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Genome-wide profiling of alternative
splicing in glioblastoma and their clinical
value
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Abstract

Background: Alternative splicing (AS), one of the main post-transcriptional biological regulation mechanisms, plays
a key role in the progression of glioblastoma (GBM). Systematic AS profiling in GBM is limited and urgently needed.

Methods: TCGA SpliceSeq data and the corresponding clinical data were downloaded from the TCGA data portal.
Survival-related AS events were identified through Kaplan–Meier survival analysis and univariate Cox analysis. Then,
splicing correlation network was constructed based on these AS events and associated splicing factors. LASSO
regression followed by multivariate Cox analysis was performed to validate independent AS biomarkers and to
construct a risk prediction model. Enrichment analysis was subsequently conducted to explore potential signaling
pathways of these AS events.

Results: A total of 132 TCGA GBM samples and 45,610 AS events were included in our study, among which 416
survival-related AS events were identified. An AS correlation network, including 54 AS events and 94 splicing factors,
was constructed, and further functional enrichment was performed. Moreover, the novel risk prediction model we
constructed displayed moderate performance (the area under the curves were > 0.7) at both one, two and three
years.

Conclusions: Survival-related AS events may be vital factors of both biological function and prognosis. Our findings
in this study can deepen the understanding of the complicated mechanisms of AS in GBM and provide novel
insights for further study. Moreover, our risk prediction model is ready for preliminary clinical applications. Further
verification is required.
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Background
Glioblastoma (GBM) is the most common intrinsic ma-
lignant tumor of the nervous system and the most ma-
lignant glioma [1, 2]. Traditionally, the treatment of
GBM mainly includes surgical resection and postopera-
tive involved-field adjuvant radiotherapy and chemother-
apy [3, 4]. Some types of anti-tumor compounds that

target specific molecules or pathways are also being used
in existing treatments. Unfortunately, large-scale studies
have failed to demonstrate that these potential thera-
peutic targets can alter the course of the disease or im-
prove patient outcomes because of various known and
unknown mechanisms [5–10]. As a result, the clinical
outcome of GBM is unsatisfactory, with a five-year sur-
vival rate of less than 5% and an average survival time of
approximately 15 months after diagnosis [11]. More ser-
iously, its characteristics of high invasive ability and
rapid invasive growth make it difficult to perform total
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surgical resection [12]. Recent studies of GBM have
shown that GBM is a highly heterogeneous tumor with
complicated genetic alterations, and its characteristics,
such as invasiveness, cell apoptosis, angiogenesis promo-
tion and tumor drug resistance, constitute a complex
process that is related to alterations of many genes [13].
Thus, it is important to further understand the biological
mechanisms of GBM regulation and the relationship be-
tween GBM and its clinical characteristics, which will be
conducive for improving the treatment strategy and out-
comes of patients.
Alternative splicing (AS) is a common phenomenon in

eukaryotes and occurs in approximately 90% of human
genes [14]. Currently, around 20,000 protein-coding
genes have been found in the human genome, but the
number of mature mRNAs (message RNAs) in tran-
scriptomics vastly exceeds the number of protein-coding
genes (the current version of GENCODE (GENCODE
31) identified 82,141 different mature mRNA sequences)
[15, 16]. AS, selectively removing special sequences of
precursor RNA to produce different mature mRNA iso-
forms, is one of the main mechanisms of RNA poly-
morphism. As a vital part of the post-transcriptional
biological regulation mechanism, AS plays a key role in
promoting protein polymorphism by altering functional
domains and modification of proteins [17, 18]. For the
same coding gene, its corresponding protein isoforms
can perform different or even completely opposite func-
tions, thus playing a vital role in regulating complex bio-
logical functions [19]. In GBM, changes in the balance
of splicing isoforms or the production of new splicing
isoforms can alter the expression of the corresponding
proteins and promote the generation of various malig-
nant phenotypes. For example, C-CBL is an E3 ubiquitin
protein ligase involved in cell signal transduction. Spli-
cing isoforms caused by exon skipping of C-CBL can
lead to tumor growth whereas C-CBL itself can serve as
an inhibitor of cell proliferation in normal tissues [20].
Similarly, the upregulation of MYO1B-fl caused by
splice-switching promotes cell proliferation and changes
of the cytoskeleton, thus promoting the growth of GBM
[21]. Therefore, cancer-specific splicing variants may be
used as diagnostic, prognostic and predictive biomarkers
as well as therapeutic targets.
The rapid development of high-throughput sequencing

