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Abstract

Background: Early recurrence is the major cause of poor prognosis in hepatocellular carcinoma (HCC). Long non-
coding RNAs (lncRNAs) are deeply involved in HCC prognosis. In this study, we aimed to establish a prognostic
lncRNA signature for HCC early recurrence.

Methods: The lncRNA expression profile and corresponding clinical data were retrieved from total 299 HCC
patients in TCGA database. LncRNA candidates correlated to early recurrence were selected by differentially
expressed gene (DEG), univariate Cox regression and least absolute shrinkage and selection operator (LASSO)
regression analyses. A 25-lncRNA prognostic signature was constructed according to receiver operating
characteristic curve (ROC). Kaplan-Meier and multivariate Cox regression analyses were used to evaluate the
performance of this signature. ROC and nomogram were used to evaluate the integrated models based on this
signature with other independent clinical risk factors. Gene set enrichment analysis (GSEA) was used to reveal
enriched gene sets in the high-risk group. Tumor infiltrating lymphocytes (TILs) levels were analyzed with single
sample Gene Set Enrichment Analysis (ssGSEA). Immune therapy response prediction was performed with TIDE and
SubMap. Chemotherapeutic response prediction was conducted by using Genomics of Drug Sensitivity in Cancer
(GDSC) pharmacogenomics database.
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Results: Compared to low-risk group, patients in high-risk group showed reduced disease-free survival (DFS) in the
training (p < 0.0001) and validation cohort (p = 0.0132). The 25-lncRNA signature, AFP, TNM and vascular invasion
could serve as independent risk factors for HCC early recurrence. Among them, the 25-lncRNA signature had the
best predictive performance, and combination of those four risk factors further improves the prognostic potential.
Moreover, GSEA showed significant enrichment of “E2F TARGETS”, “G2M CHECKPOINT”, “MYC TARGETS V1” and
“DNA REPAIR” pathways in the high-risk group. In addition, increased TILs were observed in the low-risk group
compared to the high-risk group. The 25-lncRNA signature negatively associates with the levels of some types of
antitumor immune cells. Immunotherapies and chemotherapies prediction revealed differential responses to PD-1
inhibitor and several chemotherapeutic drugs in the low- and high-risk group.

Conclusions: Our study proposed a 25-lncRNA prognostic signature for predicting HCC early recurrence, which
may guide postoperative treatment and recurrence surveillance in HCC patients.

Keywords: Long non-coding RNA signature, Hepatocellular carcinoma, Early recurrence, Tumor infiltrating
lymphocytes

Background
The very recent epidemiologic study has shown that
liver cancer ranks the sixth commonly diagnosed cancer
and the fourth leading cause of cancer death in the
world. An estimated 84,100 liver cancer cases occurred
and 78,200 liver cancer cases died in 2018 [1]. Hepato-
cellular carcinoma (HCC) compromises 75–85% of pri-
mary liver cancer [1]. The main clinical curative
treatments for HCC include liver transplantation, percu-
taneous radiofrequency ablation and liver resection,
among which liver resection is the most employed treat-
ment [2]. Although 5-year overall survival rate reaches
up to 50%, recurrence occurs in more than 70% HCC
patients after curative surgery [3]. Clinically, the recur-
rence within 2-year after resection is defined as early re-
currence, whereas the recurrence > 2-year is defined as
late recurrence. Compared to late recurrence, HCC pa-
tients with early recurrence usually showed poorer prog-
nosis [4].
Currently, many approaches, such as the TNM staging

system of the American Joint Committee on Cancer
(AJCC), the Barcelona Clinic Liver Cancer (BCLC) classifi-
cation, and the Cancer of the Liver Italian Program (CLIP)
staging system, have been employed to evaluate the prog-
nosis of HCC patients [5]. However, their assessment cri-
teria mainly rely on the clinicopathological features of
HCC patients but do not take into account the critical and
complicated molecular pathogenesis, an important factor
in determining the outcome of HCC. Therefore, their
prognostic predictive performance was unsatisfactory [6].
Meanwhile, serum alpha-fetoprotein (AFP) detection and
medical imaging techniques are clinically used for post-
surgery surveillance of recurrence in HCC patients, but
with limited effectiveness due to the low specificity and
sensitivity of those surveillance means [7].
The advent of high throughput array/sequencing and

high-efficiency big data analysis in past decades makes it

possible and reliable to construct multi-gene signatures
to evaluate prognosis and predict therapeutic response
in cancer patients. For example, a 70-gene signature had
been established to aid decision making of adjuvant
chemotherapy in patients with estrogen receptor-
positive early breast cancer [8, 9]. More importantly, this
70-gene-signature based diagnostic test known as “Mam-
maPrint” (Agendia, Amsterdam, The Netherlands) has
been approved by the Food and Drug Administration
(FDA) to predict breast cancer recurrence [10], and been
validated in several retrospective studies [11, 12]. Add-
itionally, an 18-gene signature ColoPrint (Agendia,
Amsterdam, The Netherlands) was developed to predict
disease relapse in patients with early-stage colorectal
cancer (CRC) [13], and had been validated in other inde-
pendent studies [14, 15]. Several multi-gene signatures
have been constructed in HCC for prognosis evaluation.
For example, Wei et al. developed a 20-miRNA signature
to predict post-surgery survival in HCC patients [16];
Nault et al. constructed a 5-gene signature to evaluate
the overall survival in HCC patients [17]; Kim et al.
established a 233-gene signature to predict late recur-
rence in HCC patients [18]. Recently, prognostic signa-
tures based on specific groups of genes such as
glycolyis-related genes, metabolic-related genes and
autophagy-related genes were also reported [19–21].
However, those multi-gene signatures of HCC mainly
focus on overall survival and later recurrence, and few
multi-gene signatures have been established to predict
early recurrence in HCCs.
Long non-coding RNAs (lncRNAs) are a class of tran-

scripts that are longer than 200 nucleotides (nt) and do
not encode proteins [22]. Accumulating evidence has in-
dicated the involvement of lncRNAs in diverse biological
processes and disease pathogenesis [23]. Moreover, some
lncRNAs have been reported to contribute to the initi-
ation and progression in HCCs. For example, lncRNA-
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ANRIL has been reported to promote hepatocarcinoma
cell proliferation [24]; and lncRNA-MALAT1 could
function as a proto-oncogene to transform hepatocytes
and enhance hepatocarcinoma cell growth [25]. In
addition, some lncRNAs have been demonstrated to as-
sociate with HCC prognosis. For example, the overex-
pression of lncRNA-MVIH was associated with poor
recurrence-free survival and overall survival in HCC pa-
tients [26]; LncRNA-PTTG3P expression was positively
associated with tumor size, TNM stage and poor survival
in HCC patients [27]. Although lncRNAs are involved in
the progression and associated with prognosis in HCCs,
lncRNA-based gene signatures for HCC prognostic
evaluation, especially for early recurrence, are limited.
In this study, we analyzed the expression profile of

