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Abstract

Background: Lung adenocarcinoma (LUAD) is a major subtype of lung cancer and closely associated with poor
prognosis. N6-methyladenosine (m6A), one of the most predominant modifications in mRNAs, is found to
participate in tumorigenesis. However, the potential function of m6A RNA methylation in the tumor immune
microenvironment is still murky.

Methods: The gene expression profile cohort and its corresponding clinical data of LUAD patients were downloaded
from TCGA database and GEO database. Based on the expression of 21 m6A regulators, we identified two distinct
subgroups by consensus clustering. The single-sample gene-set enrichment analysis (ssGSEA) algorithm was conducted
to quantify the relative abundance of the fraction of 28 immune cell types. The prognostic model was constructed by
Lasso Cox regression. Survival analysis and receiver operating characteristic (ROC) curves were used to evaluate the
prognostic model.

Result: Consensus classification separated the patients into two clusters (clusters 1 and 2). Those patients in cluster 1
showed a better prognosis and were related to higher immune scores and more immune cell infiltration.
Subsequently, 457 differentially expressed genes (DEGs) between the two clusters were identified, and then a seven-
gene prognostic model was constricted. The survival analysis showed poor prognosis in patients with high-risk score.
The ROC curve confirmed the predictive accuracy of this prognostic risk signature. Besides, further analysis indicated
that there were significant differences between the high-risk and low-risk groups in stages, status, clustering subtypes,
and immunoscore. Low-risk group was related to higher immune score, more immune cell infiltration, and lower
clinical stages. Moreover, multivariate analysis revealed that this prognostic model might be a powerful prognostic
predictor for LUAD. Ultimately, the efficacy of this prognostic model was successfully validated in several external
cohorts (GSE30219, GSE50081 and GSE72094).
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Conclusion: Our study provides a robust signature for predicting patients’ prognosis, which might be helpful for

therapeutic strategies discovery of LUAD.
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Introduction

Lung cancer is one of the common cancers worldwide,
leading to high mortality every year [1]. Non-small cell
lung cancer (NSCLC) accounts for 85% of cases, and
lung adenocarcinoma (LUAD) is the most prevalent sub-
type [2, 3]. Despite great improvements in diagnostic
and therapeutic techniques, the prognosis for LUAD pa-
tients is still poor [4]. Therefore, identifying treatment
targets and effective predictors to improve the prognosis
of LUAD patients is critical.

N6-methyladenosine (m6A) is one of the most com-
mon mRNA internal modifications in eukaryotic or-
ganisms and methylation modificatied at the N6
position of adenosine residues in RNA [5, 6]. The
modification of RNA m6A is involved in many essen-
tial biological processes including gene expression,
immunomodulation and cancers [7]. In addition, RNA
modifications, especially m6A modification, has been
proved to be necessary for tumor development [8].
The tumor microenvironment (TME) is important in
the formation, development, and treatment of tumors
which contains tumor cells, immune cells and stromal
cells [9]. Tumor infiltrating immune cells are an im-
portant component of the complex microenvironment.
Currently, TME has been the hot pot of the tumor
field because research suggested that TME immune
cells are closely related to the prognosis and malig-
nancy of tumors [10]. Hence, exploring the relation-
ship between m6A RNA methylation and immune
microenvironment is beneficial to improve the prog-
nosis accuracy of patients with LUAD.

In this study, we assessed the expression of 21 m6A
regulatory factors from TCGA database, and the
TCGA patients were divided into two clusters accord-
ing to the expression of these genes. Then, a risk
prognostic signature was established on the base of
the differentially expressed genes (DEGs) between the
two clusters. We analyzed and compared the different
immune cell infiltration and clinical outcomes be-
tween the high-risk group and low-risk group. Fur-
thermore, this prognostic model showed pretty good
predictive accuracy compared with other clinical fac-
tors. Importantly, we validated the prognostic model
in three independent external cohorts (GSE30219,
GSE50081 and GSE72094). These results discovered
novel insight for the diagnosis and treatment of
LUAD by using bioinformatics tools.

Materials and methods

Data source

The TCGA database was used to obtaine the gene ex-
pression profile cohort and its corresponding clinical
data of LUAD patients, including the FPKM value of
gene expression of 535 LUAD samples and 59 normal
samples. Four hundred ninety-four samples with
complete survival information were used for subsequent
analysis. Because a considerable number of patients lack
the clinical information of M classification, in order to
ensure the number of samples, we did not include M
classification in the clinical correlation analysis. The nor-
malized matrix files of the three cohorts (GSE30219,
GSE50081 and GSE72094) from the GEO database were
downloaded for the validation data sets.