technology has allowed us to focus on the links between
various molecules and pathways in diseases. Moreover, it
also provides us a new perspective to systematically
understand the complex molecular mechanism of GBM
as well as to search for potential therapeutic targets and
prognostic markers. For example, a study based on the
whole genome and corresponding clinical data of The
Cancer Genome Atlas (TCGA) database indicated that
copy number variation (CNV) can be used as a potential

clinical prognostic factor [22]. Complementally, research
involved long non-coding RNA (lncRNA) expression
and DNA methylation have been widely conducted in
GBM [23, 24]. These studies based on high-throughput
sequencing techniques identified pathways involved in
GBM and potential therapeutic targets as well as prog-
nostic factors. Moreover, these results suggest that high-
throughput sequencing is appropriate and effective for
understanding GBM, which is a highly heterogeneous
tumor. Considering the universality of AS in GBM and
its complex biological mechanism, genome-wide AS ana-
lysis can deepen our understanding of the mechanism of
the oncogenesis and progression of AS in GBM. How-
ever, unlike other genomic data available at the levels of
gene expression, copy number variation and DNA
methylation, research focusing on AS is limited and ur-
gently needed.
In this study, systematic analysis was performed to

understand the correlation between genome-wide AS
data and clinical outcomes. Based on the corresponding
SpliceSeq data from the TCGA database, we identified
patient outcome associated AS events and constructed
an AS associated network and an AS prognosis model.
We also analyzed the potential pathway through Gene
set enrichment analysis (GSEA) and its predictive value.
These findings revealed new potential therapeutic targets
and prognostic factor and provided a new perspective
for understanding the molecular mechanism of AS and
its clinical application in GBM.

Methods
Data curation process
Transcriptional sequence data and corresponding clin-
ical data of GBM cases were downloaded from the
TCGA data portal [25]. SpliceSeq, a tool that can be
used to evaluate the mRNA splicing patterns, was used
to analyze our TCGA RNASeq data as previous de-
scribed [26]. The Percent Spliced In (PSI) value is an in-
tuitive ratio for quantifying splicing events. PSI is the
ratio of normalized read counts indicating inclusion of a
transcript element over the total normalized reads for
that event (both inclusion and exclusion reads), which
has a value between 0 and 1. Using the identification
number of TCGA, SpliceSeq resources and clinical data
were cross-referenced. All cases with TCGA data that
meet the following criteria were included: 1. An available
histological diagnosis of GBM; 2. Patients with available
SpliceSeq data; 3. Patients with basic clinical information
including survival status and survival time; and 4. Pa-
tients who survived for more than two months after the
initial diagnosis. To obtain reliable data, we strictly fil-
tered the downloaded PSI values of all samples (percent-
age of samples with PSI value ≥0.75, minimum PSI
standard deviation ≥0.01). All AS events are classified
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into seven types, including alternate acceptor site (AA),
alternate donor (AD), alternate promoter (AP), alternate
terminator (AT), exon skip (ES), mutually exclusive
exons (ME), and retained intron (RI). An UpSet plot was
used to show the seven different patterns of AS events
in all gene concentrations [27]. Details of the research
design are shown in Fig. 1 as a flowchart.