lncRNAs and their association with early recurrence in
the Liver Hepatocellular Carcinoma (LIHC) project from
The Cancer Genome Atlas (TCGA) database (TCGA-
LIHC). We constructed a 25-lncRNA signature signifi-
cantly associated with HCC early recurrence. Based on
this multi-lncRNA signature, HCC patients can be clas-
sified into low- and high-risk groups according to their
risk scores. The early recurrence rate was significantly
higher in the high-risk group than in the low-risk group.
Moreover, the risk score negatively correlated with
recurrence-free survival in HCC patients. Multivariate
Cox regression analysis demonstrated that the 25-
lncRNA signature, serum AFP, TNM stage and vascular
invasion were 4 independent risk factors of HCC early
recurrence. Compared with the other 3 risk factors, the
25-lncRNA signature had the best predictive perform-
ance for HCC early recurrence. Furthermore, the 25-
lncRNA signature could synergize with serum AFP,
TNM stage and vascular invasion to improve the prog-
nosis evaluation for HCC early recurrence. In addition,
in the context of this 25-lncRNA risk signature, we dem-
onstrated that the “E2F TARGETS”, “G2M CHECK-
POINT”, “MYC TARGETS V1” and “DNA REPAIR”
were the most significantly enriched gene sets in the
high-risk group. Moreover, the low-risk group showed
greater tumor-infiltrating lymphocytes (TILs) compared
to the high-risk group, and the 25-lncRNA prognostic
signature was significantly negatively associated with the
potent antitumor immune cells (i.e. type 1 T helper cell,
effector memory CD8 T cell and activated CD8 T cell).
Finally, the low-risk group was predicted to be more
sensitive to immunotherapy like anti-PD-1 and chemo-
therapies like docetaxel, gefitinib and vinblastine, while
the high-risk group was predicted to be more sensitive
to doxorubicin, mitomycin C and paclitaxel. In conclu-
sion, our findings may provide some insight into
lncRNA-based personalized treatment and improve the
strategy of post-surgery recurrence surveillance in HCC
patients.

Methods
TCGA-LIHC database preparation and lncRNA profile
mining
Gene expression profile of HCC and corresponding clin-
ical information were downloaded from TCGA-LIHC
(http://cancergenome.nih.gov/). Total 314 out of all 374
HCC samples with complete follow-up information
(overall survival (OS) time, OS status, disease free sur-
vival (DFS) time and status) were retained. Among these
314 patients, some patients’ follow-up time was less than
1 month, and their OS and DFS status were labeled as
“alive” and “recurrence free”. Therefore, these patients
were not suitable for early recurrence analysis and they
were excluded. Thus, we used 299 patients for signature
construction in this study. The 299 HCC patients were
then randomly divided into a training cohort (N = 150)
and a validation cohort (N = 149). Based on the informa-
tion of annotated lncRNAs in GENCODE V30, 14,847
human lncRNAs with Ensembl gene ID were obtained
and their corresponding expression profile was extracted
from the TCGA-LIHC.

Construction and validation of lncRNA-based risk
signature
Most bioinformatics analyses were conducted using R
software. DEG analysis was performed between the 150
HCC samples in the training cohort and 50 normal tis-
sue samples from TCGA-LIHC project by using R pack-
age “edgeR” [28, 29]. Univariate Cox regression analysis
was performed to select early recurrence related
lncRNAs by using R package “survival” [30]. FunRich
(version 3) was used to draw Venn diagram between dif-
ferentially expressed lncRNAs and early recurrence re-
lated lncRNAs to obtain candidate lncRNAs for
signature construction [31]. Candidate lncRNAs were
then further analyzed in LASSO regression analysis by
running R package “glmnet” for 1000 times [32], and the
most powerful prognostic lncRNAs were selected
through 10-fold cross-validation with lambda.min as the
optimized cut-off [33]. Risk score of each patient was
calculated in a linear combination of lncRNAs weighted
by their corresponding regression coefficients and ex-
pression levels in indicated HCC patients by formula
(risk score = ∑ coefficient × expression(gene)). Receiver op-
erating characteristic curve (ROC) analysis was con-
ducted by using R package “pROC” [34], and the
predictive performance was assessed by calculating the
area under curve (AUC). Finally, a combination of 25
lncRNAs was chosen for establishing risk signature be-
cause this 25-lcnRNA risk signature gave the largest
AUC in ROC analysis. The 150 HCC patients were di-
vided into the low-risk group (N = 75) and the high-risk
group (N = 75) by using the median risk score as cut-off.
A correlation analysis was performed between the risk
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score and early recurrence. Kaplan-Meier analysis, cu-
mulative hazard and cumulative events analyses were
conducted by using R package “survival” in the training
cohort, the validation cohort and the total 299 HCC pa-
tients to investigate the early recurrence survival be-
tween low risk patients and high risk patients. Univariate
and multivariate Cox analysis were done in the total 299
HCC patients with R package “survival” to evaluate
whether the risk score could serve as an independent
factor for early recurrence prediction in HCCs. Nomo-
gram was constructed by using the 25-lncRNA signa-
ture, AFP, vascular invasion, TNM stages and their
corresponding multivariate Cox regression coefficients,
and calibration plots were generated with R package
“regplot” [35]. C-index was used to evaluate the model
performance for predicting early recurrence.

Gene set enrichment analysis (GSEA)
GSEA was conducted by using GSEA JAVA program
(version 4.0.3) downloaded from official website (http://
software.broadinstitute.org/gsea/index.jsp) to find out
enriched gene sets. MsigDB h.all.v7.1.symbols.gmt gene
set collection was chosen for identifying hallmarks of
HCC early recurrence. The random sample permuta-
tions were set to be 1000 with the significance set as
|NES| > 1, FDR q < 0.25 and nominal P < 0.05.

Analysis of the levels of tumor-infiltrating lymphocytes
and immune therapy response prediction
Immune infiltration analysis was performed with single
sample Gene Set Enrichment Analysis (ssGSEA) by
using “GSVA” package in R [36]. A group of 28 cellmar-
ker sets were used for calculating normalized enrich-
ment score (NES) for each cell type in every 299 HCC
samples [37]. Correlation analysis between risk scores
and NES of immune cells was performed by function
“cor.test” in R. TIDE (Tumor Immune Dysfunction and
Exclusion) algorithm and SubMap modules from Gene-
Pattern were used to predict the response to immune
checkpoint blockade for all 299 HCC samples [38–40].

