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Abstract

Background: Colorectal cancer (CRC) represents one of the major malignant cancers in the world. It has been
demonstrated that long non-coding RNAs (IncRNAs) can cause great influences on various human cancers. Though
MCF .2 cell line derived transforming sequence like antisense RNA 1 (MCF2L-AS1) and its carcinogenic effect in CRC
has been elucidated by several previous researches, the underlying mechanism remains unknown.

Aim: We aimed at exploring the function and regulatory mechanism of MCF2L-AST in CRC.

Methods: MCF2L-AS1 expression in CRC cells was tested via RT-qPCR assay. The effects of MCF2L-AS1 on the
biological properties of CRC cells were testified through functional experiments. The molecular mechanism of
MCF2L-AS1 was verified through mechanism experiments.

Results: MCF2L-AST was highly expressed in CRC cells, and it could enhance the proliferation, migration, invasion
and epithelial-mesenchymal transition (EMT) process of CRC cells. MiR-105-5p was sponged by MCF2L-AST in CRC
cells and Ras-related protein Rab-22A (RAB22A) was verified to be the downstream target of miR-105-5p. It was
verified through rescue assays that RAB22A overexpression or miR-105-5p silencing could reverse the repressive
impact of MCF2L-AST silencing on CRC progression.

Conclusion: MCF2L-AST accelerated the malignant development of CRC cells by targeting the miR-105-5p/RAB22A
axis.
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Background

As one of the commonest gastrointestinal cancers world-
wide, colorectal cancer (CRC) is featured by high inci-
dence and mortality. Even if the treatment strategies for
CRC have been constantly optimized, the overall survival
of CRC patients remains relatively low [1]. Therefore, it is
necessary to find more biomarkers so as to provide effect-
ive therapeutic options for CRC treatment.

LncRNAs are defined as RNA molecules with over 200
nucleotides and without protein coding capacities [2, 3]. It
has been proven that IncRNAs are capable of regulating gene
expression, genome activity, histone modifications, DNA
methylation, chromatin remodeling, etc. [4—6]. In addition,
IncRNA expression has been proved to be negatively related
to DNA methylation during the onset of puberty [7]. The
interaction between IncRNAs and chromatin-modifying en-
zymes can control chromatin structure [8]. Lately, some
IncRNAs have been reported to participate in regulating can-
cer development, which includes CRC [9-11]. For instance,
Liu et al. have disclosed that 79 IncRNAs are closely related
to the early-stage CRC such as ELFN1-AS1, LINC01234,
SNHG17, etc. That finding lays the ground for the treatment
for CRC patients and has potential diagnostic value [12]. Be-
sides, it has also been confirmed that XXbac-B476C20.9 is
closely associated with the prognosis of CRC, which may
affect the overall survival of CRC patients [13].

As a relatively newly found IncRNA, MCF2L-AS1 as
well as its influence on cancer progression has not been
widely studied and reported before. When we were
searching for references on the relationship between
MCEF2L-AS1 and CRC, only two documents illustrating
that MCF2L-AS1 can serve as a tumor promoter were
found by us [14, 15]. Therefore, we decided to unveil the
underlying mechanism of MCF2L-AS1 in CRC develop-
ment, hoping to explore its potential regulatory pattern.

The fact that IncRNAs can bind to microRNAs (miR-
NAs) as competing endogenous RNAs (ceRNAs) and
thus mediating the downstream gene expression has
been disclosed by many studies [16]. In addition, ceRNA
mechanism has been confirmed to perform important
functions in cancer progression, including CRC. For ex-
ample, IncRNA UICLM aggravates CRC liver metastasis
by functioning as a ceRNA of miRNA-215 to regulate
ZEB2 expression [17]. LINC00858 has been verified to
aggravate CRC progression by competitively binding to
miR-22-3p in CRC [18]. MFI2-AS1 has been identified
to be a novel IncRNA for the prognosis of stage III/IV
CRC [19]. Therefore, in our study, we also explored the
ceRNA pattern of MCF2L-AS1 in CRC, trying to identify
the interaction among MCF2L-AS1, miR-105-5p and
RAB22A and verify their effects on CRC progression. In
a word, we aimed to study the function of MCF2L-AS1
as well as its regulatory mechanism in CRC progression,
hoping to offer novel sights for CRC treatment.
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Methods