Identification of prognostic AS events
To identify the prognostic AS events in the GBM
SpliceSeq data, the R software base package was
used to perform univariate Cox analysis based on
the overall survival and PSI values of all eligible
samples. The p-value calibration in multiple hy-
potheses testing was performed by the R software

“fdrtool” package (false discovery rate (FDR) < 0.05).
Kaplan–Meier curves with the log-rank test were
performed to compare the overall survival between
two subgroups based on the median value of PSI.
FDR < 0.05 based on R software “fdrtool” package
was considered significant. Venn analysis based on
the results of univariate Cox analysis and Kaplan–
Meier survival analysis was performed to enhance
the reliability of our data. Bubble plots based on
the R software “ggplot2” package were used to illus-
trate the top 20 significant AS events according to
the type of AS. An UpSet plot based on the R soft-
ware “UpSetR” package was used to map the distri-
bution of the 7 different survival-related AS events
in all genes.

Fig. 1 Flowchart for systematically profiling the alternative splicing of GBM in a large-scale RNA-Seq data
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Protein-protein interaction analysis
The parent genes of all survivor-related AS events were
included in the Retrieval of Interacting Genes/Proteins
(STRING) 11.0 database. Correlations (the minimum re-
quired interaction score) > 0.9 were included. Discon-
nected nodes in the network were excluded. The
network obtained from the STRING database was then
visualized by Cytoscape (version 3.7.1), [28].

Construction of the AS correlation network
By hand-curated screenings of literature and databases,
splicing factors that may play a potentially important
role in tumors were identified [29]. The expression levels
of splicing factors were derived from transcripts in
TCGA. Univariate Cox regression was used to determine
the association between the expression levels of splicing
factors and the PSI values of survival-related AS events
(correlation coefficient > 0.5). The p-value calibration in
multiple hypotheses testing was performed by the R soft-
ware “fdrtool” package (FDR < 0.05). All eligible splicing
factors and parent genes of corresponding AS events
were used to construct the AS correlation network.
Weight network diagram was used to visualize the re-
sults based on the Cytoscape 3.6.1. Representative dot
plots produced with the R software “ggplot2” package
were used to visualize the correlation between PSI and
splicing factor expression levels for typical AS.

Construction of the risk prediction model
All samples were randomly divided into training (n = 92,
accounting for 70% of all samples) and test (n = 40, ac-
counting for 30% of all samples) groups by using R soft-
ware base package. In the training set, survival-related
AS events were screened and the AS events whose inter-
quartile spacing values of PSI were less than 0.1 were ex-
cluded. Then, the top 20 survival-related AS events with
the most significant P values were used in LASSO re-
gression to eliminate any potential collinearity. Subse-
quently, these AS events were included in the
multivariate Cox regression analysis and the method of
stepwise multiple regression was used for selecting po-
tential prognostic factors (P value of inclusion criteria <
0.05, P value of exclusion criteria < 0.2). In our model,
we first included the AS event with the smallest P value
which meeting the inclusion criteria (P < 0.05), and then
we gradually included new variables. Accordingly, after
the inclusion of new variables according to the inclusion
criteria (P < 0.05), we checked whether the P value of
any variable in the model meet the exclusion criteria
(P < 0.20), and exclude the corresponding variable if it
does not. Final, retained AS events in the multivariate
Cox regression analysis were used to construct prognos-
tic models. Coefficients (coef) of AS events in multivari-
ate Cox regression were used as coefficients of

corresponding factors in the risk prediction model. The
risk value of our model was as follows: risk value = ex-
pression of AS event1* coef1 + expression of AS event2*
coef2 +… + expression of AS eventn* coefn.
The area under the curve (AUC) and the receiver op-

erating characteristic (ROC) based on the testing set
were performed to verify the accuracy of the model. All
statistical analyses in this study were conducted by using
R language (version 3.6.1), and P < 0.05 were considered
significant.
Kaplan–Meier survival analysis was used to compare

the differences of overall survival between the two sub-
groups based on the median value of PSI; log-rank P <
0.05 was considered statistically significant. Univariate
and multivariate Cox regression analysis were used to
validate whether the obtained risk predictive model was
an independent predictor of the outcomes of patients
with GBM, and clinical data of patients with GBM were
included to calibrate the model.