Analysis of chemotherapeutic response prediction
Chemotherapeutic response prediction for every 299
HCC samples was conducted in R by using “pRRophetic”
package based on the Genomics of Drug Sensitivity in
Cancer (GDSC) pharmacogenomics database. The half
maximal inhibitory concentration (IC50) was estimated
by ridge regression and the prediction accuracy was eval-
uated by 10-fold cross-validation [41].

Real time quantitative RT-PCR
To validate the 25-lncRNA signature in clinical samples,
3 lncRNAs from the signature were selected and their
relative expressions in HCC samples were detected by

RT-qPCR. Total RNA from 36 paired HCC tumor and
adjacent tissues provided by Xinhua Hospital were ex-
tracted by using TRIzol (Invitrogen, 15596026) accord-
ing to the manufacturer’s instructions. cDNA was
synthesized by using ReverTra Ace® qPCR RT Master
Mix with gDNA Remover (TOYOBO, FSQ-301) in a
SimpliAmp Thermal Cycler (Applied Biosystems). The
20 μL PCR reaction system consist of 2 μL cDNA, 0.8 μL
forward primer, 0.8 μL reverse primer, 10 μL CYBR Pre-
mix Ex TaqII, 0.4 μL ROX Reference Dye II and 6 μL de-
ionized water (Takara CYBR Premix Ex TaqII, RR820A).
RT-PCR was performed in ABI Biosystems™ 7500 Real-
Time qPCR System (Applied Biosystems). 18s was used
as a housekeeping gene for normalization and the rela-
tive expression of selected genes was calculated by using
2−ΔΔCT method. Primers used were synthesized by GEN-
EWIZ and the sequences of primers were
ENSG00000231918 (GTGGCTCTGCCTTGGGTAAT,
TTCCAGAACAACCTTGTCAGA), ENSG00000248596
(GCCAGAATTGGCGGTTTCTC, ATCGCTGAGTGT
GTCGAGTG), and ENSG00000223392 (ATCCTTAC
CCTGCATTGCCC, ATGATCCAACCATCTGCAGG
G).

Statistical analysis
DeLong’s test was used to compare the sensitivity and
specificity of two ROC curves. Chi-square test was used
to evaluate the impact of risk score group distribution
on recurrence cases between 1 year and 2 years. The cor-
relation of risk scores with disease free survival (DFS),
NES of tumor-infiltrating lymphocytes and levels of im-
mune checkpoints was analyzed by nonparametric
Spearman’s rank correlation analysis. The log-rank test
was used for Kaplan-Meier survival analyses, cumulative
hazard and cumulative events analyses. The Cox propor-
tional hazards regression model was used for univariate
and multivariate analyses. Wilcoxon test was used for
comparing NES of immune cells and IC50 of drugs be-
tween the low-risk and high-risk group. The difference
was considered statistically significant when P < 0.05 in
all statistical analysis.

Results
HCC dataset preparation and identification of candidate
lncRNAs from the training cohort
HCC RNA-seq data and corresponding clinical informa-
tion were downloaded from the TCGA-LIHC (Liver He-
patocellular Carcinoma) project. After removal of
samples without complete survival information, total
299 out of all 374 HCC samples were enrolled in this
study for further analysis. Table S1 shows the clinical
characteristics of the 299 HCC samples, in which more
than 50% HCC patients had recurrence. Because there
are no suitable GEO datasets which are comparable to
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the TCGA-LIHC project containing comprehensive data
on both lncRNA expression profile and patients’ clinical
characteristics, we then randomly divided the 299 HCC
patients into a training cohort (n = 150) and a validation
cohort (n = 149) by using “split” function in R software
instead of setting an external validation cohort. Bioinfor-
matics analyses were first performed in the training co-
hort and further validated in the validation cohort
(Fig. 1A).
To establish a lncRNA-based risk signature, differen-

tially expressed gene (DEG) analysis on lncRNAs was
performed between the training cohort and 50 normal
controls from the TCGA-LIHC project. A total of 1495
DEG lncRNAs were found significantly dysregulated in
HCC samples (1159 up-regulated and 336 down-
regulated, log2|FC| > 1, FDR < 0.05) (Fig. 1B and C).
Meanwhile, a univariate Cox regression analysis revealed
that total 1973 lncRNAs were associated with HCC early
recurrence (ER lncRNAs) (P < 0.05) (Fig. 1D). Finally, a
Venn diagram between the 1495 DEG lncRNAs and the
1973 ER lncRNAs identified 358 lncRNA candidates
which may have potential prognostic value for HCC
early recurrence (Fig. 1D).

Pilot construction of multi-lncRNA signatures for HCC
early recurrence
The least absolute shrinkage and selection operator
(LASSO) Logistic Regression is a selection and shrinkage
technique designed for regression model initially applied
to Ordinary Logistic Regression [42]. LASSO can better
identify those risk factors strongly linked to the outcome
and is widely employed in signature construction [43].
To identify key lncRNAs suitable for establishing a risk
signature for predicting HCC early recurrence, those 358
candidate lncRNAs (Fig. 1D) were further analyzed in
LASSO regression. A total of 1000 LASSO regression it-
erations were performed by using the R package
“glmnet”. Lambda.min was chosen as the optimized cut-
off to select key lncRNAs for risk model (Fig. S1) [44].
Consequently, 7 lncRNA combinations were obtained
after LASSO analysis (Table S2 and Fig. S1). Thus, 7
lncRNA risk signatures were individually constructed
based on these combinations. The risk score of each
HCC patient was calculated in a linear formula risk
score = ∑ coefficient × expression(gene) (expression:
lncRNA expression in individual HCC patients; coeffi-
cient: regression coefficients of indicated lncRNAs). To
determine which lncRNA risk signature gives the best
predictive performance on early recurrence, receiver op-
erating characteristics (ROC) analysis was conducted be-
tween the 7 lncRNA risk signatures. As shown in Fig.
1E, all the 7 lncRNA risk signatures gave high area
under the ROC curve (AUC, AUC > 80%), suggesting the
reliability of our LASSO analysis. Among them, the 25-

lncRNA risk signature gave the highest AUC (AUC =
86.70%) (Fig. 1F), suggesting the 25-lncRNA risk signa-
ture has the best predictive performance for HCC early
recurrence.