Consensus cluster analysis for 21 m6A regulators

In this study, we included 21 m6A regulators including
8 writers (METTL3, METTL14, RBM15, RBM15B,
WTAP, VIRMA, CBLL1, ZC3H13), 2 erasers (ALKBHS5,
FTO) and 11 readers (YTHDC1, YTHDC2, YTHDFI,
YTHDEF2, YTHDEF3, IGF2BP1, HNRNPA2B1, HNRNPC,
FMR1, LRPPRC, ELAVLI) [11]. Based on the expression
of 21 m6A regulators, we performed consensus classifi-
cation to identify different m6A modification patterns.
The patients were divided into different subtypes using
the R package “ConsensusClusterPlus” for further ana-
lysis. To ensure the stability of classification, 1000 itera-
tions, and a resample rate of 80% were conducted. The
cumulative distribution function (CDF) curve was used
to determine the clustering number [12].

Inference of tumor microenvironment and immune cells

The immune score was calculated by applying the ESTI-
MATE algorithm to each patient via the “estimate” R
package [13]. The single-sample gene-set enrichment
analysis (ssGSEA) algorithm was conducted to quantify
the relative abundance of the fraction of 28 immune cell

types [14].

Differential gene expression and functional analyses

Wilcoxon test conducted by R software was performed
to identify the differentially expressed genes between
cluster 1 and cluster 2. The cut-off criteria was | logFC
| >1 and FDR <0.05. Gene ontology (GO) enrichment
analysis by clusterProfiler R package was performed to
know the potential biological processes associated with
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the DEGs [15]. The P-value adjusted < 0.05 was regarded
significant.

Risk assessment model construction

Firstly, 457 DEGs were identified between two clusters
for our data screening. The DEGs associated with overall
survival (OS) were screened via univariate Cox regres-
sion analysis. Then, Lasso Cox regression was used to
selected the most striking markers to establish the prog-
nostic model. The optimal value of the penalty param-
eter A was defined by 10-fold cross validation [16]. The
risk score was obtained after multiplying the expression
level of each gene by its coefficient obtained from the
LASSO Cox regression. Then, the patients were divided
into high-risk and low-risk groups according to the opti-
mal cut-off value.

Gene set enrichment analysis

GSEA was used to investigate potential biological func-
tions between different risk groups of LUAD patients
[17]. The number of random sample permutations was
performed 1000 times. The significance was based on
the false discovery rate (FDR) < 0.05 and P-value < 0.05.

Statistical analysis

All data analyses were conducted using R language (ver-
sion 3.6.3). Kaplan-Meier method was used to draw sur-
vival curves. The receiver operating characteristic (ROC)
curve was plotted with the SurvivalROC R package. The
Wilcoxon test was used to compare the two groups’ dif-
ferences. The correlation tests were conducted by Pear-
son correlation analysis. Univariate and multivariate
analyses were conducted to determine whether the prog-
nostic model was independently variable when inte-
grated with other clinical factors. Statistical P < 0.05 was
considered significantly.

Results

The different expression of m6A RNA methylation
regulatory molecules and consensus clustering analysis

In order to explore the potential role of m6A regulatory
factors in the occurrence and development of LUAD, we
systematically analyzed the expression of 21 m6A regula-
tory factors between LUAD and adjacent normal tissues.
The different expression values of these genes between
LUAD and normal tissues were observed in Fig. 1a. Fig-
ure 1b showed the important co-expression patterns be-
tween all the 21 m6A regulatory factors. The results
indicated that YTHDF3 was strongest positively corre-
lated with VIRMA (r = 0.75). RBM15 was positively asso-
ciated with YTHDC2 (r = 0.65). METTL14 was positively
associated with YTHDC1 (r=0.64). Instead, FTO was
negatively associated with HNRNPC (r = -0.27). Then,
we performed a consensus classification to determine
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the optimal number of clusters by looking for a suitable
k value. The k=2 was demonstrated to have the best
clustering stability (Fig. 1c-e). The LUAD patient cohort
was separated into two clusters, namely cluster 1 and
cluster 2. In addition, PCA shows two distinct distribu-
tion patterns, which shows that the classification gener-
ated by consensus clustering analysis is effective (Fig. 1f).
The prognostic analysis showed that the OS of patients
with LUAD in cluster 2 was obviously shorter than that
in cluster 1 (Fig. 1g).