Gene set enrichment analysis
We divided samples from TCGA GBM database into
low-risk and high-risk subgroups based on medium PSI
value. GSEA-4.0.jar was performed to verify whether
genes in the two subgroups were rich in an a priori de-
fined set (FDR (qvalue) < 0.25 & P < 0.05). The
c2.cp.kegg.v7.0.symbols.gmt [Curated] and c2.cp.reacto-
me.v7.0.symbols.gmt [Curated] were selected as anno-
tated gene set.

Results
Overview of AS events in GBM
A total of 132 TCGA GBM samples were included in
this study, including 86 male and 46 female patients.
Their demographic characteristics are shown in Table
S1. In our integrated AS events profiling, 76,357 AS
events were identified from 12,710 parent genes. Of the
seven types of AS events (Fig. 2A), ES occurred most
frequently, with 41,187 cases of AS events occurring in
9717 genes (Fig. 2B). Of note is that missing values of
PSI were frequent or the variation or dispersion of the
PSI value was small in the unfiltered samples. To obtain
AS events with potentially physiological effects, a set of
strict filters was implemented (percentage of samples
with PSI value ≥0.75, minimum PSI standard deviation
≥0.01). 45,610 AS events from 10,433 parent genes were
eventually included in our study. We found that a single
gene can undergo multiple AS events, with 83.03% of
genes undergoing two or more AS events (Fig. 2C).
Similarly, 58.86% of genes underwent two or more dif-
ferent types of AS events. An UpSet plot was used to
visualize the relationship between parent genes and the
occurrence of AS events (Fig. 2D).
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Identification of prognostic AS events
Survival data have significant clinical value. When the
expression level of genes shows statistically significant
correlation with prognosis, these genes may be involved
in meaningful biological processes of the corresponding
disease. Similarly, AS events related to prognosis may
also be essential factors in the development and progres-
sion of cancer. By intersecting the results of univariate
Cox analysis and Kaplan–Meier survival analysis, we ob-
tained a total of 416 survival-related AS events (Fig. 3A;
Supplementary Table S2, Table S5). The top 20 AS
events for all types or individual type with the most sig-
nificant P values were illustrated in a bubble plot (Fig.
S1). Table 1 illustrates concrete details of the top 40 AS
events with the most significant P values. Similar to the
results before screening, the most common type of
survival-related AS event was ES, and the least common
type was ME. Moreover, among the parent genes of the
screened AS events, 93.35% of the genes had only one
kind of AS event that was significantly correlated with

survival in GBM. Concrete details about the interactions
between the seven types of detected AS events are
shown in Fig. 3B. The typical Kaplan–Meier curves of
survival-related AS events are shown in Fig. 3C–J.

Protein-protein interaction analysis
AS is thought to have the capability to reconstruct
tissue-specific interactions of proteins. It can increase
the polymorphism of RNA, which inevitably affects
protein function and further modifications. Moreover,
abnormal changes of AS in tumors may also uniquely
affect protein-protein interactions. The potential
mechanism can be elucidated by analyzing the inter-
actions among the corresponding proteins of the AS
parent gene. PPI network analysis based on survival
AS related genes not only revealed the interaction re-
lationship under normal conditions but also revealed
the potential impact of AS events on the whole net-
work (Fig. 4).