Risk score calculation of the 25-lncRNA risk signature
Since the 25-lncRNA risk signature gave the best predictive
performance, we then selected this signature to establish a risk
model for HCC early recurrence. The detailed information of
the 25 lncRNAs, including Ensembl gene ID, gene symbol, haz-
ard ratio and coefficients, was summarized in Table 1. Among
them, 19 lncRNAs (ENSG00000253417, ENSG00000272205,
ENSG00000269894, ENSG00000275437, ENSG00000223392,
ENSG00000248596, ENSG00000268201, ENSG00000247675,
ENSG00000231918, ENSG00000234129, ENSG00000269974,
ENSG00000236366, ENSG00000275223, ENSG00000253406,
ENSG00000232079, ENSG00000255980, ENSG00000267905,
ENSG00000176912, ENSG00000254333) had positive coeffi-
cients and were negatively associated with disease free survival
(DFS), and the remainder 6 lncRNAs (ENSG00000259834,
ENSG00000254887, ENSG00000259974, ENSG00000273837,
ENSG00000231246, ENSG00000234283) had negative coeffi-
cients and were positively associated with DFS (Table 1). Here,
we named those lncRNAs with positive coefficients as risk
lncRNAs and those with negative coefficients as protective
lncRNAs. The risk score could be calculated according to the
coefficients of individual lncRNAs and their expression in cor-
responding HCC patients.

The 25-lncRNA risk signature correlates with HCC early
recurrence
To determine whether the 25-lncRNA risk signature
could predict HCC early recurrence, we first calculated
the risk scores of the 150 HCC patients in the training
cohort and then distributed them according to their risk
scores from low to high (Fig. 2A). The median risk score
was set as the cut-off to separate those patients into
low-risk group (n = 75, patients’ risk scores < the median
risk score) and high-risk group (n = 75, patients’ risk
scores > the median risk score) (Fig. 2A). As shown in
Fig. 2B, the 19 risk lncRNAs were mostly enriched in the
high-risk group whereas the 6 protective lncRNAs were
mainly enriched in the low-risk group. Moreover,
81.25% of recurrence cases in 1-year and 76.06% in 2-
year came from the high-risk group, while the percent-
ages were respectively 18.75 and 23.94% in the low-risk
group (Fig. 2C). These results indicate that the 25-
lncRNA risk signature have satisfying predictive poten-
tial for HCC early recurrence in the training cohort.

Validation of the 25-lncRNA risk signature
To validate the predictive potential of the 25-lncRNA risk
signature, we evaluated it in the validation cohort. Accord-
ing to the median cut-off in the training cohort, the
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validation cohort (n = 149) was separated into the low-risk
group (n = 69) and the high-risk group (n = 80) (Fig. 3A). In
line with the finding in the training cohort, the risk
lncRNAs were mainly enriched in the high-risk group
whereas the protective ones were mainly enriched in the
low-risk group (Fig. 3B). Meanwhile, 69.09% of 1-year re-
currence cases and 63.01% of 2-year recurrence cases came
from the high-risk group (Fig. 3C). Moreover, the predictive
potential of the 25-lncRNA risk signature was also

evaluated in the total 299 recruited HCC patients. Similarly,
299 HCC patients were separated into low-risk group (n =
144) and high-risk group (n = 155) according to the median
cut-off in the training cohort (Fig. 3D). Most of the risk
lncRNAs were enriched in the high-risk group and most of
the protective lncRNAs were enriched in the low-risk group
(Fig. 3E). Consistent with this finding, non-pair Wilcoxon
test confirmed enrichment of the risk lncRNAs and the
protective lncRNAs in the high-risk and low-risk groups

Fig. 1 Data processing and lncRNA-based early risk signature construction from candidate lncRNAs. A) Schematic diagram of data processing and
construction of lncRNA-based signature; B) Volcano plot of lncRNAs expression in the TCGA training cohort. Differentially expressed gene (DEG)
analysis shows 1159 up-regulated lncRNAs and 336 down-regulated lncRNAs; C) Heatmap of 1495 DEG lncRNAs in 150 HCC samples and 50
normal tissues; D) Venn plot of DEG lncRNAs and early recurrence related lncRNAs (ER lncRNAs) in the TCGA training cohort. 358 DEG lncRNAs
with potential prognostic value for HCC early recurrence were identified; E) ROC plot of 7 lncRNA signatures; F) ROC plot comparison between
the 15-lncRNA risk signature and the 25-lncRNA risk signature, P = 0.006
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respectively, except for the lncRNAs (ENSG00000255980,
ENSG00000253406, ENSG00000232079, and
ENSG00000234283) whose expression showed no signifi-
cant changes between the low- and high-risk groups (Fig.

S2). Patients in the high-risk group contributed 74.76% of
1-year recurrence cases and 69.44% of 2-year recurrence
cases (Fig. 3F). More importantly, correlation assays showed
significantly negative correlation of risk score with 1-year

Table 1 LncRNAs significantly associated with the disease free survival in the training cohort patients (N = 150)
Ensembl Gene Symbol P

value
a

Hazard
Ratio a

Coefficient
b

associated diseases Description Reference

ENSG00000253417 LINC02159 <
0.001

2.85 0.069 colorectal cancer, melanoma, head and neck squamous cell
carcinoma

long intergenic
non-protein cod-
ing RNA 2159

[1–3]

ENSG00000272205 <
0.001

2.47 0.233 NR NR

ENSG00000269894 <
0.001

2.48 0.092 NR NR

ENSG00000275437 <
0.001

4.78 0.083 NR NR

ENSG00000223392 CLDN10-AS1 <
0.001

1.82 0.278 atherogenesis, lung adenocarcinoma, colorectal cancer, thyroid
cancer, cholangiocarcinoma, colon adenocarcinoma

CLDN10 antisense
RNA 1

[4–6, 20]

ENSG00000248596 LOC643201 <
0.001

1.91 0.335 colorectal cancer centrosomal
protein 192 kDa
pseudogene

[5]

ENSG00000268201 <
0.001

1.98 0.330 NR NR

ENSG00000247675 LRP4-AS1 <
0.001

7.36 0.567 breast cancer, pancreatic neuroendocrine tumour LRP4 antisense
RNA 1

[7]

ENSG00000231918 LOC730100 <
0.001

2.19 0.339 glioma uncharacterized
LOC730100

[8]

ENSG00000259834 <
0.001

0.28 −0.721 NR NR

ENSG00000234129 0.001 9.68 0.272 NR NR

ENSG00000269974 0.001 2.24 0.007 NR NR

ENSG00000254887 LOC100505622 0.002 0.05 −0.735 gastric cancer uncharacterized
LOC100505622

[12]