Cell culture

Four human CRC cell lines (HCT15, SW620, SW116
and LOVO) were purchased respectively from ATCC
(Manassas, VA, USA). Human colon epithelial NCM-
460 cell line was procured from Lonza Group Ltd. (Ba-
sel, Switzerland) and cultured in DMEM (Corning,
Tewksbury, MA, USA). Among the CRC cells, LOVO
cells were cultivated in F-12 K Medium; HCT15 cells
were incubated in RPMI-1640 Medium, while SW116
and SW620 cells were cultivated in Leibovitz's L-15
Medium. 10% fetal bovine serum (FBS; Gibco, Gaithers-
burg, MD, USA), together with 1% penicillin-
streptomycin (Gibco) were used for cell culture in 5%
CO, at 37 °C. Medium was replaced every 3 days.

Cell transfection

For the knockdown of MCF2L-AS1 and RAB22A, spe-
cific short hairpin RNAs (shRNAs) targeting MCF2L-
AS1 (sh-MCF2L-AS1#1/2) and RAB22A (sh-RAB22A#1/
2) were provided by GenePharma (Shanghai, China).
Non-specific shRNAs were used as negative control
(NC). To overexpress RAB22A, the whole sequence of
RAB22A was sub-cloned into pcDNA3.1 vector (Invitro-
gen, Carlsbad, CA, USA) with empty vectors being uti-
lized as NC. MiR-105-5p mimics, miR-105-5p inhibitor
and NCs were purchased from Ribobio (Guangzhou,
China). All transfections were carried out for 48 h with
Lipofectamine 3000 (Invitrogen) according to the user’s
guideline. Related plasmids quantities and transfection
concentration are listed in Table 1.

Total RNA extraction and quantitative real-time
polymerase chain reaction (RT-qPCR)

In line with the instruction of TRIzol reagent (Invitro-
gen), total RNA was extracted in HCT15 and SW116
cells. Synthesis of complementary DNA (cDNA) was
achieved with the help of PrimeScript™ II Reverse Tran-
scriptase (TaKaRa, Shiga, Japan). RT-qPCR was imple-
mented on ABI Prism 7900HT sequence detector
(Applied Biosystems, Foster City, CA, USA) using SYBR
Green I kit (TaKaRa) followed by 2784Ct method. In rele-
vant assays, GAPDH and U6 were loading controls.

Immunofluorescence (IF) staining assay

After being washed in PBS, transfected HCT15 and
SW116 cells in culture slides were fixed with 4% parafor-
maldehyde and blocked for 10 min with 5% BSA. The
primary antibodies against Ki-67 and E-cadherin were
used to be incubated with cells overnight. After being
washed in PBS for three times, the slides were incubated
with the secondary antibodies for 2h. The slides were
then stained using DAPI and examined using an Olym-
pus confocal imaging system (Olympus, Tokyo, Japan).
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The resolution of the figures is 300 dpi and no down-
stream processing or averaging methods were adopted
to enhance the resolution.

5-ethynyl-20-deoxyuridine (EdU) incorporation assay
Cells at logarithmic growth stage were taken and seeded
in 96-well plates with 1 x 10* cells per well to the normal
growth stage. An appropriate amount of 50 uM EdU cul-
ture medium was prepared by dilution of EAU solution
by 1:1000. Each well was added with 100 pL 50 uM EdU
assay kit for cultivation for 2h, and then the culture
medium was discarded. DAPI was added to stain nucleus
for 5min at room temperature, and the stained cells
were imaged with a fluorescence microscope (Olympus).
Cell proliferation ability was assessed via the Cell-light™
EdU ApolloR567 in vitro Imaging Kit (Ribobio) accord-
ing to the user guide. The resolution of the figures is
300 dpi and no downstream processing or averaging
methods were adopted to enhance the resolution.

Transwell assay

Cell migration assay was performed using Transwell
chambers (24-well; Corning, Corning, NY, USA). The
lower chamber was added with complete culture
medium. Cells were suspended in serum-free medium
and plated into the upper chamber. Then the chambers
were cultivated with 5% CO, at 37 °C for 24 h. Cells in
the upper layer were removed with caution by a cotton
swab and then the cells in the lower chamber were fixed
in methanol solution for 15 min. After that, migrated
cells were counted using 0.1% crystal violet dye and ob-
served via a light microscope (DMil, Leica, Wetzlar,
Germany). Transwell chambers were pre-coated with
Matrigel (Clontech, Madison, WI, USA) for invasion
assay. Cell migration and invasion were determined by
counting 5 random fields under a microscope (DMil,
Leica, Wetzlar, Germany).