Fig. 2 Overview of AS events profiling in GBM. (A) Illustrations for seven types of AS events, including Alternate Acceptor site (AA), Alternate
Donor site (AD), Alternate Promoter (AP), Alternate Terminator (AT), Exon Skip (ES), Mutually Exclusive Exons (ME), and Retained Intron (RI). (B) The
number of AS events and involved genes from the GBM patients were depicted according to the AS types. Color bar represents the preliminarily
detected AS events and involved genes. Figures above the bar represent the number of preliminarily detected AS events and genes. The Black
and gray bar represents the AS events and involved genes filtered by stringent criteria (percentage of samples with PSI value ≥0.75, minimum PSI
standard deviation ≥0.01), respectively. (C) The frequency distribution of parent genes carrying different AS events. (D) UpSet plot of interactions
between alternative splicing events and its parent genes
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Construction of the AS correlation network and
enrichment analysis
The process of AS is regulated by the spliceosome,
which is a large and complex molecular machine that
removes introns from a transcribed pre-mRNA. Splicing
factors are proteins involved in the processing of AS and
play a vital role in post-transcriptional regulation. A few
key splicing factors may generate large-scale abnormal
AS events. Through literature review and database
searches, we found 404 splicing factors that had been ex-
perimentally verified in studies or predicted by the data-
base to have a potential role in tumors (Table S3). The
expression levels of splicing factors were obtained from
the TCGA database, and Spearman rank correlation ana-
lysis was conducted between all splicing factor expres-
sion levels and the PSI value of survival-related AS
events (Cor > 0.5, FDR < 0.05). Figure 5A illustrates that
the network contains 94 splicing factors, 27 upregulated
AS events and 27 downregulated AS events. Among
them, a small number of splicing factors, such as
DDX39B and SRRM, were correlated with a large num-
ber of AS events, which suggested their potential bio-
logical functions in GBM. We also noted that typical AS

events, such as HEXA-31540-AT, ARHGEF4–55357-RI,
and SLC25A23–47,039-AT were associated with 47, 16,
and 14 splicing factors, respectively, suggesting that they
may be affected by multiple splicing factors to produce
different splicing isoforms. The typical correlations be-
tween AS events and splicing factors are illustrated in
Fig. 5B–F.
Functional enrichment analysis was performed to

analyze the potential biological and molecular processes
of the genes in the splicing correlation network. Anno-
tated Gene Ontology gene sets such as spliceosomal
snRNP assembly (Fisher’s Exact Test, false discovery rate
(FDR) < 0.001), regulation of mRNA 3′-end processing
(FDR < 0.001), regulation of mRNA metabolic process
(FDR < 0.001), and RNA helicase activity (FDR = 0.002)
were significantly enriched in the splicing correlation
network. In addition, enrichment analysis of Reactome
showed the potential correlation between our splicing
correlation network and the mRNA Splicing Major Path-
way (Fisher’s Exact Test, FDR < 0.001), Cleavage of
Growing Transcript in the Termination (FDR < 0.001),
and Metabolism of RNA (FDR < 0.001), etc. Conse-
quently, our splicing factors and AS parent genes in the

Fig. 3 Identification of survival-related AS events in GBM. (A) Venn plot of prognosis-related AS events obtained from univariate COX regression
and Kaplan-Meier. (B) UpSet plot of interactions between survival-related alternative splicing events and its parent genes. (C-J) The Kaplan-Meier
survival curve of some representative survival-related AS events, including CSGALNACT2|11,318|AT (C), HAT1|55,964|ES (D), MORN1|254|AT (E),
SYNE1|78,181|AT (F), USP25|60,221|ES (G), ZNF280D|30,765|AP (H), TMEM63B|76,352|AP (I), and PSMD4|7584|AD (J)
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network may play a critical role in multiple biological
regulatory activities of GBM (Fig. S2).

