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Abstract

prostate cancer remains unknown.

time PCR.

Catenin signaling pathway in prostate cancer cells.

Background: Bortezomib (BZM), alone or in combination with other chemotherapies, has displayed strong
anticancer effects in several cancers. The efficacy of the combination of BZM and mitoxantrone (MTX) in treating

Methods: Anticancer effects of combination of BZM and MTX were determined by apoptosis and proliferation
assay in vivo and in vitro. Expression of 3-Catenin and its target genes were characterized by western blot and Real-

Results: BZM significantly enhanced MTX-induced antiproliferation in vivo and in vitro. Mice administered a
combination of BZM and MTX displayed attenuated tumor growth and prolonged survival. BZM significantly
attenuated MTX-induced apoptosis. Moreover, the combination of BZM and MTX contributed to inhibition of the
Wnt/B-Catenin signaling pathway compared to monotherapy.

Conclusions: This study demonstrates that BZM enhances MTX-induced anti-tumor effects by inhibiting the Wnt/$3-
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Background

Wnt signaling is an evolutionarily highly conserved cel-
lular pathway that is involved in embryogenesis, develop-
ment, neoplasia, cell growth, organ formation, stem cell
renewal, cell cycle progression, and survival [1, 2]. Aber-
rant activation of Wnt/(B-Catenin signaling is involved in
several cancers, including colorectal cancers [3], hepato-
cellular carcinomas [4], melanoma [5], pancreas cancer
[6], adrenocortical carcinoma [7], and prostate cancer
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[8]. The Wnt pathway is considered a potential thera-
peutic target for the development of effective tumor
treatment strategies.

MTX, a type-2 DNA topoisomerase inhibitor [9], has
been widely used as chemotherapy for the treatment of
metastatic prostate cancer [10, 11]. Bortezomib (BZM;
PS-341) is a boronic acid dipeptide that inhibits 26S pro-
teasome activity [12], which provides clinical benefits for
patients with hematological malignancies, including mul-
tiple myeloma [13] and mantle cell lymphoma [14-17].
Although BZM shows potent antitumor activity for solid
tumors in preclinical studies [18], encouraging data have
not been confirmed in the clinic therapies [19].

© The Author(s). 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if

changes were made. The images or other third party material in this article are included in the article's Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons
licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the
data made available in this article, unless otherwise stated in a credit line to the data.


http://crossmark.crossref.org/dialog/?doi=10.1186/s12885-021-08841-1&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:changlinli@mail.jnmc.edu.cn

Zhang et al. BMC Cancer (2021) 21:1101

Combination treatment is often a more effective cancer
treatment strategy than stand-alone treatments. Previous
studies have demonstrated that the combination of BZM
with other chemotherapies enhanced the clinical benefits
for patients with hematological malignancies [20, 21].
However, the efficacy of the combination of BZM and
MTX for prostate cancer treatment remains undeter-
mined. In this study, we investigated whether the com-
bination of MTX and BZM showed anti-tumor activity
compared to individual treatments.

Methods

Cell lines, reagents, and antibodies

Human prostate cancer LNCaP, 22RV1, PC-3 cells were
obtained from ATCC (Manassas, VA, USA). Cells were
cultured in RPMI 1640 medium supplemented with 10%
fetal bovine serum (FBS) plus 100 U/ml penicillin/
streptomycin and 2 mmol/l L-glutamine. Antibodies for
B-Catenin (ab32572), cyclin D1(ab16663), c-Myc
(ab32072) were purchased from Abcam (Cambridge,
MA, USA). B-actin (MABT825) were purchased from
Sigma (Missouri, MO, USA). Alpha-tubulin (11224-1-
AP), Lamin A/C (10298-1-AP), and HRP-conjugated
goat anti-mouse IgG (SA00001-1) and goat anti-rabbit
IgG (SA00001-2) were obtained from Proteintech
Group (Chicago, IL, USA). Propidium Iodide (PI) and
CCK8 kit were ordered from Beyotime (Shanghai,
China).

Bortezomib (HY-10227), MG132 (HY-13259), mitox-
antrone (HY-13502A) and Carboxyfluorescein diacetate
succinimidyl ester (CFSE) (HY-D0938) were obtained
from MCE (New Jersey, NJ). RIPA Buffer (#9806) were
obtained from Cell Signaling (Danvers, MA, USA). FBS,
RPMI 1640 medium, penicillin/streptomycin, and L-
glutamine were obtained from Gibco (by ThermoFisher
Scientific, Shanghai, China). Trizol reagent was ordered
from Invitrogen (by ThermoFisher Scientific, Shanghai,
China).