ENSG00000259974 LINC00261 0.003 0.69 − 0.187 hepatocellular carcinoma, endometrial carcinoma, non-small cell
lung cancer, colon cancer, esiohageal cancer, endometriosis,
choriocarcinoma, gastric cancer, esophageal cancer, lung epithelial
homeostasis, endoderm differentiation

long intergenic
non-protein cod-
ing RNA 261

[13–19,
25–27]

ENSG00000236366 LOC153910 0.003 1.65 0.232 lung function development, chronic obstructive pulmonary
disease (COPD) and cardiovascular diseases (CVD)

uncharacterized
LOC153910

[3, 21–24]

ENSG00000275223 0.003 1.56 0.024 NR NR

ENSG00000253406 0.004 967.38 1.878 NR NR

ENSG00000232079 LINC01697 0.009 1.53 0.142 lung squamous cell carcinoma, gastric cancer, gastric
adenocarcinoma, breast cancer

long intergenic
non-protein cod-
ing RNA 1697

[9–11]

ENSG00000273837 0.012 0.59 −0.025 NR NR

ENSG00000255980 LOC102724265 0.017 10.02 0.125 NR uncharacterized
LOC102724265

ENSG00000267905 0.018 1.5 0.032 NR NR

ENSG00000176912 TYMSOS 0.023 1.28 0.038 NR TYMS opposite
strand

ENSG00000254333 NDST1-AS1 0.032 1.21 0.044 NR NDST1 antisense
RNA 1

ENSG00000231246 LINC02884 0.033 0.17 −0.041 NR long intergenic
non-protein cod-
ing RNA 2884

ENSG00000234283 0.047 0.39 −0.459 NR NR

NR not reported
a Derived from the univariable Cox proportional hazards regression analysis in the 150 training cohort patients
b Derived from the LASSO regression analysis in the 150 training cohort patients
Please refer to the supplementary material for references citation
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(Fig. 3G) or 2-year DFS (Fig. 3H) in the recurrent HCC pa-
tients in the high-risk group. No correlation was observed
between risk score and DFS in recurrent HCC patients in
the low-risk group (Fig. S3). These findings further validate
the correlation of the 25-lncRNA risk signature with HCC
early recurrence and indicate the great predictive potential
of the risk signature on HCC early recurrence.
The primary purpose for the signature construction

study is to accurately discriminate low- and high-risk pa-
tients. Therefore, the cut-off selection is critical for the
accuracy of the prediction signature. In this study, we
adopted the median risk score as cut-off which has been
widely employed by many other groups [16, 45–48]. To
investigate whether there are other cut-offs which could
distinguish low- and high-risk of early recurrence better
than the median cut-off, we adopted the cut-off derived
from Youden index [49]. Although the Youden index/
cut-off could separate patients into the low- and high-
risk groups (Fig. S4A-C), the prediction performance for
early recurrence is much poorer than that by using me-
dian cut-off (Fig. S4D-F). Therefore, the median risk
score used in this study is an appropriate cut-off to ac-
curately distinguish HCC patients with low or high early
recurrence risk.

The 25-lncRNA risk signature precisely predicts early
recurrence in HCC patients
To further investigate the prognostic value of the 25-
lncRNA risk signature for early recurrence, we analyzed

cumulative hazard and event in HCC patients. Both cu-
mulative hazards and cumulative events were signifi-
cantly higher in the high-risk group than those in the
low-risk group in either the training cohort (Fig. S5A
and B), validation cohort (Fig. S5C and D) or total 299
HCC patients (Fig. S5E and F). Meanwhile, Kaplan-
Meier analyses, in the training cohort (Fig. 4A), valid-
ation cohort (Fig. 4B) and 299 enrolled HCC patients
(Fig. 4C), showed that the patients in the high-risk group
had lower 2-year DFS than those in the low-risk group.
These findings further indicate the prognostic value of
the 25-lncRNA risk signature for HCC early recurrence.

The 25-lncRNA risk signature is an independent
prognostic factor for early recurrence in HCCs
To determine whether the 25-lncRNA risk signature is
an independent prognostic factor for HCC early recur-
rence, we performed univariate and multivariate Cox re-
gression analyses in the enrolled 299 HCC patients. The
25-lncRNA risk score and other clinicopathological fac-
tors, including gender, age, race, cirrhosis, vascular inva-
sion, serum AFP level and TNM stage, were used as
covariates. As shown in Table 2, the vascular invasion,
serum AFP and 25-lncRNA risk score were significantly
associated with 1-year and 2-year recurrence in HCC pa-
tients, while the TNM stage was significantly associated
with 2-year recurrence but not with 1-year recurrence.
These findings are consistent with previous studies
showing that serum AFP [50], TNM stage [51] and

Fig. 2 Correlation analysis of the 25-lncRNA risk signature with HCC early recurrence in the training cohort. A) The 150 HCC patients in the
training cohort was ranked according to their risk scores from low to high, and the median risk score was set as the cut-off to divide the 150
HCC patients into low-risk group (n = 75) and high-risk group (n = 75); B) The 25-lncRNA expression profile in the 150 HCC patients. The 19 risk
lncRNAs were enriched in the high-risk group and the 6 protective lncRNAs were enriched in the low-risk group; C) 81.25% and 76.06% HCC
patients with recurrence in 1-year and 2-year respectively were classified in the high-risk group, and 18.72% and 23.94% HCC patients with
recurrence in 1-year and 2-year respectively were classified in the low-risk group (P = 0.005)
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vascular invasion [2] are independent risk factors for
HCC early recurrence, and indicate that the 25-lncRNA
risk signature could serve as an independent prognostic
factor for HCC early recurrence.

The combination of the 25-lncRNA risk signature, AFP,
TNM stage and vascular invasion improves the prognosis
evaluation and the construction of nomogram
To investigate which independent risk factor gives the
best predictive performance for HCC early recurrence,
ROC analyses were performed by using “pROC”. As
shown in Fig. 5A and B, the AUC of risk score for 1-
year recurrence (73.86%) and 2-year recurrence (71.98%)
were better those of AFP (64.58% for 1-year, 61.39% for
2-year recurrence), TNM (64.99% for 1-year, 67.17% for
2-year recurrence) and vascular invasion (VI) (63.47%
for 1-year, 60.33% for 2-year recurrence). Moreover,
compared to risk score alone, combining the risk score
with AFP, TNM and VI further increased the predictive
performance for 1-year recurrence (AUC: 78.79% vs.
73.86%) and 2-year recurrence (AUC: 76.82% vs. 71.98%)
(Fig. 5C and D). The 95% confidence interval of AUC
and C-index of above signatures were summarized in
Table S3. An integrated Nomogram was further

constructed by combining the 25-lncRNA signature,
AFP, VI and TNM with a C-index 0.739 (Fig. 5E), and
the calibration curves of the integrated nomogram for 1-
year and 2-year DFS were presented in Fig. 5F. There-
fore, the combination of the 25-lncRNA risk signature
with AFP, TNM and VI could improve the prognosis
evaluation for HCC early recurrence.

