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Downregulation of CCL22 and mutated
NOTCH1 in tongue and mouth floor
squamous cell carcinoma results in
decreased Th2 cell recruitment and
expression, predicting poor clinical
outcome
Xuejie Li1†, Zheqi Liu2,3†, Wenkai Zhou2,3, Xiaofang Liu4* and Wei Cao2,3*

Abstract

Objective: Tongue and mouth floor squamous cell carcinoma (T/MF SCC) exhibits a high rate of local recurrence
and cervical lymph node metastasis. The effect of the tumor microenvironment on T/MF SCC remains unclear.

Materials and methods: Transcriptome and somatic mutation data of patients with T/MF SCC were obtained from
HNSC projects of the Cancer Genome Atlas. Immune infiltration quantification in early- (clinical stage I–II) and
advanced-stage (clinical stage III–IV) T/MF SCC was performed using single sample Gene Set Enrichment Analysis
and MCPcounter. Differentially expressed gene data were filtered, and their function was assessed through Gene
Ontology and Kyoto Encyclopedia of Genes and Genomes analyses. Kaplan–Meier survival curve analysis and Cox
regression model were conducted to evaluate the survival of patients with the CCL22 signature. Maftools was used
to present the overview of somatic mutations.
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Results: In T/MF SCC, T helper (Th)2 cell counts were significantly increased in patients with early-stage disease
compared to those with advanced-stage disease. Expression of the Th2 cell-related chemokine, CCL22, was
downregulated in patients with advanced-stage T/MF SCC. Univariate and multivariate Cox analyses revealed that
CCL22 was a good prognostic factor in T/MF SCC. A nomogram based on the expression of CCL22 was constructed
to serve as a prognostic indicator for T/MF SCC. NOTCH1 mutations were found at a higher rate in patients with
advanced-stage T/MF SCC than in those with early-stage T/MF SCC, resulting in the inhibition of the activation of
the NOTCH1-Th2 cell differentiation pathway. The expression levels of CCL22, GATA-3, and IL4 were higher in
patients with early-stage T/MF SCC than in those with advanced-stage T/MF SCC.

Conclusion: In T/MF SCC, high expression of CCL22 may promote the recruitment of Th2 cells and help predict a
better survival. Mutations in NOTCH1 inhibit the differentiation of Th2 cells, facilitating tumor progression through a
decrease in Th2 cell recruitment and differentiation.
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Introduction
Oral squamous cell carcinoma (OSCC) is one of the
most commonly reported malignant tumors in human
beings, accounting for 2% of all tumors [1]. Tongue and
mouth floor squamous cell carcinoma (T/MF SCC) is
the most common type of OSCC documented. T/MF
SCC exhibits a high potential for local recurrence and
metastasis to cervical lymph nodes. Although substantial
progress has been achieved in the treatment of T/MF
SCC, the five-year survival rate of patients presenting
with T/MF SCC has not shown improvement over the
last 20 years [2]. Therefore, a better understanding of the
mechanism of T/MF SCC progression is crucial to im-
prove the prognosis of patients with T/MF SCC.
Accumulating evidence indicates that the interaction

between tumor cells and the tumor microenvironment
(TME) is of remarkable significance for the occurrence
and development of tumors [3–7]. The abundance of
tumor stromal cells, such as infiltrating regulatory T
cells (Tregs) or myeloid suppressor cells, and cytokines
may contribute to cancer progression and invasiveness
and to the occurrence of immunosuppression in patients
with tongue SCC [8]. The correlation between the devel-
opment of T/MF SCC and other immune microenviron-
ment components remains unclear.
T helper (Th)2 cells undergo differentiation from naïve

CD4+ T cells and mediate humoral immunity. Few stud-
ies indicate that increased abundance of Th2 cells can be
considered to predict poor survival in colorectal and
esophageal cancer [9, 10], while others suggest that high
proportions of Th2 cells and expression of IL4, which is
secreted by Th2 cells, may help predict a good prognosis
in B cell non-Hodgkin’s lymphoma (NHL) [11]. The role
of Th2 cells in T/MF SCC has not been studied thus far.
Accordingly, in this study, the immune infiltration in

T/MF SCC was analyzed and compared between pa-
tients with early- and advanced-stage disease, based on
data derived from the Cancer Genome Atlas (TCGA).