Western blotting and real-time PCR
Western blotting was performed as previously described
[22]. Briefly, cells were lysed using RIPA lysis buffer con-
taining complete protease inhibitor cocktail (Roche,
Switzerland). Cytoplasmic and nuclear protein were iso-
lated using the Cytoplasmic and Nuclear Fractionation
kit (Beyotime, Shanghai, China). Protein samples were
subjected to SDS-polyacrylamide gel -electrophoresis
(SDS-PAGE) and transmembrane. The PVDF mem-
branes were incubated with indicated primary antibodies
overnight at 4°C and then incubated with secondary
antibody for 1 h at room temperature. Staining was visu-
alized with ECL reagent (Santa Cruz Biotech).

For real-time quantitative PCR, total RNA was ex-
tracted using the Trizol reagent according to the
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manufacturer’s instructions. cDNAs were synthesized
was performed using reverse transcription (RT) kit (Ap-
plied Biosystems, Foster City, CA). The RT products
(0.5 ul) were subjected to real-time PCR using of SYBR
Green. 18S rRNA was used as an endogenous control.
Quantitative of SYBR Green signal was performed with
LightCycler® 480 (ROCHE Diagnostic Spa, Mannheim,
Germany). The relative expression level was calculated
with the 20724“Y method and expressed as a “change
fold”. All data were normalized to endogenous control
(18S rRNA) expression. The sequence of primers were
designed as follows: 18s rRNA: sense, 5-GAG GAT
GAG GTG GAA CGT GT-3' and antisense, 5'- GGA
CCT GGC TGT ATT TTC CA-3’; f-Catenin: sense, 5'-
GTT CAG TTG CTT GTT CGT GC-3’ and antisense,
5- GTT GTG AAC ATC CCG AGC TAG-3'; cyclin
D1I: sense, 5'- CAT CTA CAC CGA CAA CTC CAT C-
3" and antisense, 5'-TCT GGC ATT TTG GAG AGG
AAG-3"; c-Myc: sense, 5'-TTC GGG TAG TGG AAA
ACC AG-3’ and antisense, 5'- AGT AGA AAT ACG
GCT GCA CC-3'; MMP7: sense, 5'- TTC CAA AGT
GG TCA CCT ACA G-3’; and antisense, 5'- AGT TCC
CCA TAC AAC TTT CCT G-3'; Axin2: sense, 5'- TGT
CCA GCA AAA CTC TGA GG-3’; and antisense, 5'-
GTG CAA AGA CAT AGC CAG AAC-3'.

Apoptosis analysis, cell proliferation, and cell cycle
Apoptosis was evaluated using a Dead Cell Apoptosis
Kit (ThermoFisher Scientific, catalog #V13242) as previ-
ously described [23]. Briefly, 5 x 10° cells treated with in-
dicated drugs were incubated with 5 ul FITC-conjugated
Annexin-V antibody and 5 pl PI for 10 min according to
manufacturer’s instructions. The data was measured by
flow cytometry (Beckman CytoFLEX, Germany) and
analysed using the CytExpert software (Beckman
Coulter, Brea, CA, USA).

Proliferation was detected by CFSE assay and CCK8
assay. CFSE is cleaved by esterase in live cells. Cleaved
CESE produces green fluorescence. The fluorescent in
cells will reduce due to divide equally into daughter cells
during cell division. Therefore, proliferation of cells can
be tracked by fluorescent of cleaved CFSE [24]. CFSE-
labelled prostate cancer cells were treated with indicated
treatments for 24 h. CFSE was determined by flow cy-
tometry. Mean fluorescence intensity (MFI) was deter-
mined by flow cytometric analysis (Beckman CytoFLEX,
Germany).

CCK-8 Assay was performed as previously described.
Briefly, 1 x 10° cells were incubated in a 96-well culture
plate. After incubation for 24h, the cell viability was
measured by a Cell Counting Kit-8 (CCK-8) (Beyotime,
Shanghai, China) according to the manufacture’s proto-
col. The absorbance at 450nm was determined by
CytExpert software (Beckman Coulter, Brea, CA, USA).
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To evaluate cell cycle, cells were stained with PI solu-
tion. Cells were fixed with cold ethanol overnight at °C
followed by RNA digestion using RNase A at 37 °C for
30 min. PI fluorescence was determined by flow cytome-
try (Beckman CytoFLEX, Germany). Cell cycle was de-
termined by modfitLT software (Verity Software House,
Topsham, ME).