Biological processes associated with HCC early recurrence
Previous studies have shown that lncRNAs function as
key regulators of critical biological processes including
cell differentiation, development, and apoptosis [52]. To
investigate the biological processes associated with HCC
early recurrence, gene set enrichment analysis (GSEA)
was performed with hallmark pathways based on the
gene expression profiling data from HCC patients in the
high-risk and the low-risk groups. Eight gene sets were
significantly enriched in the high-risk group while no
significant gene set enrichment was observed in the low-
risk group (|NES| > 1, FDR q-val < 0.25, NOM p-val <
0.05) (Table 3). Among them, the enrichment of gene
sets of “E2F TARGETS”, “G2M CHECKPOINT”, “MYC
TARGETS V1” and “DNA REPAIR” showed higher sig-
nificance (|NES| > 1.5, FDR q-val < 0.10, NOM p-val <

(See figure on previous page.)
Fig. 3 Correlation analysis of the 25-lncRNA risk signature with HCC early recurrence in the validation and entire TCGA cohort. A) The 149 HCC
patients in the validation cohort were ranked according to their risk scores from low to high, and divided into the low-risk group (n = 69) and the
high-risk group (n = 80) by using the same risk score cut-off in the training cohort; B) The 25-lncRNA expression profile in the 149 HCC patients.
The 19 risk lncRNAs were enriched in the high-risk group and the 6 protective lncRNAs were enriched in the low-risk group; C) 69.09% and
63.01% HCC patients with recurrence in 1-year and 2-year respectively were classified in the high-risk group, and 30.91% and 36.99% HCC
patients with recurrence in 1-year and 2-year respectively were assigned in the low-risk group (P = 0.024); D) The 299 HCC patients in the entire
TCGA cohort were ranked according to their risk scores from low to high, and divided into the low-risk group (n = 144) and the high-risk group
(n = 155) by using the same risk score cut-off in the training cohort; E) The 25-lncRNA expression profile in the 299 HCC patients. The 19 risk
lncRNAs were enriched in the high-risk group and the 6 protective lncRNAs were enriched in the low-risk group; F) 74.46% and 69.44% HCC
patients with recurrence in 1-year and 2-year respectively were assigned in the high-risk group, and 25.24% and 30.56% HCC patients with
recurrence in 1-year and 2-year respectively were assigned in the low-risk group (P = 0.0004); G and H) Correlation of risk score with 1-year (G) or
2-year DFS (H) in the recurrent HCC patients in the high-risk group of the entire TCGA cohort

Fig. 4 Kaplan-Meier analysis of the association of the 25-lncRNA risk signature with early recurrence risk in HCCs. A-C) The association of the 25-
lncRNA risk signature with 2-year DFS was analyzed in the training cohort (N = 150, P < 0.0001) (A), validation cohort (N = 149, P = 0.0132) (B), and
the entire TCGA cohort (N = 299, P < 0.0001) (C). The statistical significance was determined by the log-rank test. The patients in each cohort were
stratified into the high-risk and low risk groups based on the cut-off risk score in the training cohort

Fu et al. BMC Cancer         (2021) 21:1165 Page 10 of 18



0.01) (Table 3). The snapshots of enrichment results
were displayed in Fig. 6 and the heatmaps for enriched
gene sets were displayed in Fig. S6. These findings sug-
gest that the 25 lncRNAs may affect HCC early recur-
rence through E2F, Myc, G2M and DNA repair
pathways.

The 25-lncRNA signature negatively associates with
tumor infiltrating lymphocytes
Tumor infiltrating lymphocytes (TILs) have been recog-
nized as a prognostic factor in various types of cancers,
and accumulation of TILs has been established as a posi-
tive prognostic factor in a number of solid cancers in-
cluding melanoma [53], colon cancer [54] and ovarian
cancer [55]. Previous studies have demonstrated that
HCC patients with prominent TILs showed reduced re-
currence and better prognosis compared with those
without prominent TILs [56, 57]. Although the TILs are
minority in the tumor bulk, the immune checkpoint
molecules specifically express on T cells and antigen
presenting cells but not tumor cells or other stromal
cells in tumor bulk. Thus, it is a commonly accepted ap-
proach to evaluate TILs by using the expression levels of
immune checkpoint molecules from bulk-tumor data
[45, 58, 59]. To investigate whether the 25-lncRNA
prognostic signature could reflect the levels of TILs,
comparison of TILs was performed between the low-

and high-risk groups. As shown in Fig. 7A, 22 out of 28
TILs showed significant enrichment in the low-risk
group compared to the high-risk group (P < 0.05). Cor-
relation analysis between risk scores and normalized en-
richment scores (NES) of TILs revealed that the
intratumor accumulation of 23 TILs was negatively asso-
ciated with risk scores (P < 0.05, Fig. 7B). Among them,
the type 1 T helper cell, effector memory CD8 T cell and
activated CD8 T cell, which are well-known antitumor
immune cells, ranked as the top 3 TILs negatively asso-
ciated with the risk scores (|NES| > 0.4, Fig. 7C-E). These
findings suggested that the 25-lncRNA prognostic signa-
ture may reflect the levels of TILs and predict the post-
surgery prognosis in HCCs.

The low-risk group patients showed more sensitivity in
immunotherapies and the low- and high-risk group
patients showed different chemotherapies responses
Since more TILs significantly enriched in the low-risk
group patients, we attempted to further investigate
whether the immunotherapies response are different in
the low- and high-risk group. TIDE prediction suggest
that there was no significantly difference in immuno-
therapies response between the low- (48.61%, 70/144)
and high-risk (42.58%, 66/155) group (P = 0.297). How-
ever, by mapping the expression profile of the low- and
high-risk group with a public dataset of 47 melanoma

Table 2 Univariate and multivariate Cox analysis of risk factors in the TCGA entire group (N = 299)