Flow cytometry assay

Cell apoptosis of HCT15 and SW116 was monitored by
using Annexin V-FITC/PI staining kit (Invitrogen), as
guided by supplier. 1 x 10° cells were prepared in 6-well
plates for 15 min of double-staining in the dark room.
Results were examined by a flow cytometer (BD Biosci-
ences, Franklin Lakes, NJ, USA).

Caspase-3/8/9 activity analysis

The activity of caspase-3/8/9 was detected via the
caspase-3/8/9 activity kit (Beyotime Institute of Biotech-
nology, Shanghai, China). The total protein of cells was
obtained through lysis buffer and seeded into 96-well
plates. After the incubation with reaction buffer and cas-
pase substrate, caspase-3/8/9 activities in CRC cells was
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assessed by a microplate reader (51119180ET, Thermo
Fisher Scientific, Rockford, IL, USA) at 405 nm.

Fluorescence in situ hybridization (FISH) assay

The RNA FISH probe mix for MCF2L-AS1 was synthe-
sized and produced by RiboBio. The fixed cells were
treated by pepsin and dehydrated by using ethanol,
followed by the incubation with probe in hybridization
buffer. Nuclei were counterstained with DAPI and
Olympus fluorescence microscope (DMI8, Leica, Wet-
zlar, Germany) was utilized to observe and analyze the
stained cells. The resolution of the figures is 300 dpi and
no downstream processing or averaging methods were
adopted to enhance the resolution.

Subcellular fractionation assay

Cytoplasmic and nuclear RNAs of HCT15 and SW116
cells were centrifuged and purified through a Cytoplas-
mic and Nuclear RNA Purification Kit (Norgen, Thor-
old, ON, Canada). The subcellular localization of
MCEF2L-AS1 in HCT15 and SW116 cells was identified
via RT-qPCR assay, with GAPDH and U6 as the cyto-
plasm and the nucleus control, respectively. The reso-
lution of the figures is 300 dpi and no downstream
processing or averaging methods were adopted to en-
hance the resolution.

RNA immunoprecipitation (RIP) assay

RIP assay was performed using the Thermo Fisher RIP
kit (Thermo Fisher Scientific, Waltham, MA, USA). The
collected HCT15 and SW116 cells were lysed by RIP
lysis and then the cell lysates were collected. After that,
magnetic beads conjugated with human Ago2 antibody
or IgG antibody (as NC) were added into cell lysates and
incubated overnight at 4 °C. After the RNA was purified,
the enrichment of precipitated RNAs was tested by RT-
qPCR assay.

RNA pull down assay

The miR-105-5p sequences containing the wild-type
(WT) and mutated (Mut) binding sites of MCF2L-AS1
or RAB22A were biotin-labeled for RNA pull down
assay. The acquired probes were incubated with protein
extracts as well as magnetic beads with Bio-NC as the
control. Finally, the precipitated proteins were eluted
and analyzed using RT-qPCR assay.

Luciferase reporter assay

The wild-type and mutant binding sites of miR-105-5p
in MCF2L-AS1 fragment or RAB22A 3'UTR were sub-
cloned into pmirGLO dual-luciferase vector to construct
MCF2L-AS1-WT/Mut or RAB22A-WT/Mut. The pmir-
GLO plasmids were co-transfected with miR-105-5p
mimics or NC mimics into HCT15 and SW116 cells,
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respectively. Finally, after 48-h transfection, cells were
extracted and the luciferase activity was tested by Lucif-
erase Reporter Assay System (Promega, Madison, WI,
USA).

Statistical analysis

All experimental procedures in this study were con-
ducted independently for at least three times, and ex-
perimental results were exhibited as mean + standard
deviation (SD). Statistical analysis was performed using
GraphPad Prism 7.0 software (Graph Pad, La Jolla, CA,
USA). Data analysis between two or more groups was
conducted via Student’s t-test or one-way analysis of
variance (ANOVA). Statistics with a p value below 0.05
were considered to be statistically significant.