Risk prediction model for GBM patients
To verify the quality of the survival data, we first evaluated
the relationship between the clinical characteristics and
the survival time of patients. Age at diagnosis (Hazard Ra-
tio (HR) = 1.026, 95% CI: 1.010–1.043, P = 0.001), receiv-
ing radiotherapy (HR = 0.313, 95% CI: 0.151–0.652, P =
0.002), and receiving chemotherapy (HR = 0.326, 95% CI:
0.168–0.634, P < 0.001) were significantly associated with
OS. Despite the existing censored data, the survival data
were still of sufficient clinical value (Table S4).
Among the seven types of AS, the top 20 AS events

with the most significant P values were used as potential
prognostic factors. By LASSO regression, we excluded 9
AS events that were significantly collinear with other
prognostic factors (Fig. 6A and B). Multivariate Cox re-
gression analysis was used to further screen for inde-
pendent prognostic factors to construct prognostic
models (Supplementary Table S5). Riskscore =
β1*PSIAS1 + β2*PSIAS2+ … + β6*PSIAS6 + β7*PSIAS7 (Sup-
plementary Table S6). The AUC values based on the 1-

year, 2-year and 3-year ROC curves were 0.761, 0.769,
and 0.799, respectively, indicating moderate performance
of the model (Fig. 6C). The TCGA samples were
grouped into two groups according to the median value
of riskscore, and the results of the Kaplan–Meier sur-
vival analysis are shown in Fig. 6D; P < 0.05 was consid-
ered significant. Potential prognostic factors including
gender, age, race, post-therapy, IDH1 mutation status,
MGMT status were used to perform univariate Cox ana-
lysis, and the results indicated that our risk model could
be used as an independent predictor of OS (Fig. 6E).
The uneven distribution of IDH1 mutation samples be-
tween groups may affect the results of multivariate COX
analysis, thus the mutation status of IDH1 was not in-
cluded in multivariate COX regression analysis (Fig. 6F).
Other potential prognostic factors (gender, age, post-
therapy) with significant or marginally significant p value
in the univariate Cox analysis were included in the
multivariate Cox analysis. Heatmap of the 7 survival-
related AS events of the risk predicted model with prog-
nosis or molecular subtypes is shown in the Fig. S3. To
exclude the effect of IDH1 mutation status on the prog-
nosis of patients, Kaplan–Meier survival analysis and

Fig. 4 Protein-protein interaction analysis of identified survival-related AS events. Interactome of the 109 parent genes of AS events and 189
edges in the PPI network in GBM. Genes were denoted as nodes in the graph and the interactions between them were presented as edges. The
shape, size and color of node respectively represent AS type, the absolute value of Z-score (obtaining from univariate COX regression survival
analysis) and change pattern. Exon Skip (ES), Mutually Exclusive Exons (ME), Retained Intron (RI), Alternate Promoter (AP), Alternate Terminator
(AT), Alternate Donor site (AD), and Alternate Acceptor site (AA)
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multivariate COX regression analysis were performed
based on all wild-type IDH1 samples (Fig. S4), which
suggest that the predictive efficacy of our risk prediction
model was stable in both IDH wild-type population and
the total population.
GSEA-4.0.jar was performed to verify whether genes in

the two subgroups were rich in an a priori defined set
(FDR (qvalue) < 0.25 & P < 0.05). We select the
c2.cp.kegg.v7.0.symbols.gmt [Curated] and c2.cp.reacto-
me.v7.0.symbols.gmt [Curated] as the annotated gene
set. And a total of 132 samples were divided into two
groups according to the median value of risk value in
the prediction model and then GSEA analysis was per-
formed between the two groups. As shown in Fig. 7A
and B, the pathways based on the KEGG and Reactome
databases were involved in cell adhesion and migration,
such as Leukocyte Transendothelial Migration (Enrich-
ment score (ES) = 0.582, NOM P < 0.001, FDR q-val =
0.018), Cell Adhesion Molecules (ES = 0.722, NOM P =
0.010, FDR q-val = 0.261), Cell-Cell Junction
Organization (ES = 0.577, NOM P = 0.022, FDR q-val =
0.178), and Tight Junction Interactions (ES = 0.608,
NOM P = 0.011, FDR q-val = 0.226), and all play a vital