Based on this analysis, Th2 cells were found to be sig-
nificantly enriched in patients with early-stage T/MF
SCC. Expression of Th2 cell-related chemokines and the
entire status of gene mutations were investigated to ex-
plain the enrichment of Th2 cells observed in our study.

Materials and methods
RNA sequencing data from TCGA
Gene expression data of count and FPKM type and the
clinical information of patients with T/MF SCC (178
cases) were downloaded from HNSCC projects of TCGA
database (https://genome-cancer.ucsc.edu/). Patients
with complete follow-up data were included. Then,
FPKM data were transformed into transcripts per mil-
lion reads (TPM) for further analyses. This study meets
the publication guidelines of TCGA. All data used in this
study were obtained from TCGA, and hence, ethics
approval and informed consent were not necessary.

Acquisition of somatic mutation data
Somatic mutation data were obtained from TCGA data-
base via the GDC data portal (https://portal.gdc.cancer.
gov/). From the four subtypes of data files, we selected
“mutect2” data. We used the Maftools package [12] to
prepare the Mutation Annotation Format (MAF) of
somatic variants. The visualization of the mutation ana-
lysis was conducted using Maftools.

Analysis of immune infiltration
The analysis of the immune infiltration in T/MF SCC
was conducted using MCPcounter, and the single sam-
ple Gene Set Enrichment Analysis (ssGSEA) method was
performed using the GSVA package (http://www.
bioconductor.org/packages/release/bioc/html/GSVA.
html) in R. Based on the signature genes reported in the
literature [13, 14], the relative enrichment score of all
immune cells was calculated based on the gene expres-
sion profile (TPM type) deduced for each tumor sample.
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The T-test and Spearman’s correlation were used to
evaluate the association between CCL22 expression and
the abundance of immune cells.

Differentially expressed gene (DEG) analysis
Cases were divided into early stage (clinical stage I–II)
and advanced stage (clinical stage III–IV) according to
the clinical information. Then, expression data (count
type) were compared between the two groups to identify
DEGs using the DESeq2 package in R [15]. |log2Fold-
Change| > 1.5 and adjusted P-value < 0.05 were set as
threshold values for DEGs.

Functional analysis of DEGs
Gene Ontology (GO) and Kyoto Encyclopedia of Genes
and Genomes (KEGG) analyses were conducted using the
enrichGO and enrichKEGG functions of the clusterProfiler
R package [16]. Adjusted P values (false-discovery rate) less
than 0.05 were considered to be statistically significant. The
visualization of GO and KEGG results was conducted using
clusterProfiler R and the GOplot package [17].

Tumor tissue samples
Eight paraffin-embedded samples of tongue SCC were
collected from patients at the Ninth People’s Hospital,
Shanghai Jiao Tong University School of Medicine. All
patients were informed about the study and provided
written informed consent, and the process was approved
by the Ethics Committee of the Ninth People’s Hospital,
Shanghai Jiao Tong University School of Medicine. The
clinical information of patients is shown in Table 1.

Immunohistochemical staining and semi-quantitative
analysis
Paraffin-embedded tissues were subjected to staining for
immunohistochemical detection of CCL22, GATA-3,
and IL4. The slides were dried at 60 °C, dewaxed with
methanol, and rehydrated with alcohol. Then, the slides
were immersed in 3% hydrogen peroxide and subjected
to labeling with anti-CCL22 (Abcam, ab124768), anti-

GATA-3 (Affinity Biosciences, AF6233), and anti-IL4
(Bioworld, BS3501) antibodies overnight. The labeling
index was semi-quantitatively assessed as the intensity of
staining (0, 1, 2, or 3) multiplied by the percentage of
positively stained epithelial thickness (25, 50%, or 75%)
using the IHC Profiler function in the Image J software.