Characteristics Univariate Multivariate

Hazard Ratio CI 95 P Value Hazard Ratio CI 95 P Value

1-year DFS

risk score of 25-lncRNA signature 2.38 1.88–3.01 < 0.001 2 1.48–2.71 < 0.001

TNM Stages 1.96 1.55–2.47 < 0.001 1.28 0.94–1.75 0.124

Vascular Invasion 1.88 1.35–2.61 < 0.001 1.66 1.12–2.45 0.011

AFP 2.52 1.56–4.07 < 0.001 2.23 1.34–3.74 0.002

Cirrhosis 1.11 0.65–1.9 0.709

Gender 1.17 0.78–1.77 0.444

Age 0.77 0.49–1.22 0.269

Race 1.15 0.83–1.59 0.396

2-year DFS

risk score of 25-lncRNA signature 2.19 1.8–2.66 < 0.001 1.92 1.48–2.49 < 0.001

TNM Stages 1.96 1.61–2.39 < 0.001 1.46 1.12–1.89 0.005

Vascular Invasion 1.8 1.36–2.38 < 0.001 1.5 1.05–2.12 0.024

AFP 2.03 1.37–2.99 < 0.001 1.77 1.16–2.71 0.008

Cirrhosis 1.25 0.81–1.93 0.305

Gender 1.21 0.86–1.71 0.27

Age 0.91 0.6–1.36 0.635

Race 0.84 0.62–1.12 0.229

In univariate and multivariate Cox analysis, risk score, TNM stages and vascular invasion were evaluated as continuous variables, and AFP, cirrhosis, gender, age
and race were evaluated as category variables. Age category and AFP category were defined by 50 and 20 ng/ml as cut-off value, respectively

Fu et al. BMC Cancer         (2021) 21:1165 Page 11 of 18



patients responded to immunotherapies in SubMap
modules of GenePattern [60], the low-risk group showed
prospective response to anti-PD-1 (programmed cell
death protein 1) therapy (Bonferroni-corrected P = 0.008,
Fig. 8A). Besides immunotherapies, we attempted to

identify whether the 25-lncRNA prognostic signature
could be applied to chemotherapies prediction. The re-
sults showed that the low-risk group had a lower half
maximal inhibitory concentration of docetaxel, gefitinib
and vinblastine, while the high-risk group had a lower

Fig. 5 ROC analysis of the predictive performance and nomogram construction for early recurrence of the 25-lncRNA risk signature, TNM stage,
vascular invasion and AFP. A-B) ROC analysis of the predictive performance of the 25-lncRNA risk signature, TNM stages, vascular invasion and
AFP for 1-year DFS (A) and 2-year DFS (B) in the entire TCGA cohort; C-D) ROC analysis of the predictive performance of the combination of the
25-lncRNA risk signature, TNM stages, vascular invasion and AFP and risk score alone for 1-year DFS (C) and 2-year DFS (D) in the entire TCGA
cohort. E) Nomogram of the 25-lncRNA signature risk score combined with AFP, vascular invasion and TNM stages; F) Calibration curves for the
25-lncRNA-signature-integrated nomogram for 1-year DFS and 2-year DFS. RS: the risk score of the 25-lncRNA signature, VI: vascular invasion
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half maximal inhibitory concentration of doxorubicin,
mitomycin C and paclitaxel (Fig. 8B, P < 0.05). Thus, the
25-lncRNA prognostic signature could act as a potential
predictor for immunotherapies and chemotherapies.

Discussion
As a class of non-coding transcripts, lncRNAs have been
identified in all model organisms. So far, over 56,000 hu-
man lncRNAs have been reported in recent lncRNA an-
notations and the number of lncRNAs keeps growing
[61]. Unlike protein-coding genes, most lncRNAs are
less conserved, which leads to neglect of the function of
lncRNAs [62]. However, accumulating evidence mainly

at cellular level has indicated the involvement of
lncRNAs in various biological processes such cell prolif-
eration, apoptosis and nutrient sensing to cell differenti-
ation [63]. Moreover, dysregulation of lncRNAs has been
implicated in the pathogenesis of various diseases in-
cluding cancers [64]. Many lncRNAs have shown their
prognostic value in many types of cancers [26, 27]. In
this study, we established a 25-lncRNA risk signature to
predict HCC early recurrence. We demonstrated that,
compared to AFP, TNM and VI, this 25-lncRNA risk
signature possesses the best prognostic potential for
HCC early recurrence. Moreover, the combination of
the lncRNA risk signature with AFP, TNM and VI could
further improve the predictive performance.

Table 3 GSEA pathways up-regulated in high-risk group

Gene Sets SIZE NES NOM p-val FDR q-val

HALLMARK_E2F_TARGETS 195 1.991 0.000 0.045

HALLMARK_G2M_CHECKPOINT 189 1.845 0.002 0.077

HALLMARK_MYC_TARGETS_V1 194 1.844 0.004 0.052

HALLMARK_DNA_REPAIR 148 1.826 0.004 0.045

HALLMARK_MYC_TARGETS_V2 58 1.641 0.040 0.153

HALLMARK_UNFOLDED_PROTEIN_RESPONSE 107 1.562 0.043 0.207

HALLMARK_MITOTIC_SPINDLE 198 1.542 0.019 0.199

HALLMARK_GLYCOLYSIS 198 1.516 0.022 0.205

Fig. 6 Gene set enrichment analysis illustrated upregulated gene sets in the high-risk group. A) Enrichment plot: HALLMARK_E2F_TARGETS; B)
Enrichment plot: HALLMARK_G2M_CHECKPOINT; C) Enrichment plot: HALLMARK_MYC_TARGETS_V1; D) Enrichment plot:
HALLMARK_DNA_REPAIR; E) Enrichment plot: HALLMARK_MYC_TARGETS_V2; F) Enrichment plot: HALLMARK_UNFOLDED_PROTEIN_RESPONSE; G)
Enrichment plot: HALLMARK_MITOTIC_SPINDLE; H) Enrichment plot: HALLMARK_GLYCOLYSIS. |NES| > 1, FDR < 0.25, P < 0.05
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Fig. 7 Association of the 25-lncRNA signature risk score with immune infiltration of 299 HCC samples. A) Comparisons of NES of immune cells
between the low-risk and high-risk group, 22 immune cells showed higher NES in the low-risk group (P < 0.05); B) Correlation between risk scores
and NES of immune cells, 23 immune cells were negatively associated with risk scores (P < 0.05); C)-E) Representative correlations between risk
scores and type 1 T helper cell (C), effector memory CD8 T cell (D), activated CD8 T cell (E), |NES| > 0.4

Fig. 8 The prediction of immunotherapeutic and chemotherapeutic responses. A) SubMap analysis revealed that the low-risk group was more
sensitive to PD-1 inhibitor (Bonferroni-corrected P = 0.008); B) The predicted IC50 for chemotherapeutic drugs in the low- and high-risk group.
The low-risk group was related to a lower IC50 in docetaxel, gefitinib and vinblastine, while the high-risk group was related to a lower IC50 in
doxorubicin, mitomycin C and paclitaxel (P < 0.05 by Wilcoxon test)

