were compared between EBV-
infected and HPV-infected tumors and non-infected tumors for STAD and HNSC (*:0.05–0.01; **:0.01–0.001; ***:0.001–0.0001; ****: < 0.0001; two-
tailed Mann-Whitney U test)
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Fig. 6 (See legend on next page.)
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a similar study that reported HPV infection in 96.55% of
tumors (84 out of 87) in CESC, HBV infection in 32.35%
of tumors (11 out of 34) in LIHC, and HPV infection in
14.14% of tumors (43 out of 304) in HNSC [11]. How-
ever, there’re also some disagreements relating to EBV
and CMV infections. For STAD, the study only detected
one EBV-infected tumor in STAD (2.3%; 1 out of 43).
However, the number is much lower than the number of
tumors of the GI.EBV TCGA subtype (7.8%; 30/383)
[37]. Furthermore, the occurrence of SV40 and CMV in
LAML was controversial in several studies [43–47]. Our
results supported the SV40 infection in LAML and we
also detected high proportions of CMV infection in
LAML. These differences might due to different stan-
dards of the definition of viral infections. One of those
studies used the expression levels of oncogenic viruses
HBV and HPV as referrence and they excluded samples
with viral expressions less than 0.5 ppm (p.p.m.) [46].
The purpose is to neglect the trace signals generated by
the infiltrated virus-positive lymphocytes instead of the
tumor cells themselves [48, 49]. In contrast, we didn’t
discard these weak signals. One reason is these weak sig-
nals can be caused by technical issues and the exclusion
of weak virus-cancer associations might miss out on rare
virus-cancer associations [50, 51]. The other reason is
that the trace signals coming from infiltrated virus-
positive lymphocytes may sensitively reflect the immune
status. In a recent study, after filtering low viral expres-
sions, the study showed that the CIBERSORT estimation
of absolute immune cell infiltrations was not signifi-
cantly different between EBV-infected and non-infected
tumors in multiple cancers, including STAD [52]. There-
fore, they rejected the idea that the detection of EBV is
due to infiltrating immune cells and confirmed the ac-
tive contribution of EBV to STAD. However, the sensi-
tivity of EBV infection to reflect immune status is
undercut. We showed no viral infection in eight cancers,
including ACC, BRCA, GBM, KICH, PCPG, TGCT,
THYM and UVM. The absence of viral infection in
BRCA and GBM has been reported previously [11], and
our results may offer convincing evidence against viral
etiology in the rest tumors.

Viral infections showed different tissue tendencies and
their main hosts were highly selective. This could be ex-
plained by their different viral receptors that are re-
quired during infections. However, viral infections were
also detected sporadically in some uncommon hosts.
HPV16 was detected in a broad spectrum of cancers in-
cluding uterus, lung, bladder carcinomas and low-grade
gliomas tumors. These have also been reported in previ-
ous findings [10, 11, 53]. In our study, HPV-infected
BLCA presented as the third most prevalent type of all
HPV infections and this is consistent with previous re-
sults [52]. Moreover, among different HPV variants,
HPV33 ranked the third most prevalent type of HPV in-
fection in HNSC. And a recent study also reported
HPV33 in HNSC (n = 3). Besides, the study reported
HPV6 and HPV45 infections in BLCA. These have also
been detected in our results and we additionally detected
HPV52 and HPV56. It’s technically hard to discard all
the false-positive results of viral infections, but the var-
ied tissue tendencies and expression levels could be used
as a reference. For example, HBV-infected LIHC tumors
usually harbor high viral expressions. Therefore, in tu-
mors with low HBV viral expressions, they would likely
be considered as contaminations or from infected lym-
phocytes [54], and this has been proved to be a contam-
inant in KIRC [11]. Similarly, further assessments of
low-expressed CMV-infections and SV40-infections in
OV will also be needed to exclude contaminations [51].
Compared to this, the uncommon hosts with high levels
of viral expressions may represent a special subtype and
the diagnostic and therapeutical values should be further
explored.
Commonly, viral infections have the potential to cause

perturbations in the host genome. In our study, EBV-
infected STAD showed decreased CNV and HRD and
HPV-infected HNSC exhibited consistently decreased
genomic variations. This could partially be explained by
the following transcriptional analyses that pathways in-
volving DNA replication, mismatch repair, base excision
repair, and nucleotide excision repair in S1 and H3 were
upregulated, leading to decreased genomic instability in
EBV-infected STAD and HPV-infected HNSC. A recent