Statistical analysis
Statistical analysis was performed using R (4.0.2). Com-
parison of gene expression between patients with early-
and advanced-stage T/MF SCC, as well as the relationship
between clinicopathological features and CCL22 expres-
sion, were analyzed using the T-test. Clinicopathological
characteristics associated with overall survival (OS) were
analyzed using the Cox regression and Kaplan–Meier
methods. Multivariate Cox analysis was conducted to as-
sess the influence of CCL22 expression on survival along
with other clinical features. A receiver operating charac-
teristic curve was generated to test the performance of the
multiCox model using R package survivalROC. A nomo-
gram was constructed based on the results of the multi-
variate analysis using the rms package in R. DCA curves
were generated to test the performance of the nomogram
using the rmda package. All hypothetical tests were two-
sided, and P-values < 0.05 were considered significant in
all tests.

Results
Th2 cell numbers are higher in patients with early-stage
T/MF SCC than in those with advanced-stage T/MF SCC
To compare the abundance of immune cells between
early- and advanced-stage T/MF SCC samples, we first
used the MCPcounter package to analyze the compo-
nents of the TME in each sample (Fig. 1A). Among the
immune cells, T cell numbers were significantly in-
creased in patients with early-stage T/MF SCC com-
pared to those with advanced-stage T/MF SCC (Fig. 1B,
P = 0.041). To verify the type of T cells underwent
changes in terms of frequency, ssGSEA was conducted
using two types of gene signatures whose data were ob-
tained from different studies [13, 14]. We defined these
two signatures as Immunity [14] and 28 Immune Cells
[13], and they have been presented in Supplementary In-
formation. The immune cell infiltration numbers are
shown in Fig. 1C and E. Th2 cell numbers were signifi-
cantly increased in patients with early-stage disease,
compared to those with advanced-stage disease, in both
gene signatures (Fig. 1D and F, P = 0.011 and P = 0.012
for Immunity and 28 Immune Cells, respectively).

Screening of DEGs between patients with early- and
advanced-stage T/MF SCC, and functional cluster analysis
To explore the potential mechanism underlying the in-
crease in Th2 cell count, we analyzed DEGs in early-

Table 1 Clinical features of patients with tongue SCC

Patients Labeling index Clinical
stage

T stage N stage Vital
statusCCL22 GATA3 IL4

1 25 25 0 IV 4 3 1

2 25 50 25 IV 4 1 1

3 25 50 25 III 2 2 1

4 50 50 25 III 2 2 0

5 150 100 50 II 2 0 0

6 150 150 75 II 2 0 0

7 100 150 50 II 2 0 0

8 150 75 50 I 1 0 0
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Fig. 1 (See legend on next page.)
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and advanced-stage T/MF SCC samples. A total of
478 DEGs were identified, wherein the expression
levels of 348 genes were upregulated and those of
130 genes were downregulated. Data on a total of 149
genes were filtered using the |log2FoldChange| > 1.5
and adjusted P < 0.05 thresholds (Fig. 2A). Among the
genes, the expression levels of 43 were downregulated
and those of 106 genes were upregulated. Then, the
functions of DEGs in patients with T/MF SCC were
predicted using GO and KEGG enrichment analyses.
The top 10 GO enrichment items in the biological
process, molecular function, and cellular component
groups are shown in Fig. S1. KEGG analysis results
showed that the chemokine signaling pathway was the
first enriched item (Fig. 2B). Considering the increased
number of Th2 cells in patients with early-stage T/MF
SCC, we suggest that chemokines may influence Th2 cell
aggregation in patients with this disease.

CCL22 expression is upregulated in early-stage T/MF SCC
and is positively correlated with the number of Th2 cells
CCL22 and CCL17 are associated with the induction
of chemotaxis in T cells, particularly Th2 cells, via
binding to the chemokine receptor CCR4. We com-
pared the expression of CCL22, CCL17, and CCR4
between early- and advanced-stage T/MF SCC sam-
ples and found that CCL22 and CCR4 expression
levels were upregulated in the former (Fig. 3A and B),
while no significant difference was noted for CCL17
expression (Fig. S2). Then, we analyzed the correl-
ation between the expression of CCL22 or CCR4 and
immune cell infiltration numbers using MCPcounter,
Immunity, and 28 Immune Cells groups using the
Spearman’s correlation (Fig. 3C-H). The results indi-
cated that both CCL22 and CCR4 expression levels
were strongly and positively correlated with Th2 cell
counts.