role in the biological processes of GBM. In addition,
multiple tumor immune-related pathways such as Toll
Like Receptor Signaling Pathway (ES = 0.713, NOM P =
0.004, FDR q-val = 0.184), Nuclear Signaling by ERBB4
(ES = 0.715, NOM P = 0.006, FDR q-val = 0.186) and
Interleukin 6 Family Signaling (ES = 0.701, NOM P =
0.004, FDR q-val = 0.182) were also active in the GBM
process. Detailed information of GSEA results is shown
in the Table S7.

Discussion
AS, as a vital mechanism for the generation of mature
mRNA in biological processes, plays an important role
in mRNA and protein polymorphism [17]. In malignant
diseases, mutations or aberrant expression of splicing
factors often leads to abnormal AS. Alsafadi S and col-
leagues have indicated that SF3B1 is involved in the rec-
ognition of corresponding sequences when selecting
splice sites in the splicing of RNA and its mutant is the
most common mutational component of the spliceo-
some in cancer [30]. Moreover, abnormal AS plays a sig-
nificant role in GBM and many other malignant
diseases. For example, a dominant negative KAP variant

Fig. 5 Splicing correlation network in GBM. (A) Correlation network between survival related AS events and splicing factors. (B-F) Representative
dot plots of correlations between expression of splicing factors and PSI values of AS events
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generated by aberrant splicing dysregulated both Cdk2-
dependent proliferation and cdc2-dependent migration
and increased malignancy in human gliomas [31]. Simi-
larly, MYO1B-fl, an isoform of myosin IB (MYO1B), is
regulated by aberrantly expressed SRSF1 and upregula-
tion of MYO1B-fl can strikingly promote cell invasion

and proliferation [21]. Moreover, C-CBL, a RING-type
ubiquitin E3 ligase, can lead to the downregulation of
epidermal growth factor receptor (EGFR) and inhibit cell
proliferation in glioma. However, two types of C-CBL
isoforms (type I: lacking exon-9 and type II: lacking
exon-9 and exon-10) induced by a hypoxic environment

Fig. 6 Survival analysis and construction of risk prediction model. (A-B) Lasso regression for survival-related AS events based on training set. (C)
ROC curves of our model in overall survival of one, two and three years based on test set. (D) Kaplan-Meier survival curves grouped according to
the risk score of our model based on test set. (E) univariate Cox regression of survival-related AS events based on test set. (F) multivariate Cox
regression of remained AS events based on test set

Fig. 7 GSEA analysis of the risk prediction model. (A) GSEA analysis based on KEGG pathway database. (B) GSEA analysis based on Reactome
pathway database
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contribute to human glioma and its malignant behavior
[20]. AS can also act as a tumor suppressor in terms of
plasticity in cancer; for example, the USP5 isoform 1 can
suppress cell proliferation and invasion, whereas the cor-
responding USP5 stabilizes the chromatin structure and
decreases the synthesis of abnormal proteins [32].
With the rapid development of high-throughput tech-

nology, AS, which plays a potentially important role in
GBM, has been continuously studied and its relevant
pathways and functions have also been explored. Cheung
et al. identified 14 genes with differentially variable AS
events through genome-wide analysis of exon expression
arrays in 24 GBM and 12 nontumor brain samples [33].
More recently, in another large-scale study, Yu and Fu
verified 117 genes that differ in PSI values and expres-
sion levels in GBM and oligodendroglia and play a role
in processes and pathways related to tumor biology [34].
In another study, 2477 genes with alternative exon usage
were identified to be associated with GBM, and these
genes were simultaneously thought to be involved in
multiple GBM related pathways, including cell adhesion,
cytoskeleton organization, oxidative phosphorylation,
etc. [35]. However, most previous studies have focused
on a single gene, and the systematic relationship be-
tween AS events and splicing factors in GBM and the re-
lationship between AS and the prognosis of GBM have
not been thoroughly discussed.
To the best of our knowledge, the present study is the