Immunohistochemistry and scoring

The immunohistochemistry (IHC) staining procedure
and scoring in our publications [22]. Briefly, tissues were
fixed in 4% formalin. Paraffin-embedded tissue sections
(4 um) were subjected to dewaxing and rehydration,
followed by inactivation of endogenous peroxidase activ-
ity and antigen retrieval. Tissue sections were incubated
with indicated primary antibodies. Immunosignals were
visualized with a DAKO LSAB System (Dako, Carpen-
teria, CA, USA). IHC scoring was perform as previously
described [22, 25, 26].

Proteasome activity assay

Proteasome activity was measured as previously de-
scribed [27, 28]. Briefly, cells were lysed with the lysis
buffer (50 mM Tris-HCl, pH7.4, 5mM MgCl,, 5mM
ATP, 1mM DTT and 10% glycerol). Equal amount of
proteins was incubated with the substrate (LLVY-AMC
as chymotrypsin-like activity) for 1h at 30°C and the
free AMC fluorescence was determined by Cytation-i5
Cell Imaging Reader (Biotek, USA).

Animal experiments

Severe combined immunocompromised (SCID Beige)
mice were acquired from Vital River Laboratory Animal
Technology Co., Ltd. (Beijing, China). Mice were housed
in specific pathogen-free (SPF) conditions. To construct
the mice Xenograft model, prostate cancer cells were
implanted subcutaneously into the flanks of 6-week-old
male SCID mice. Two week after injection, mice were
randomly divided into four groups and treated with ve-
hicle, BZM (1 mg/kg, intraperitoneally, twice weekly),
MTX (3 mg/kg, intraperitoneally, every day), or combin-
ation (0.5mg/kg BZM, twice weekly; 1.5 mg/kg MTX,
intraperitoneally, every day) (n =14, per group). Tumor
diameter was assessed every 3 days using a caliper. Test-
ing order was randomized and blinded. Tumor growth
and animal survival rate were monitored every day.
Tumor volume were calculated using the following for-
mula: [(length) x (width)*]/2 (n =10, per group). When
maximum tumor volume was close to 1500 mm® were
euthanized via CO, inhalation. Tumors were removed
from mice for IHC (i.e., Ki67 and TUNEL staining) (n =
4, per group). For survival cure, animal were monitored
up to 65 day (n = 10, per group).
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Statistical analysis

Data were expressed as means * s.e.m. Statistical signifi-
cance between two groups was analyzed with unpaired
Student’s t test. Differences of multiple groups were de-
termined by one-way ANOVA analysis. Comparisons
between tumor volumes were determined by two-way
ANOVA analysis. Survival curves were measured with
Kaplan—Meier analysis. Statistical analyses were per-
formed with SPSS 20.0 software (Chicago, IL). p <0.05
were considered significant.

Results

BZM enhanced MTX anti-tumor activity in vivo

To investigate the effect of BZM treatment on MTX-
induced anti-tumor activity in vivo, we generated sub-
cutaneous xenograft tumors with LNCaP cells in SCID
mice. Fourteen days post-tumor injection, BZM, MTX,
or a combination of BZM and MTX were administered
by intraperitoneal injection. The combination treatment
was significantly better at inhibiting tumor growth com-
pared with individual drug treatment (Fig. 1A, B). More-
over, the combination treatment significantly prolonged
survival to longer duration compared to individual drug
treatment (Fig. 1C). These data strongly suggest that
BZM enhances MTX anti-tumor activity in vivo.

BZM enhanced MTX-induced anti-proliferation but
attenuates MTX-induced apoptosis

To investigate the mechanism underlying the increased
anti-tumor activity of the combined BZM and MTX
treatment, we examined the effect of treatment on cell
proliferation using CFSE assay and CCK8 kit. LNCaP
and 22RV1 cells were stained with CFSE and then
treated with vehicle, BZM, MTX, or a combination of
MTX and BZM. After treatment for 24 h, CFSE decay
was determined by flow cytometry. The combination
treatment enhanced anti-proliferation better compared
to the individual treatments in both cell types (Fig. 2A,
B, C, D). Similarly, CCK8 assay showed that combination
treatment significantly inhibited cell viability compared
with individual treatments (Fig. 2E).