Results

MCF2L-AS1 is highly expressed in CRC cells and
accelerates the progression of CRC

First, we utilized GEPIA (http://gepia2.cancer-pku.cn/
#index) to assess the expression of MCF2L-AS1 in CRC
tissues and normal tissues. As shown in Fig. 1A,
MCF2L-AS1 was with high expression in colon adeno-
carcinoma (COAD) tissues compared with that in the
adjacent normal tissues. Then, we performed RT-qPCR
assay to examine the expression of MCF2L-AS1 in CRC
cells (HCT15, SW620, SW116 and LOVO) and human
normal colon epithelial cells (NCM-460), which turned
out that MCF2L-AS1 was highly-expressed in CRC cell
lines in contrast with that in NCM-460 cell line (Fig.
1B). The above data suggested that MCF2L-AS1 might
regulate the progression of CRC. To verify this hypoth-
esis, we selected HCT15 and SW116 cells which had a
relatively higher MCF2L-AS1 expression for further
studies and then transfected them with sh-MCF2L-
AS1#1 and sh-MCF2L-AS1#2. After that, RT-qPCR ana-
lysis was conducted to detect the interference efficiency
of sh-MCF2L-AS1#1-2. According to the result, the ex-
pression level of MCF2L-AS1 was sharply reduced in sh-
MCF2L-AS1 groups compared to sh-NC group (Fig.
1C). Next, several functional assays were respectively
carried out in HCT15 and SW116 cells to further verify
the influence of MCF2L-AS]1 silencing on the biological
properties of CRC cells. Results from IF and EAU assays
revealed that the Ki-67 positive cells and EdU stained
positive cells were obviously decreased by sh-MCF2L-
AS1#1 and sh-MCF2L-AS1#2 compared with those in
sh-NC groups, which meant that MCF2L-AS1 silencing
repressed cell proliferation in CRC (Fig. 1D-E & Supple-
mentary Fig. 1). After that, cell migration and invasion
change upon MCF2L-AS1 silencing was assessed by
Transwell assay, and the results demonstrated that the
number of migrated and invaded cells was remarkably
reduced after MCF2L-AS1 was knocked down in
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HCT15 and SW116 cells (Fig. 1F-G & Supplementary
Fig. 1). The above data demonstrated that MCF2L-AS1
silencing repressed CRC cell migration as well as inva-
sion. Besides, as shown by the results of flow cytometry
assay, after the knockdown of MCF2L-AS], the apop-
tosis of HCT15 and SW116 cells were prominently en-
hanced (Fig. 1H & Supplementary Fig. 1). As caspase-3,
caspase-8 and caspase-9 served as critical protease asso-
ciated with cell apoptosis, we conducted caspase-3/8/9
activity analysis to examine the apoptosis of CRC cells
upon MCF2L-AS1 silencing. Results showed that the
relative activity of caspase-3, caspase-8 and caspase-9 in
those cell lines was significantly enhanced upon MCF2L-
AS1 silencing. The above data indicated that MCF2L-
AS1 silencing promoted cell apoptosis of CRC (Fig. 1I).
Besides, it was shown from IF assay that the level of E-
cadherin (the epithelial marker) was prominently ele-
vated by MCF2L-AS1 knockdown (Fig. 1J), which indi-
cated that MCF2L-AS1 knockdown repressed the EMT
process of CRC cells. Collectively, MCF2L-AS1 acceler-
ates cell proliferation, migration, invasion and EMT
process while reducing cell apoptosis in CRC.