(See figure on previous page.)
Fig. 1 Data on infiltrating immune cells in samples derived from TCGA datasets. Th2 cell numbers were increased in early-stage T/MF SCC
compared to advanced-stage T/MF SCC. (A) Distribution of tumor-infiltrating immune cells in TCGA samples calculated using MCPcounter.
(B) Relative number of T cells in early- and advanced-stage T/MF SCC samples calculated using MCPcounter. (C) Distribution of tumor-
infiltrating immune cells in TCGA samples calculated using ssGSEA and a gene signature from the literature [14]. This signature was
termed as Immunity. (D) Relative numbers of Th2 cells in early- and advanced-stage T/MF SCC samples according to the Immunity
signature. (E) Distribution of tumor-infiltrating immune cells in TCGA samples calculated using ssGSEA and information on a gene
signature obtained from the literature [13]. This signature was termed as 28 Immune cells. (F) Relative numbers of T cells in early- and
advanced-stage T/MF SCC samples according to the 28 Immune cells signature. In heatmaps, red represents a high distribution, while blue
represents a low distribution

Fig. 2 Screening of differentially expressed genes (DEGs) and functional analysis. (A) Heatmap illustrating DEGs between early- and advanced-
stage T/MF SCC samples. (B) Upset plot for KEGG pathways. The bar chart on the top shows the number of genes contained in each group. The
dotted lines at the bottom represent genes involved in each pathway

Li et al. BMC Cancer          (2021) 21:922 Page 5 of 13



Prognostic value of CCL22 in T/MF SCC
To further elucidate the mechanism by which CCL22 and
CCR4 were involved in T/MF SCC development, we ana-
lyzed the correlation between the expression of CCL22 or
CCR4 and clinical parameters. In this study, we analyzed
the clinical information of 178 patients with T/MF SCC
from TCGA database. The patients’ clinicopathological fea-
tures are shown in Table 2. CCL22 expression was higher
in the T1 and T2 stages than that in the T3 and T4 stages
(Fig. 4A), while the expression of CCR4 did not correlate
with the clinicopathological features. The expression of
CCL22 in T/MF SCC tissues was classified as low or high
according to its median value. A Kaplan–Meier OS curve
was plotted to analyze the prognosis of patients with T/MF
SCC expressing CCL22 at different levels. The log-rank test
of OS revealed that high expression of CCL22 was signifi-
cantly associated to a better prognosis (Fig. 4B, P = 0.037).
Univariate and multivariate Cox regression analyses were
performed to identify the independent prognostic factor in
patients with T/MF SCC (Table 3 and Fig. S3). The results
suggested that CCL22, but not CCR4, was an independent
protective factor in patients with T/MF SCC (Fig. 4C). The
AUC of the multivariate Cox model was 0.7683 (Fig. S4).

Establishment of survival prognostic models for T/MF SCC
using CCL22
The previous results indicated that CCL22 was an inde-
pendent prognostic factor in T/MF SCC; thus, we aimed

to establish a predictive model for the OS by fitting data
on CCL22 expression and other characteristics. A nomo-
gram integrating data on CCL22 expression and other
characteristics, including age, gender, tumor grade, T
stage, and N stage, was constructed (Fig. 5A), wherein a
worse prognosis was represented by a high score on the
nomogram. The performance of the nomogram integrat-
ing data on CCL22 expression was evaluated using a
calibration curve, and the C-index was estimated to be
0.7683 (Fig. 5B). We also performed a decision curve
analysis to evaluate the performance of this prediction
model. The prediction nomogram demonstrated a high
benefit percentage (Fig. 5C). In summary, the nomogram
integrating CCL22 expression may be considered a
better model for predicting the survival of patients
with T/MF SCC than individual prognostic factors.