We next examined the effect of treatment on cell
cycle. LNCaP and 22RV1 cells were treated with vehicle,
BZM, MTX, or a combination of MTX and BZM for 24
h. Cell cycles were evaluated by PI staining. The com-
bination treatment significantly enhanced GO/G1 phase
arrest in LNCaP cells (Fig. S1A, B). Similar results were
observed in 22RV1 cells, and the combination treatment
significantly enhanced cell cycle arrest (Fig. S1C, D).

To investigate whether the combination of BZM and
MTX affected apoptosis, LNCaP and 22RV1 cells were
treated with vehicle, BZM, MTX, or a combination of
MTX and BZM for 24 h, and apoptotic cell death was
evaluated using Annexin-V/PI staining coupled with
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Fig. 1 BZM enhanced MTX anti-tumor activity in vivo. A-C, Subcutaneous xenografts were established with LNCaP cells in male SCID mice. Two
weeks after injection, mice were treated with BZM (1 mg/kg, intraperitoneally, twice weekly), MTX (3 mg/kg, intraperitoneally, every day), or
combination (0.5 mg/kg BZM, twice weekly; 1.5 mg/kg MTX, every day) (n =10, per group). Tumor growth and animal survival rate were
monitored. A. Quantitative data for tumor growth curve. Tumor sizes were measured at the indicated days with a caliper and calculated as
llength x width?/2(n = 10, per group). Data are presented as means = se.m. The asterisks indicate significant differences (two-way ANOVA, **p <
0.01). B. Tumor growth curves of individual mice (n =10, per group). C. Overall animal survival. The asterisks indicate significant differences (n=10,
per group). (log-rank test, *p < 0.05, **p < 0.01)
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Fig. 2 BZM enhanced MTX-induced anti-proliferation activity. A-D. CFSE-stained LNCaP or 22RV1 cells were treated with vehicle, MTX(1 uM), BZM
(100 nM) or combination (MTX, 0.5 uM; BZM (50 nM). CFSE decay was determined by flow cytometry. A, C. Plots of flow cytometry. B, D.
Quantitative data of CFSE decay. E. Cells proliferation was determined by CCK-8. Quantitative data were deduced from triplicate experiments and
presented as means + s.e.m. The asterisks indicate significant differences (one-way ANOVA, **p < 0.01, ***p < 0.001)
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flow cytometry analysis. The combination treatment sig-
nificantly attenuated apoptosis to a greater extent com-
pared to the MTX treatment in both LNCaP (Fig. 3A, B)
and 22RV1 cells (Fig. 3C, D). These findings indicate
that BZM enhances MTX-induced anti-proliferation,
and attenuates MTX-induced apoptosis.

BZM enhanced MTX-induced anti-proliferation but
attenuated MTX-induced apoptosis in vivo

To investigate the effect of the combination treatment on
the proliferation and apoptosis of prostate cells in vivo,
LNCaP cells were implanted subcutaneously into the flanks
of male SCID mice. Mice were administered MTX, BZM,
or a combination of the two. The expression of Ki-67, a
biomarker of cell proliferation, was assessed by immunohis-
tochemical staining. The combination treatment of BZM
and MTX significantly attenuated the expression of Ki-67
compared to MTX alone treatment (Fig. 4A, B). Apoptosis
was assessed by the TUNEL assay. The combination treat-
ment significantly decreased apoptosis compared to MTX
alone treatment (Fig. 4C, D). These results demonstrated
that the combination of MTX and BZM significantly en-
hanced anti-proliferation and decreased apoptosis in vivo,
which is consistent with the results in vitro.