MiR-105-5p is sponged by MCF2L-AS1 and acts as a
tumor-suppressor in CRC

To further explore the regulatory mechanism of
MCEF2L-AS1 in CRC, we decided to firstly find the po-
tential target of MCF2L-ASI. Firstly, subcellular frac-
tionation and FISH assays were conducted to identify
the localization of MCF2L-AS1 in CRC cells. The find-
ings suggested that MCF2L-AS1 mainly existed in the
cytoplasm, indicating that it might regulate the expres-
sion of its downstream gene at the post-transcriptional
level (Fig. 2A-B). Next, RIP assay was carried out by us
and the result revealed that MCF2L-AS1 in HCT15 and
SW116 cells was enriched in Anti-Ago2 group rather
than in Anti-IgG group (Fig. 2C). Those findings showed
that MCF2L-AS1 possibly served as a ceRNA in CRC
cells to regulate its downstream gene. Next, we contin-
ued our work in determining the underlying target miR-
NAs that could combine with MCF2L-AS1. With the
application of ENCORI (http://starbase.sysu.edu.cn/)
database, potential miRNAs of MCF2L-AS1 were pre-
dicted. As a result, seven miRNAs were sifted out (miR-
514a-5p, miR-105-5p, miR-138-5p, miR-33b-5p, miR-
33a-5p, miR-7853-5p and miR-874-3p) (Fig. 2D, left).
RT-qPCR assay was then adopted to examine the ex-
pression of the above miRNAs in CRC cells. As dis-
played in Fig. 2D (right), only miR-105-5p was obviously
down-regulated in CRC cells compared with the other
miRNAs (normalized to that in NCM-460 cell line).
Therefore, miR-105-5p was kept for the following assays.
To further verify the relationship between miR-105-5p
and MCF2L-AS1, RNA pull down assay was conducted.
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Fig. 1 MCF2L-AST is highly expressed in CRC cells and accelerates the progression of CRC. A. The expression of MCF2L-AST in COAD tissues and
adjacent normal tissues was assessed via GEPIA database. B. MCF2L-AST expression was measured in CRC cell lines (HCT15, SW620, SW116 and
LOVO) and human normal colon epithelial cells (NCM-460) by RT-gPCR. C. The interference efficiency of MCF2L-AS1 in HCT15 and SW116 cells
was tested by RT-qPCR assay. D and E. Cell proliferation in HCT15 and SW116 cells after MCF2L-AS1 silencing was evaluated through IF staining
and EdU assay. F and G. The migratory and invasive abilities of CRC cells upon MCF2L-AS1 silencing were evaluated through Transwell assays. H
and I. Flow cytometry assay and caspase-3/8/9 activity analysis were utilized to test cell apoptosis upon MCF2L-AST silencing. J. The EMT process
was assessed through IF assay after MCF2L-AST was silenced in HCT15 and SW116 cells. Adjustments of individual color channels were made on
‘Merge' figures. The statistical analysis of Fig. 1B-I was tested with one-way ANOVA. *P < 0.05, **P < 0.01
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Fig. 2 MiR-105-5p is sponged by MCF2L-AS1 and acts as a tumor-suppressor gene in CRC. A and B. The location of MCF2L-AST in CRC cells was
assessed by subcellular fractionation and FISH assays. C. The enrichment of MCF2L-AS1 in RISC was tested via RIP assay. D. The potential miRNAs
that could bind to MCF2L-AS1 was displayed (left). RT-gPCR assay was used to test the expression of seven potential miRNAs that could bind to
MCF2L-AST (right). E. The binding capacity between MCF2L-AS1 and miR-105-5p was verified through RNA pull down assay. F. The binding sites
between MCF2L-AS1 and miR-105-5p were predicted by ENCORI website. G. The overexpression efficiency of miR-105-5p was examined by RT-
gPCR assay. H. Luciferase reporter assay was carried out to testify the combination between MCF2L-AST and miR-105-5p. I and J. Cell proliferation
effected by miR-105-5p overexpression was detected by IF and EdU assays. K and L. Cell migration and invasion upon miR-105-5p overexpression
were evaluated by Transwell assay. M and N. Cell apoptosis was assessed by flow cytometry assay and caspase-3/8/9 activity analysis. O. The EMT
process upon miR-105-5p overexpression was measured through IF assay. Adjustments of individual color channels were made on ‘Merge’
figures. The statistical analysis of Fig. 2H was tested with two-way ANOVA, and the statistical analysis of Fig. 2B-E, G, I-N was tested with one-way
ANOVA. **P < 0.01