(See figure on previous page.)
Fig. 6 Identification of TIME subtypes. A Distributions of leukocyte fractions (LFs) of human cancers. We analyzed LFs of 9692 tumors of 30
different cancer types, and 25th (LF = 0.086), 50th (LF = 0.171) and 75th (LF = 0.295) percentiles of LFs of these tumors are annotated in the figure.
(B) Heatmap reveals two different clusters in the LF-high tumors. The clustering analysis was implemented using expression levels of 76 immune-
related genes and infiltration levels of 22 types of immune cells. All values were scaled before clustering. Important immune cell types are labeled
with arrows, and immune checkpoint and super categories of each gene are labeled on the left side. C Heatmap of scaled cluster centers of
Cluster 1 and Cluster2. Values greater than 0 are in red, values less than 0 are in blue. Labels of 76 immune-related genes and 22 types of
immune cells are annotated on the right side. Nearly all expression levels of the immune-related genes and immune cellular infiltrations are
higher in Cluster1 than Cluster2. D TIME subtypes in LGG, COAD, CESC, KIRC, UVM and SKCM. Based on the LF levels and clustering results, we
manually classified training samples of LGG, COAD, CESC, KIRC, UVM and SKCM into three different TIME subtypes, namely “Immune-Stimulation”,
“Immune-Anergy” and “Immune-Exclusion” subtypes
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study reported that HPV-positive HNSC exhibited an
almost complete mutual exclusivity with mutations in
known drivers such as TP53, CDKN2A and TERT. Such
decreased mutation burden and the independence from
carcinogenic drivers confirmed the mutation-independent
oncogenic and tumorigenic potential of HPV [52].

The impacts of viral infections were different on the
host transcriptomes. While the small number and small
changes of expression levels of DEGs were seen in HBV-
infected LIHC, much greater changes were observed in
EBV-infected STAD and HPV-infected HNSC. The
common genes that were changed in all types of

Fig. 7 Correlations between viral infections and TIME subtypes. A Associations between viral infections and TIME subtypes. We predicted TIME
subtypes for tumors of STAD, LIHC and HSNC. We found significant correlations between TIME subtypes and viral infections in STAD and HNSC.
By comparison, LIHC showed no significant correlation with TIME subtypes. B Survival analyses of different TIME subtypes of STAD and HNSC. The
survival curves show better outcomes of overall survival (OS) and progression-free interval (PFI) in the “Immune-Exclusion” subtype of STAD and
the “Immune-Stimulation” subtype of HNSC
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infections were primarily concerning cell proliferation.
This reflects the ability of viral infections to stimulate
cell proliferation that leads to tumor development [2].
The clustering results provided more interpretable re-
sults that the cell proliferation-relevant DEGs were con-
sistently upregulated in HBV-infected LIHC and HPV-
infected HNSC, compared to the inconsistent change in
EBV-infected STAD. We showed that different viral in-
fections harbored varied expression levels, with HBV
and HPV infections displaying the highest expression
levels. This could be interpreted as the greater ability of
HBV and HPV to enhance cell proliferation, which leads
to higher levels of viral expressions.
Another group of genes that changed commonly were

immune-related. These immune-related genes were

consistently upregulated in EBV-infected STAD and
HPV-infected HNSC. Accordingly, multiple immune
cells were increased in the HPV-infected HNSC. This
could be supported by a recent study that reported a sig-
nificant increase in M1 macrophages and T-cells (fol-
licular helper, CD8+ T cells and regulatory T cells) in
HPV-positive HNSC [52]. Many immune-stimulating
signaling pathways were also upregulated in EBV-
infected STAD and HPV-infected HNSC. Of note, the
RIG-1 like receptor signaling pathway is primarily re-
sponsible for detecting and eliminating viral pathogens.
Moreover, immune-suppressive pathways and molecular
were also upregulated in the two types of infections.
This finding indicates that EBV and HPV infections
could elicit effective anti-viral immune responses that