NOTCH1 mutation in advanced-stage T/MF SCC samples
decreases Th2 cell differentiation
To identify somatic mutations in patients with T/MF
SCC at different stages, mutation data were downloaded
and visualized using the Maftools package [12]. Enrich-
ment analysis of all mutated genes in patients with early-
and advanced-stage T/MF SCC indicated that the RTK-
RAS and NOTCH1 pathways were the major function
pathways affecting the development of T/MF SCC (Fig. 6A
and B). Based on the waterfall plot, which shows the top
six mutated genes in patients with T/MF SCC, it was

Fig. 3 Correlation between CCL22/CCR4 expression and T/Th2 cell numbers. Expression of (A) CCL22 and (B) CCR4 in early- and advanced-stage
T/MF SCC samples. Correlation between (C) CCL22 or (D) CCR4 expression and T cell numbers, according to MCPcounter. Correlation between
(E) CCL22 or (F) CCR4 expression and Th2 cell numbers using the Immunity signature. Correlation between (G) CCL22 or (H) CCR4 expression and
Th2 cell numbers using the 28 Immune Cells signature. Violin plots presented on the margin of dotplots represent the distribution of CCL22/CCR4
expression and T/Th2 cell numbers
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inferred that NOTCH1 mutations occurred significantly
less in patients with early-stage T/MF SCC than in those
with advanced-stage T/MF SCC (Fig. 6C). We then per-
formed a ssGSEA to evaluate the activation level of the
NOTCH1 signaling pathway. Gene signatures are shown
in Table S1. The activation of the NOTCH1 signaling
pathway did not change between patients with early- and
advanced-stage disease (Fig. 6D). Studies have suggested
that NOTCH1 can induce Th2 cell differentiation and

regulate IL4 expression in Th2 cells [18, 19]. Therefore,
data on gene signatures were derived from the KEGG ana-
lysis (Table S1), and we performed ssGSEA subsequently
to evaluate the activation of the NOTCH1-Th2 cell differ-
entiation pathway; results showed that in advanced-stage
T/MF SCC, expression of this pathway was downregulated
(Fig. 6E). This finding suggested that the reduction in Th2
cell numbers in advanced-stage T/MF SCC samples might
be caused by the decrease in CCL22 expression and Th2
cell differentiation, which could be induced by mutated
NOTCH1.

CCL22 expression is positively correlated with GATA-3
and IL4 expression in tongue SCC samples
To verify the previously reported results, we performed
immunohistochemical staining using eight paraffin-
embedded tumor tissue samples to investigate the ex-
pression of CCL22, GATA-3, and IL4. Accordingly,
CCL22, GATA-3, and IL4 were observed to be highly
expressed in patients with early-stage tumors (Fig. 7A
and B). Additionally, the expression of CCL22 was posi-
tively correlated with that of GATA-3 and IL4 in tongue
SCC tissues (Fig. 7C and D).

Discussion
The progression of T/MF SCC is affected by several fac-
tors, including gene mutation, dysregulation of long
non-coding RNA, and changes in the TME [20–22].
With the recent development of single-cell sequencing
technology, an increasing number of immune cell signa-
tures have been generated, and the classification of
immune cells in the TME has gained specificity [14, 23,
24]. Presently, the composition of the TME can be
analyzed using RNA sequencing expression profiles.
Various mechanisms leading to the dysfunction of im-

mune cells in the TME have been successively discov-
ered. The immune microenvironment can directly or
indirectly affect the occurrence and development of tu-
mors. Its mechanisms include promotion of tumor

Table 2 Clinicopathological parameters of patients with tongue
squamous cell carcinoma based on TCGA data

Characteristics n = 178

Survival time (days, mean (SD)) 798.92 (760.64)

Age (mean (SD)) 59.19 (13.39)

Gender (%)

Female 58 (32.6)

Male 120 (67.4)

Tumor grade (%)

G1 21 (11.8)

G2 122 (68.5)

G3 35 (19.7)

T stage (%)

T1 24 (14.0)

T2 56 (32.7)

T3 41 (24.0)

T4 50 (29.2)

N stage (%)

N0 70 (42.7)

N1 24 (14.6)

N2 68 (41.5)

N3 2 (1.2)

Clinical stage (%)

Stage I–II 54 (30.3)

Stage III–IV 124 (69.7)

Fig. 4 Clinical relevance and prognostic value of CCL22 expression. (A) CCL22 expression in T/MF SCC at different T stages. (B) Kaplan–Meier
curve of overall survival according to high and low expression levels of CCL22. (C) Forest plot illustrating the independent prognostic factors
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Table 3 Univariate and multivariate Cox regression analyses of clinicopathological parameters and overall survival