It was exhibited that MCF2L-AS1 was enriched in the
Bio-miR-105-5p-WT group instead of Bio-miR-105-5p-
Mut (Fig. 2E), which indicated the binding capacity

between MCF2L-AS1 and miR-105-5p. Next, the bind-
ing sites between MCF2L-AS1 and miR-105-5p were
predicted through ENCORI website and presented in
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Fig. 2F. After that, we transfected HCT15 and SW116
cells with miR-105-5p mimics and RT-qPCR assay was
utilized to evaluate the overexpression efficiency of miR-
105-5p (Fig. 2G). Luciferase report assay was then car-
ried out to detect the luciferase activity under different
conditions, and results showed that after the transfection
of miR-105-5p mimics, the luciferase activity of MCF2L-
AS1-WT was declined in HCT15 and SW116 cells, while
the luciferase activity of MCF2L-AS1-Mut displayed no
obvious change (Fig. 2H). Considering the results above,
miR-105-5p was regarded as a possible target of
MCF2L-AS1 in the progression of CRC. Therefore, to
explore the role and function of miR-105-5p was viewed
as necessary. The results of IF and EdU assays illustrated
that miR-105-5p up-regulation could effectively sup-
pressed CRC cell proliferation in comparison with NC
groups (Fig. 21I-] & Supplementary Fig. 1). Similarly, the
outcome of Transwell assay also demonstrated that in-
creased miR-105-5p expression apparently restrained the
migratory and invasive abilities of CRC cells (Fig. 2K-L
& Supplementary Fig. 1). In addition, it was observed
from flow cytometry and caspase-3/8/9 activity analysis
that the transfection of miR-105-5p mimics could sig-
nificantly enhance the apoptosis of CRC cells compared
with NC mimics group (Fig. 2M-N & Supplementary
Fig. 1). Additionally, it was shown from IF assay that
miR-105-5p overexpression resulted in an elevated level
of E-cadherin, indicating that miR-105-5p overexpres-
sion also inhibited the EMT process of CRC cells (Fig.
20). Taken together, miR-105-5p is capable of being
sponged by MCF2L-AS1 and plays a tumor-suppressing
role in CRC progression.

Knockdown of miR-105-5p reverses the effects of MCF2L-
AS1 down-regulation on CRC progression

Before we carried out a series of rescue assays to testify
the interactive relationship between MCF2L-AS1 and
miR-105-5p, HCT15 and SW116 cells were transfected
with miR-105-5p inhibitor to silence miR-105-5p expres-
sion, and the interference efficiency of miR-105-5p was
examined through RT-qPCR assay (Fig. 3A). Next, ex-
perimental groups were divided into groups including
sh-NC, sh-MCF2L-AS1#1 and sh-MCF2L-AS1#1 + miR-
105-5p inhibitor for the following rescue assays. Accord-
ing to the results of IF and EdU assays, the depressed
CRC cell proliferation caused by sh-MCF2L-AS1#1
could be greatly reversed by the co-transfection with
miR-105-5p inhibitor (Fig. 3B-C & Supplementary Fig. 1).
As shown by the results of Transwell assays, MCF2L-
AS1 silencing could apparently decrease the migratory
and invasive abilities of CRC cell, but the co-transfection
with miR-105-5p inhibitor could partially reverse the ef-
fect (Fig. 3D-E & Supplementary Fig. 1). In addition, as
observed from flow cytometry assay and caspase-3/8/9
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activity analysis, miR-105-5p silencing could countervail
the facilitating effect on the apoptosis of CRC cells
caused by MCF2L-AS1 down-regulation (Fig. 3F-G &
Supplementary Fig. 1). To conclude, knockdown of miR-
105-5p countervails the inhibitory impact of MCF2L-
AS]1 silencing on the malignant development of CRC.