BZM enhanced MTX-induced downregulation of nuclear
B-catenin accumulation

Although the effect of BZM on Wnt/p-Catenin pathway
activity is controversial in different groups, the studies
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have demonstrated that Wnt/B-Catenin pathway was a
critical target of BZM [29, 30]. So we investigated
whether this pathway was involved in the anti-tumor ac-
tivity of the combined MTX and BZM treatment.
LNCaP and 22RV1 cells were treated with BZM, MTX,
or a combination of MTX and BZM, and it was found
that the combination treatment significantly attenuated
the expression of B-Catenin protein in both cell lines
(Fig. 5A). Real-time PCR analysis showed that the com-
bination treatment did not affect the mRNA level of -
Catenin, in comparison to the individual drugs (Fig.
S2A, B). The activity of p-Catenin is determined by the
nuclear translocation of f-Catenin. We next investigated
whether combined MTX and BZM treatment affect nu-
clear translocation of -Catenin. LNCaP and 22RV1 cells
were treated with BZM, MTX, or a combination of
MTX and BZM for 24 h. Nuclear and cytosolic protein
was isolated and performed for western blot. The com-
bination treatment significantly increased cytosolic B-
Catenin accumulation (Fig. 5B), while decreased pB-
Catenin accumulation in nucleus compared with individ-
ual drugs (Fig. 5C). Expression levels of the B-Catenin
target genes were then examined. The combination
treatment significantly decreased the expression of cyclin
D1 and c-Myc at both the protein (Fig. 5D) and mRNA
(Fig. 5E) level. Furthermore, [B-Catenin target genes,
MMP7 and Axin2 were determined by real-time PCR.
Combination treatment significantly decreased expres-
sion of MMP7 and Axin2 compared with MTX
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Fig. 3 BZM attenuated MTX-induced apoptosis. A-D. LNCaP (A, B) and 22RV1(C, D) cells were treated with the vehicle, BZM(200 nM), MTX(1 uM)
or combination(BZM, 100 nM; MTX, 0.5 uM) for 24 h. Apoptosis analysis was performed using Annexin-V/P!I staining approach coupled with flow
cytometry. A, C. Representative flow cytometry plots. B, D. Quantitative data of apoptosis analysis are presented from three independent
experiments. Early apoptotic was defined as Annexin positive population, late apoptotic as Annexin/Pl positive. The asterisk indicates a significant
difference (one-way ANOVA, *p < 0.05, **p < 0.01)
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Ki67, Scale bar, 50 um. B. Quantitative data of Ki67 expression are presented from three independent experiments. C. Apoptosis were determined
by TUNEL kit. Representative IHC staining of TUNEL, Scale bar 100 um. D. Quantitative data of apoptosis analysis are presented from three
independent experiments. All data are presented as mean + s.e.m. The asterisk indicates a significant difference (one-way ANOVA, *p < 0.05;
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treatment (Fig. S2C, D). Collectively, our data indicate
that BZM reduces Wnt/B-Catenin signaling activity by
decreasing [B-Catenin protein levels in nuclear.

Proteasome activity was required for MTX-induced
apoptosis

The UPS plays an important role in the cellular process
of apoptosis [31], and we hypothesized that BZM attenu-
ates MTX-induced apoptosis by interfering with the pro-
teasome activity required for MTX-induced apoptosis.
We first determined whether MTX treatment affects
proteasome activity in prostate cells. MTX treatment
significantly upregulated proteasome activity in LNCaP
and 22RV1 cells (Fig. 6A). LNCaP cells were treated with
vehicle, MTX, MG132, or a combination of MTX and
MG132. Apoptotic cell death was evaluated using
Annexin-V/PI staining. MG132 treatment significantly
attenuated MTX-induced apoptosis either in the early or
late phase (Fig. 6B, C). These data strongly suggest that

proteasome activity is required for MTX-induced apop-
tosis, and proteasome inhibitors attenuate MTX-induced
apoptosis. We also investigated whether MG132 en-
hanced MTX-induced anti-proliferation, LNCaP and
22RV1 cells were treated with vehicle, MTX, MG132, or
a combination of MTX and MG132. MG132 treatment
significantly enhanced MTX-induced anti-proliferation
compared with the individual drugs (Fig. 6D).

Discussion

Combination treatment is a good strategy to improve
anti-tumor therapy. Here, we demonstrated that com-
bination treatment with MTX and BZM is associated
with greater anti-tumor effects compared to MTX or
BZM monotherapy in prostate cancer. BZM significantly
enhanced MTX-induced anti-proliferation both in vivo
and in vitro. However, the combination of BZM and
MTX attenuated MTX-induced apoptosis. Moreover,
the combination of BZM and MTX significantly
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attenuated the Wnt/pB-Catenin signaling pathway as
compared to individual drug treatment.

Although BZM is currently only approved for the treat-
ment of patients with hematological malignancies, some
preclinical studies have demonstrated that BZM has
strong anticancer activity in several solid tumor types [18],
including prostate cancer [32]. BZM induces cell death
[33, 34] and anti-proliferation [35] in prostate cancer cells.
MTX is a type-2 DNA topoisomerase inhibitor that is
used as a therapy for metastatic prostate cancer alone or
in combination with other drugs [10, 11]. In this study, we
found that BZM significantly enhanced the MTX-induced
anti-tumor activity. Although BZM significantly reduced
MTX-induced apoptosis, the combination of BZM and
MTX inhibited tumor growth and prolonged survival both
in vivo and in vitro. This may be due to the combination
treatment mediating the inhibition of cell proliferation
and cell cycle compared to the individual drug treatments.