Characteristics Hazard ratio (95% CI) in
univariate analysis

P-value in univariate analysis Hazard ratio (95% CI) in
multivariate analysis

P-value in multivariate
analysis

CCL22 0.774 (0.641–0.934) 0.008 0.799 (0.643–0.992) 0.042

GATA-3 0.878 (0.701–1.100) 0.257

CCR4 0.846 (0.674–1.063) 0.152

Age 1.017 (0.998–1.036) 0.087 1.016 (0.993–1.040) 0.175

Gender 1.108 (0.693–1.771) 0.669 1.062 (0.624–1.806) 0.826

Tumor grade 1.415 (0.954–2.099) 0.084 1.469 (0.942–2.291) 0.090

T stage 1.528 (1.209–1.932) 0.000 1.415 (1.077–1.859) 0.013

N stage 1.518 (1.167–1.974) 0.002 1.417 (1.091–1.840) 0.009

Fig. 5 Establishment and evaluation of survival prognostic models for T/MF SCC. (A) Nomogram for predicting the probability of 1-, 3-, and 5-
year survival of patients with T/MF SCC. (B) Calibration curve for evaluating the accuracy of the nomogram for patients with T/MF SCC. (C)
Decision curve analysis for evaluating the performance of the nomogram. Lines on both sides represent confidence intervals
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Fig. 6 (See legend on next page.)
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angiogenesis, alteration of the biological characteristics
of tumors cells, and establishment of an appropriate
TME to promote tumor progression [4]. Liu et al. [25]
suggested that an altered Treg/Th17 balance in tongue
cancer might promote disease progression. Macrophages
in the TME of tongue cancer promote tumor cell inva-
sion and migration [26]. In the present study, Th2 cell
numbers were found to be reduced in advanced-stage T/
MF SCC compared to early-stage T/MF SCC samples.
Th2 cells undergo differentiation from naïve CD4+ T
cells and mainly mediate humoral immunity. The role of
Th2 cells in tumors is unclear. Accumulating evidence
suggests that increased Th2 cell numbers or cytokine
levels secreted by Th2 cells indicate poor prognosis in

colorectal, esophageal, and prostate cancer [9, 10, 27].
However, a study conducted on B cell NHL suggests that
high expression of IL4, which is secreted by Th2 cells, is
strongly correlated with reduced cancer proliferation
and increased survival [11]. High Th2 cell counts and
low Th17 cell counts were shown to be good prognosis
factors in NSCLC [28]. Our results suggest that high
Th2 cell numbers may play a protective role in T/MF
SCC.
Changes in Th2 cell populations are related to the re-

cruitment of Th2 cells and their differentiation level.
CCL22 and CCL17 are chemokines that regulate Treg
and Th2 cell recruitment via binding to their receptor
CCR4. We found that there was no difference in CCL17

(See figure on previous page.)
Fig. 6 NOTCH1 mutations in T/MF SCC samples decrease Th2 cell differentiation. Pathways enriched by mutated genes in (A) early- and (B)
advanced-stage T/MF SCC samples. RTK-RAS and NOTCH signaling were the top two pathways in T/MF SCC. (C) Comparison of mutated genes
between early- and advanced-stage T/MF SCC samples. NOTCH1 mutations occurred significantly less in early-stage than in advanced-stage T/MF
SCC (11% vs 20%). (D) NOTCH signaling activation score in early- and advanced-stage T/MF SCC calculated using ssGSEA. There was no
statistically significant difference between the two groups. (E) NOTCH1-Th2 cell differentiation pathway activation score in early- and advanced-
stage T/MF SCC calculated using ssGSEA. The NOTCH1-Th2 cell differentiation pathway was activated to a greater extent in early-stage than in
advanced-stage T/MF SCC (P = 0.040)