RAB22A is a target of miR-105-5p and participates in CRC
progression

As the significance of IncRNA-miRNA-mRNA mechan-
ism in tumors has been manifested, it is necessary to
identify the target gene of miR-105-5p [20]. Firstly, we
utilized three bioinformatics tools, which are miRmap
(https://mirmap.ezlab.org/), microT (http://www.
microrna.gr/microT) and RNA22 (http://cbcsrv.watson.
ibm.com/rna22.html) to predict the potential messenger
RNAs (mRNAs) and 4 mRNAs were selected (ARPP19,
PDPR, RAB22A and EXTL2) (Fig. 4A). RT-qPCR was
then adopted to measure the expression of the above 4
mRNAs in HCT15 and SW116 cells under the transfec-
tion of miR-105-5p mimics, and the results showed that
only RAB22A was significantly down-regulated by miR-
105-5p mimics in HCT15 and SW116 cell lines (Fig.
4B). Next, we used RT-qPCR assay to further verify the
expression of RAB22A upon MCF2L-AS1 silencing, and
it was shown that RAB22A expression was declined by
upon MCF2L-AS1 silencing in HCT15 and SW116 cells
(Fig. 4C). After that, the expression level of RAB22A in
CRC cells was tested via RT-qPCR, and results uncov-
ered that RAB22A was highly expressed in CRC cell
lines than that in human normal colon epithelial NCM-
460 cells (Fig. 4D). To continuously verify whether
RAB22A was the target downstream gene of miR-105-
5p, RIP and RNA pull down assays were conducted re-
spectively. As showed in Fig. 4E & Supplementary
Fig. 2A, MCF2L-AS1, miR-105-5p and RAB22A were
enriched in Anti-Ago2 group rather than in Anti-IgG
group, indirectly implying that those three RNAs could
co-exist in RNA-induced-silencing-complex (RISC).
Meanwhile, it was shown that the enrichment of
RAB22A was elevated in the wild type of biotinylated
miR-105-5p (Bio-miR-105-5p-WT) compared to the
mutant type of biotinylated miR-105-5p (Bio-miR-105-
5p-Wut) (Fig. 4F). The binding sites between miR-105-
5p and RAB22A were predicted via ENCORI website
and presented in Fig. 4G. After that, luciferase reporter
assay was adopted to measure the luciferase activity
change under different conditions. As shown by the re-
sults, miR-105-5p overexpression could effectively cut
down the luciferase activity of wild type of RAB22A
(RAB22A-WT) but not the mutant type of RAB22A
(RAB22A-Mut) in CRC cells compared to NC mimics
(Fig. 4H), suggesting the binding ability between
RAB22A and miR-105-5p. Moreover, it was shown by
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rescue assays that RAB22A expression was notably reduced
upon MCF2L-AST silencing while this result could be greatly
rescued by miR-105-5p down-regulation (Fig. 41). Therefore,
it is concluded that MCF2L-AS1/miR-105-5p/RAB22A axis
could act as a regulatory network in CRC.

As for RAB22A, we also detected its functions in CRC
cells. First of all, sh-RAB22A#1 and sh-RAB22A#2 was
transfected into CRC cells and RT-qPCR assay was then
utilized to examine the interference efficiency of RAB22A
in CRC cells (Fig. 4]). Subsequently, IF staining and EAU
assays were adopted to assess the cell proliferation of CRC
cells upon RAB22A silencing, and the results showed that
both the Ki-67 positive cells and EAU positive cells were
reduced by down-regulation of RAB22A, indicating that
RAB22A knockdown could effectively suppress CRC cell
proliferation (Fig. 4K-L & Supplementary Fig. 2B-C). After

that, results of Transwell assay reflected that RAB22A si-
lencing could significantly weaken cell migration and inva-
sion of CRC cells (Fig. 4M-N & Supplementary Fig. 2D-E).
In addition, flow cytometry assay and caspase-3/8/9 activ-
ity analysis were adopted to testify the impact of RAB22A
inhibition on cell apoptosis, and it was shown that the
apoptosis rate of HCT15 and SW116 cells and the activity
of caspase-3/8/9 were enhanced upon RAB22A silencing,
which showed that RAB22A knockdown could effectively
enhance CRC cell apoptosis (Fig. 40-P and Supplemen-
tary Fig. 2F). Besides, it was shown from IF assay that the
down-regulation of RAB22A could lead to the up-
regulation of E-cadherin level, indicating that RAB22A si-
lencing could repress the EMT process of CRC cells (Fig.
4Q). Taken together, RAB22A is the target of miR-105-5p
and aggravates CRC progression.
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RAB22A overexpression attenuates the inhibitory effects
of MCF2L-AS1 silencing on CRC progression