Accumulating evidence indicates activation of Wnt/p-Ca-
tenin are associated with prostate tumorigenesis, metastasis,
and therapy resistance [8, 36]. Wnt/p-Catenin signaling ini-
tiates prostate tumorigenesis through the induction of
epithelial-mesenchymal transition (EMT) [37]. Moreover,

B-Catenin interacts with androgen receptor (AR) and acti-
vates AR signaling pathway [38]. Wnt/B-Catenin signaling
activation facilitates stem cell renewal [39] and contributes
to resistance to therapy [40]. B-Catenin accumulated in the
nucleus of enzalutamide-resistant cells and interaction of
the Wnt/B-Catenin pathway overcomes resistance to enza-
lutamide in castration-resistant prostate cancer [41]. f-
Catenin could also abolish the benefit of AR antagonist
bicalutamide by increasing AR expression [42]. Inhibition
of Wnt signaling can prevent prostate cancer progression
[8]. While several FDA-approved drugs reportedly inhibit
Wnt/B-Catenin signaling [43], inhibition of this pathway is
a novel application for prostate cancer. In this study, we
found that the combination of BZM and MTX significantly
attenuated Wnt/p-Catenin signaling activity compared to
the individual drug treatments. Some studies reported that
BZM increased P-Catenin protein levels by proteasome
[44]. Our result was inconsistent with the finding. Autoph-
agy activation was able to promote the degradation of [3-
Catenin [45]. Both of BZM and MTX trigger autophagy in
cancer cells [46, 47]. In future studies, we will investigate
whether autophagy is involved in BZM-induced downregu-
lation of B-Catenin accumulation.
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Fig. 6 Proteasome activity was required for MTX-induced apoptosis. A. Proteasomes activation assay. LNCaP and 22RV1 cells were treated with
vehicle, MTX (1 uM) for 24 h. Proteasome activation of LNCaP (up) and 22RV1(down) treated with indicated concentrations were indicated as
hydrolysis rate succinyl-Leu-Leu-Val-Tyr-amc (Suc-LLVY-amc). B-C. LNCaP cells were treated with vehicle, BZM (200 nM), MTX (1 uM) alone and
combination (BZM, 100 nM; MTX, 0.5 uM) for 24 h. B. Representative flow cytometry plots. C. Quantitative data of apoptosis analysis. Early
apoptotic was defined as Annexin positive population, later apoptotic as Annexin/Pl positive. D. Cells proliferation was determined by CCK-8. Data
are presented from three independent experiments. All data are presented as mean + s.e.m. The asterisk indicates a significant difference. (One-
way ANOVA, *p < 0.05; **p < 0.01)

Protein degradation mediated by the ubiquitin-
proteasome pathway is crucial for a vast array of cellular
processes, including cell death [48]. In this study, MTX
increased proteasome activity in prostate cancer cells, in-
dicating that proteasome activity may be required for
MTX-induced apoptosis. BZM and MG132 attenuated
MTX-induced apoptosis, which may be due to a de-
crease in proteasome activity.

Conclusion

This study demonstrates that BZM enhances MTX-
induced anti-tumor effects by inhibiting the Wnt/f3-
Catenin signaling pathway in prostate cancer cells.
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Additional file 1 Fig. S1. BZM attenuated MTX-induced Cell cycle ar-
rest. A-D LNCaP(A,B) and 22RV1(C,D) cells were treated with vehicle,
BZM (200 nM), MTX (1 uM) or combination of BZM (100 nM) and MTX
(0.5 uM). Cell cycle progression was determined by PI staining. The data
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s.e.m. The asterisks indicate significant differences (one-way ANOVA,
**p < 0.01; ***p <0.001).

Additional file 2 Fig. S2 Expression of 3-Catenin target genes. A-D.
LNCaP (A, €) and 22RV1 (B, D) cells were treated with vehicle, BZM (200
nM), MTX (1 uM) alone or combination (BZM, 100 nM; MTX, 0.5 uM) for
24 h. Real-time PCR assay of indicated genes expression. A, B. Relative
MRNA levels of B-Catenin. €, D. Relative mRNA levels of MMP7 and Axin2.
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Data are presented as from three independent experiments and mean +
s.e.m. The asterisk indicates a significant difference compared to the ve-
hicle control (one-way ANOVA, *p < 0.05, **p < 0.01).
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