Fu et al. BMC Cancer         (2021) 21:1165 Page 14 of 18



In this study, we define the recurrence in 2-year post-
surgery as HCC early recurrence. This is in agreement
with a previous study showing that the slopes of early re-
currence curve and late recurrence curve are different
and the intercept time point of the two curves is defined
as the cut-off to separate early and late recurrence [4].
This separation criterion is widely adopted by many
other studies [65]. We also noticed that some studies de-
fine the recurrence in 1-year post-surgery as HCC early
recurrence [66, 67]. Therefore, we analyzed the associ-
ation of the 25-lncRNA risk signature with both 1-year
and 2-year recurrence in most of our analyses and found
that this risk signature has great prognostic potential for
both of them.
The 25-lncRNA risk signature includes 19 risk

lncRNAs (coefficient > 0) and 6 protective lncRNAs (co-
efficient < 0) (Table 1). Among these lncRNAs, dysregu-
lation of LINC02159, CLDN10-AS1, LOC643201, LRP4-
AS1, LOC730100, LINC01697, LOC100505622, and
LINC00261 has been reported in several types of cancers
(Table 1). In addition, CLDN10-AS1 was reported to be
involved in endothelial dysfunction in atherogenesis
(Table 1). Some previous studies have suggested the as-
sociation of LOC153910 with lung function develop-
ment, risk of chronic obstructive pulmonary disease
(COPD) and cardiovascular diseases (CVD) (Table 1).
LINC00261 has shown to regulate endoderm differenti-
ation, lung epithelial homeostasis and endometriosis
(Table 1). Given the fact that most of lncRNAs demon-
strate a tissue-specific expression pattern [68], further
investigation of the role of those 25 lncRNAs in HCCs is
warranted.
To investigate the biological processes or pathways re-

lated to HCC early recurrence, we performed GSEA to
explore the hallmarks of gene sets in the high-risk
group. Total 8 gene sets were significantly enriched in
the high-risk group. Among them, the gene sets of “E2F
TARGETS”, “G2M CHECKPOINT”, “MYC TARGETS
V1” and “DNA REPAIR” showed higher significance in
enrichment. In fact, members of those four gene sets
have been reported to associate with poor prognosis in
many types of cancers including HCC [69–72].
Accumulation of TILs is commonly related to an im-

proved prognosis in many types of cancers. In the
present study, greater intratumor accumulation of TILs
was observed in the low-risk group compared to high-
risk group. We demonstrated that the 25-signature risk
score significantly and negatively associate with intratu-
mor accumulation of type 1 T helper cell, effector mem-
ory CD8 T cell and activated CD8 T cell, which are
well-known antitumor immune cells involved in cancer
immune therapy [73–75], further suggesting that this
25-lncRNA signature has potential to predict the post-
surgery prognosis in HCC patients. In addition, the

immunotherapies prediction based on this 25-lncRNA
signature suggested that the low-risk group had more ef-
fective response to PD-1 inhibitor. Moreover, chemo-
therapies prediction indicated that the low- and high-
risk showed different sensitivity to drugs such as doce-
taxel and paclitaxel, but not cisplatin and sorafenib.
Thus, different therapies might be adapted to HCC pa-
tient in the low- and high risk group according to the
25-lncRNA signature.
Although the 25-lncRNA risk signature was validated

in the TCGA internal validation cohort and displayed
good prognostic potential in the enrolled 299 HCC pa-
tients, an external validation cohort is missing in this
study. This is because we failed to find any suitable GEO
datasets or International Cancer Genome Consortium
(ICGC) database which could apply sufficient informa-
tion on both lncRNA expression profile and clinical sur-
vival. For example, there are two GEO datasets,
GSE67260 and GSE113850, possess satisfied data on
lncRNA expression profile but without clinical records.
Moreover, expression profiles of 22 lncRNAs in the 25-
lncRNA signature could be extracted from two ICGC
datasets including LIRI-JP and LICA-FR, but disease free
survival information is missing. The Cancer Genome
Atlas (TCGA) is a multi-institutional, cross-discipline ef-
fort led by the National Cancer Institute recruiting can-
cer samples from different countries. For example, the
HCC samples recruited in the TCGA-LIHC database
were derived from Vietnam, United States, Canada,
South Korea, Russia [76]. Therefore, those samples are
actually derived from multi-centers and at certain level
support the approach we used in this study by splitting
them into a training cohort and a validation cohort.
However, validation of this 25-lncRNA risk signature in
an external cohort will be warranted as long as suitable
data are available. Meanwhile, the validation of individ-
ual lncRNA included in this 25-lncRNA signature in
clinical HCC tumor and paracancerous tissues were in
processing but have not completed yet. LncRNAs
ENSG00000231918, ENSG00000248596, and
ENSG00000223392 were found to be upregulated in 36
HCC tumor tissues compared with paracancerous tis-
sues (Fig. S7, Table S4).

Conclusions
In this study, we established a 25-lncRNA risk signature
for HCC early recurrence. According to this risk signa-
ture, HCC patients could be accurately separated into
the low- and high-risk groups. 1-year and 2-year recur-
rence rates were significantly higher in the high-risk
group than those in the low-risk group. More import-
antly, the risk score significantly and negatively corre-
lates with DFS in recurrent HCC patients in the high-
risk group. Univariate and multivariate Cox regression
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analyses showed that the 25-lncRNA risk score, serum
AFP, TNM stage and vascular invasion (VI) were inde-
pendent prognostic factors for HCC early recurrence.
Moreover, compared to serum AFP, TNM stage and VI,
the 25-lncRNA risk signature showed better prognostic
potential for HCC early recurrence. In addition, the
combination of the 25-lncRNA risk signature with
serum AFP, TNM stage and VI could further improve
the prognostic potential for HCC early recurrence.
Meanwhile, GSEA showed that several gene sets related
to malignancy, such as “E2F TARGETS”, “G2M CHECK-
POINT”, “MYC TARGETS V1” and “DNA REPAIR”,
have significantly enriched in the high-risk group, sug-
gesting that lncRNAs included in this risk signature may
affect HCC progression through those biological path-
ways. Moreover, ssGSEA revealed greater TILs in the
low-risk group compared to the high-risk group and the
negative association between the 25-lncRNA risk signa-
ture score and the intratumor population of several key
antitumor TILs such as type 1 T helper cell, effector
memory CD8 T cell and activated CD8 T cell, and Sub-
Map algorithm predicted that the low-risk group was
more sensitive to anti-PD-1 therapy. Finally, Chemother-
apies prediction revealed that the low risk was associated
with sensitivity to docetaxel, gefitinib and vinblastine,
while high risk was associated with sensitivity to doxo-
rubicin, mitomycin C and paclitaxel.
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