In the last part, a series of rescue experiments were con-
ducted to verify how the MCF2L-AS1 and RAB22A af-
fected the malignant development of CRC cells. The
overexpression efficiency of RAB22A was firstly exam-
ined via RT-qPCR (Fig. 5A). Experimental groups for
rescue assays were then divided into sh-NC, sh-MCF2L-
AS1#1 and sh-MCF2L-AS1#1 + pcDNA3.1/RAB22A
groups. IF staining as well as EdU assays was utilized to
assess cell proliferation in the above transfection groups,
and the results showed that decreased MCF2L-AS1 ex-
pression could weaken cell proliferation, whereas this ef-
fect could be partially reversed by the co-transfection
with pcDNA3.1/RAB22A (Fig. 5B-C & Supplementary
Fig. 1). Next, Transwell assays were adopted to validate
cell migration and invasion under different transfection
groups. Results showed that the repressed cell migration
and invasion mediated by sh-MCF2L-AS1#1 was signifi-
cantly reversed by the co-transfection with pcDNA3.1/
RAB22A (Fig. 5D-E & Supplementary Fig. 1). In the end,
flow cytometry assay and caspase-3/8/9 activity analysis
were conducted to examine CRC cell apoptosis in differ-
ent groups. As shown by the results, it was suggested
that the enhanced cell apoptosis induced by MCF2L-
AS1 silencing could be recovered by the up-regulation
of RAB22A (Fig. 5F-G). In conclusion, RAB22A overex-
pression can reverse the inhibitory effect on CRC pro-
gression caused by MCF2L-AS]1 silencing.

Discussion

LncRNAs, as important biological makers for human
diseases or cancers [21-23], have been extensively stud-
ied in the past few years. The aberrant expression of
IncRNAs has been demonstrated to exert important in-
fluence on the biological behaviors of cells. MCF2L-AS1
serves as a relatively newly found IncRNA and its role in
various tumors remains unclear. When we search for re-
lated studies, we found that MCF2L-AS1 was verified to
be involved in CRC [14, 15] and could promote CRC
progression. Therefore, we chose MCF2L-AS1 as the
study object with the purpose of exploring the under-
lying mechanism of MCF2L-AS1 in CRC development
and comparing our findings with those disclosed by the
previous researches. Accordingly, in our study, MCF2L-
AS1 was discovered to be highly-expressed in CRC calls
and it could accelerate CRC cell proliferation, migration,
invasion, EMT process while inducing cell apoptosis,
which was consistent with the previous findings.

CeRNA pattern is one of the main mechanisms of
post-transcriptional regulation [24], in which IncRNAs
possibly play an important part to regulate their target
genes. In this study, according to the results of subcellu-
lar fractionation and FISH assays, it was demonstrated
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that MCF2L-AS1 was mainly distributed in the cyto-
plasm of CRC cells, which indicated the potential
ceRNA pattern. Therefore, we further explored the po-
tential target of MCF2L-AS1, and miR-105-5p was se-
lected and verified as the target micRNA that could bind
to MCF2L-AS1. Furthermore, a series of functional as-
says were conducted and we proved that miR-105-5p
was with low expression in CRC cells with anti-
proliferative, anti-migratory and pro-apoptotic features.
Many previous reports have revealed the role of miR-
105-5p. For example, CD44 sponges miR-105-5p to
regulate PESI1 in liver cancer stem cells to push tumor
growth [25]. In the Idiopathic Parkinson’s disease, miR-
105-5p is considered as underlying effective biomarker
[26]. In addition, the present study unveiled that miR-
105-5p could be treated as a potential biomarker for
cancer treatment.

Aside from IncRNAs and miRNAs, mRNAs can exert
important functions by building the pathway with
IncRNAs and miRNAs in different tumors or diseases
[20, 27, 28]. For example, Inc-RI acts as a ceRNA to
stabilize RAD51 mRNA via competitively combining
with miR-193a-3p [29]. HOTAIR modulates CCND1
and CCND2 expression through regulating miR-206 ex-
pression in ovarian cancer [30]. Here, RAB22A was
found and verified to be the target gene of miR-105-5p,
and thus the MCF2L-AS1/miR-105-5p/RAB22A axis
was built up in CRC cells. Furthermore, the effects of
RAB22A mRNA in CRC was explored in detail and the
results presented that RAB22A silencing could inhibit
CRC progression. According to previous studies,
RAB22A has been uncovered, as a member of oncogene
family, to promote melanoma growth and renal cell car-
cinoma development [31, 32]. Those findings, together
with the study outcomes in our study, all demonstrated
the oncogenic function of RAB22A in cancer develop-
ment, which indicated its therapeutic value for cancer
treatment.

Conclusion

Our study indicated that MCF2L-AS1 could accelerate
cell proliferation, migration, invasion and EMT progres-
sion, while reduced cell apoptosis via regulating the
miR-105-5p/RAB22A axis in CRC, which suggested that
MCEF2L-AS1 could be treated as a novel biomarker as
well as a therapeutic target for CRC treatment in the
future.
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