Fig. 7 Protein levels of CCL22, GATA-3, and IL4 in tongue SCC tissues. (A) Immunohistochemical analysis of CCL22, GATA-3, and IL4 expression in
tumor specimens between different clinical stages (× 200; scale bars = 50 μm). (B) Labeling index of CCL22, GATA-3, and IL4 in early- and
advanced-stage T/MF SCC. The labeling index of CCL22 was positively correlated with that of (C) GATA-3 and (D) IL4. *P < 0.05
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expression between early- and advanced-stage T/MF
SCC samples, while CCL22 expression was significantly
decreased in the latter compared to early-stage T/MF
SCC samples. Overexpression of CCL22 in human tu-
mors was reportedly associated with increased infiltra-
tion of Tregs, along with augmented tumor growth and
poor prognosis in breast, gastric, and liver cancer [29–
33]. Hirata et al. [34] suggested that CCL22 produced by
naïve CD4+ T cells contributed to an increase in Th2
cell numbers in atopic diseases. However, studies con-
ducted on CCL22 expression and Th2 cells in cancers
are limited and indicate that CCL22 expression is a risk
prognostic factor in breast and colorectal cancer [35,
36]. A study conducted on tongue cancer suggests that
high expression of CCL22 influences the balance of M1-
and M2-like macrophages and leads to a deteriorated
prognosis [37]. Conversely, in the present study, CCL22
expression was found to be a protective prognostic fac-
tor in T/MF SCC. We quantified Tregs in patients with
early- and advanced-stage T/MF SCC and found no sta-
tistically significant difference between both (Fig. S5).
We speculate that CCL22 expression only affects the re-
cruitment of Th2 cells, rather than Tregs, in patients
with T/MF SCC, suggesting that CCL22 expression may
affect the prognosis of these patients and the progression
of T/MF SCC through the regulation of Th2 cells. This
finding opens new avenues for the development of
therapeutic approaches for T/MF SCC.
Gene mutation plays a key role in the development

and progression of cancer. Recent large-scale genome se-
quencing efforts have validated TP53 as the most com-
monly mutated gene in HNSCC [38]. Determination of
the mutation landscape in tongue cancer revealed that
TP53, FAT1, CDKN2A, NOTCH1, and PIK3CA were the
most frequently mutated genes [39]. Herein, mutated
NOTCH1 expression was found at a significantly re-
duced level in patients with early-stage disease compared
to those with advanced-stage disease. NOTCH signaling
is involved in different types of malignant tumors [40]
and has mostly been found to be altered in HNSCC [41].
Nevertheless, NOTCH can act as an oncogene or tumor
suppressor depending on the cellular context [42]. The
role of NOTCH in OSCC as a tumor suppressor has
been previously suggested [38, 43, 44]. Activated
NOTCH1 demonstrates an anti-proliferative function in
tongue tumor cells through the downregulation of Wnt/
β-catenin signaling, thereby inducing apoptosis and cell
cycle arrest [45]. However, in our study, the activation
level of the NOTCH1 signaling pathway did not change
between both groups of patients. Evidence suggests that
NOTCH1 can induce Th2 cell differentiation [18, 19].
We found that the activation level of the NOTCH-Th2
cell differentiation pathway was upregulated in patients
with early-stage T/MF SCC. These results indicate that

mutated NOTCH1 may affect the activation of the
NOTCH-Th2 cell differentiation pathway, thus reducing
the number of Th2 cells.
Our study shows that increased expression of CCL22

in T/MF SCC may activate the recruitment of Th2 cells,
while mutations in NOTCH1 may inhibit Th2 cell differ-
entiation. These two mechanisms influence the infiltra-
tion of Th2 cells in T/MF SCC, leading to disease
progression. However, these conclusions were deduced
only from results obtained via bioinformatics analysis;
thus, our findings warrant further experimental verifica-
tion. Additionally, the positions, identities, and effects of
mutations in NOTCH genes can be cancer-specific and
may reflect varied roles for NOTCH in different cancers
[46]. Whether mutated NOTCH expression influences
Th2 cell differentiation in T/MF SCC remains unclear
and should be further explored.
In conclusion, in T/MF SCC, high expression of

CCL22 promotes the recruitment of Th2 cells and helps
predict better survival; moreover, mutations in NOTCH1
inhibit the differentiation of Th2 cells. The decrease in
Th2 cell recruitment and differentiation leads to tumor
progression.
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