Fig. 8 Construction of eVIIS pipeline. The eVIIS pipeline includes several steps: (1) align RNA-seq data to human and viral reference genome sequences
using STAR (version <= 2.5); (2) For viral expression detection: use StringTie (version <= 1.2.3) to assemble mapped reads and quantify viral expressions
into TPM values. Samples with TPM over zero will be predicted as “Infected”, and samples with TPM equals zero will be predicted as “Nnon-Infected”;
(3) For TIME status prediction: use featureCounts (version > = 1.5.0) to obtain read counts and normalize gene expressions into FPKM values. TIME
prediction will be made based on the two models (LASSO regression and SVM). For a given sample, eVIIS first calculates its LF.Score using the LASSO
regression model based on FPKM values of 30 LF-relevant genes. The sample will be classified as “Immune-Exclusion” if LF.Score < 81.03. Otherwise, it
will be further evaluated by the SVM model as “Immune-Stimulation” or “Immune-Anergy”, using FPKM values of the 37 DEGs. The eVIIS pipeline is
available at https://github.com/HuangLab-Fudan/eVIIS
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were concomitant with immune suppression. It’s worth
noting that though immune responses are often aroused
by mutation-driven neoantigens, in our study, viral in-
fections were independent of MSI status for most in-
fected tumors exhibited low or intermediate TMB levels.
Therefore, the stimulated immune responses might
largely be caused by viral infections rather than the in-
trinsic tumor genomic variations. This result highlights
the potential of viral infections being independent
markers from MSI-high or TMB.
For anti-PD immunotherapy, TIME is considered as a

prerequisite to select appropriate patients [55]. A large
number of studies have tried to identify TIME subtypes
[56, 57], in which the type displaying high-level tumor-
infiltrating leukocytes and stimulated PD pathway was
suggested as the optimal one [55]. Since T cells could be
functionally impaired and merely serve as bystanders in
many tumors with persistent viral infections, the exist-
ence of immune cells doesn’t guarantee an effective anti-
tumor immune response [58–60]. For this concern, we
took both immune cellular infiltrations and their func-
tionality into account to construct the TIME subtyping
system model. The model contains three subtypes. The
“Immune-Stimulation” subtype showed increased
leukocyte infiltration, enhanced cytotoxic activity and
immunosuppressive status, especially the increased
CD274 (PD-L1) expression level, which could be consid-
ered as an appropriate candidate for the anti-PD therapy.
EBV-infected STAD and HPV-infected HNSC showed
increased fractions of the “Immune-Stimulation” subtype
and decreased fractions of the “Immune-Anergy” sub-
type. Because most EBV- and HPV-infected tumors
lacked MSI-high status or high TMB burden and may
still have some portion of the “Immune-Stimulation”
subtype, highlighting the potential of combing viral in-
fections and immune status to select responders in this
group of patients. Recently, a study reported a gastric
cancer patient who responded to the anti-PD-L1 drug
avelumab. This patient showed no high TMB or MSI-
high markers, but the tumor was strongly positive for
EBV mRNA [61]. This indicates that viral infection
could be a biomarker of immunotherapy to help
recognize responders without high TMB or MSI-high
markers. In this regard, evaluating viral infection and
TIME status could be of great importance to immuno-
therapy, and the eVIIS pipeline that can simultaneously
evaluate viral infection and TIME status could help
achieve this goal. Considering the fruitful results from
previous studies [10, 11, 52], we did not perform DNA-
based fusion site analysis and focused our research on
the transcriptome-based detection results. Since viral in-
fections not expressed at the transcript level may be
missed out, the results could be further improved by in-
corporating genome-based results.

Conclusions
We provided a comprehensive virus-cancer association
landscape and revealed different properties of viral infec-
tions. EBV-infection and HPV-infection led to decreased
genomic variations, significantly altered gene expres-
sions, and effectively triggered anti-viral immune re-
sponses in STAD and HNSC. EBV-infection and HPV-
infection combined with the TIME subtype could be
candidate biomarkers of the immunotherapy in STAD
and HNSC, respectively. Finally, the eVIIS pipeline could
be a practical tool to facilitate clinical practice and rele-
vant studies.
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