first systematic identification and analysis of survival-
related AS events in GBM tissues. Here, GBM patients’
RNA-seq data, which is more powerful in detecting low
expression genes and new splicing variants comparing
with microarrays used in previous articles, were used for
further analysis. Systematic identification and analysis of
survival associated AS events in 76,357 AS and 12,710
genes, which accounts for approximately 66% of human
genes, was conducted. Strict inclusion criteria were ap-
plied (Percentage of Samples with PSI value ≥75, Aver-
age of PSI value ≥0.05), which can make our results
more reliable and accurate. Based on our data, 58.86% of
parent genes contained more than two types of AS
events in the filtered data. However, among the corre-
sponding genes of survival-related AS events, 93.35%
only had one type of AS event, which suggested that
only a few cases of AS events in GBM are closely related
to tumor development and patient prognosis. Therefore,
we focused on survival-related AS factors, which may
provide valuable clues for seeking potential therapeutic
targets as well as prognostic biomarkers.
Our study identified 416 survival-related AS events.

Although one single AS event has limited predictive
power for GBM, integrated models of multiple AS
events can stratify patients’ prognosis with great accur-
acy. Of note is that GSEA showed that AS events in our

model were mainly active in the pathways related to pro-
liferation, migration, apoptosis, and tumor immunity,
which may indicate that abnormal AS mainly affected
tumor biological processes through these pathways.
Although we focused on the AS events in the above

risk model, all survivor-related AS events have potential
prognostic value. Therefore, a regulatory network com-
posed of splicing factors’ expression levels and PSI
values of AS events can provide a more systematic un-
derstanding of AS and related pathways in GBM. In our
splicing correlation network, multiple splicing factors,
such as DDX39B and SRRM, and multiple AS events,
such as HEXA-31540-AT and ARHGEF4–55357-RI,
were widely connected in the network. This indicated
that these AS events and splicing factors interact actively
in the network and may play important roles in the ma-
lignant behavior of tumors. For example, DDX39B is a
potential therapeutic target in prostate cancer, and its
expression imbalance may lead to multiple tumorigen-
esis events [36].
Considering the high incidence of abnormal AS events

in cancer, small molecule drugs targeting specific AS
events or splicing factors represent a potential promising
new therapeutic strategy in cancer therapy. A recent art-
icle described the role of many small molecule modula-
tors targeting specific AS events or splicing factors in
cancer therapy, including FR901464, E7107, AR-
A014418, etc. [37] Therefore, our study can provide
some potential targets for the treatment of GBM.
In our research, we conducted a genome-wide RNA

AS profiling based on a large sample of GBM tissues.
Additionally, novel AS biomarkers and clinically useful
prediction model were presented in our study. However,
some limitations still need to be noted. First, the lack of
control data from para-carcinoma tissue in this study
may negatively affect the sensitivity and specificity of the
results. Second, due to the extensive heterogeneity of
GBM in space, there may be variation in the PSI values
of AS events in different parts of the same GBM sample.
Data from a small sample cannot represent the full land-
scape of GBM. However, most TCGA GBM PSI data are
derived from sequencing data of single sampling and the
heterogeneity of GBM may be an uncontrollable con-
founder, which leads to a decrease in the reliability of
our prognostic model. Further functional and clinical tri-
als are needed to determine the pathway between the
splicing factors and AS events and the clinical utility of
the risk prediction model.

Conclusion
In summary, our study systematically identified sur-
vival associated AS events and expounded on the po-
tential regulatory relationships between survivor-
related AS events and splicing factors. Our study is
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a foundation for further exploring GBM-related AS
therapeutic targets and prognostic factors, and the
AS-related risk prediction model we constructed also
provides predictive value for the clinical outcomes of
patients with GBM.
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