Tumor immune microenvironment of the two clusters of
LUAD patients

A piece of increasing evidence indicated the close re-
lationship between the malignant degree of cancers
and the tumor immune microenvironment. Consider-
ing the obvious differences of the OS in two clusters
of LUAD patients, we speculated that tumor immune
microenvironment might be an important contributor
to the LUAD progress. Then we explored the differ-
ences of immune infiltration to distinguish the pa-
tients in two clusters. Utilizing the ESTIMATE
algorithm, we found that the immune score of cluster
1 was much higher than that of cluster 2 (Fig. 2a).
And the stromal score presented the same tendency
(Fig. 2b). Based on the ssGSEA, we evaluated the pro-
portion difference of 28 immune cell types in the two
clusters (Table S1). As shown in Fig. 2c, the two clus-
ters had significantly different characteristics of im-
mune cell infiltration. In addition, the degree of
immune cell infiltration in cluster 1 was significantly
higher than that in cluster 2. Overall, these findings
demonstrated that the presence of different immune
cell populations may influence the OS of the patients
with LUAD.

Identification of differentially expressed genes and
functional analyses

Four hundred fifty-seven DEGs were identified to further
explore the differences between the two m6A modifica-
tion patterns (Table S2). Among them, 168 DEGs were
up-regulated in cluster 1 and 289 DEGs were up-
regulated in cluster 2. Figure 3a-b showed the heat map
and volcano plot. For better understanding the biological
functions of the two clusters based on DEGs, GO en-
richment analysis was performed by clusterProfiler R
package. And it was found that overexpression of genes
in cluster 1 mainly enriched in immune-related bio-
logical processes, such as humoral immune response
and regulation of adaptive immune response (Fig. 3c and
Table S3). The genes overexpressed in cluster 2 were
found to be mainly enriched in many biological pro-
cesses related to the cell cycle (Fig. 3d and Table S4).
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Fig. 1 Expression of m6A RNA methylation regulators and consensus clustering analysis. a The heat map shows the expression of 21 m6A
regulatory factors between LUAD and adjacent normal tissues. b The co-expression patterns between 21 m6A regulatory factors. ¢ Consensus
clustering of LUAD patients for k=2. d Consensus clustering CDF for k=2-9. e The CDF curve of consensus clustering. f Principal component
analysis of the mRNA expression profile in LUAD patients. g The prognostic analysis between cluster 1 and cluster 2. *p < 0.05, **p < 0.01,
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Construction of a seven-gene prognostic model

With univariate Cox regression analysis, 24 prognostic-
related genes based on the DEGs were identified (Fig. 4a).
Then, Lasso Cox regression was conducted to determine
the key genes with the best prognostic value by reducing
the dimensionality and calculate the relative coefficients
of the genes (Fig. 4b-c). Ultimately, seven optimal genes
including CLEC3B, TENM3, IGF2BP1, E2F7, ANLN,
ANKRD18B and FBN2 were chosen to construct the
prognostic model for LUAD. The coefficients for each
gene were listed in Table S5. The risk score for each pa-
tient was acquired by multiplying the each gene’s expres-
sion level by its coefficient. Then, according to the
optimal cut-off value, the patients were divided into
high- and low-risk groups (Fig. 4d). One hundred forty-
eight patients were in the high-risk group and 346 pa-
tients were in the low-risk group. Besides, the survival

analysis in Fig. 4e revealed the worse prognosis in pa-
tients with a high-risk score. The sensitivity of the prog-
nostic model was assessed by ROC curve (Fig. 4f). And
the AUC result of this risk score model was 0.703. Com-
pared with other clinical parameters, our prognostic risk
signature had pretty good predictive accuracy. The risk
score distribution and each patient’s survival status were
shown in Fig. 4g. The tendency of seven hub genes’ ex-
pression in high-risk and low-risk groups was shown in
the heat map of Fig. 4h.

Correlation analysis was performed between the risk
model and immune cell infiltration

To explore the difference of tumor immune microenvir-
onment between the two groups with different degrees
of risk, the infiltration levels of 28 immune cell types
were evaluated based on ssGSEA (Fig. 5a). The result



Zhou et al. BMC Cancer (2021) 21:938

Page 6 of 14

Type
VP1

T cell mediated immunity

T cell mediated cytotoxicity

regulation of T cell mediated cytotoxicity
regulation of lymphocyte mediated immunity
regulation of leukocyte mediated immunity
regulation of adaptive immune response
positive regulation of humoral immune response
organ or tissue specific immune response
neutrophil mediated immunity

neutrophil mediated cytotoxicity

negative regulation of humoral immune response
mucosal immune response

lymphocyte mediated immunity

leukocyte mediated cytotoxicity
humoral immune response

cell killing

antimicrobial humoral response
|

antimicrobial humoral immune response mediated by antimicrobial peptide

antibacterial humoral response

0o 5 10
—log10(p.value.adjust)

expressed in cluster 2

0.5

Volcano Plot

Type
Cluster 1 35
Cluster 2
28
:E 219
S
=
o
144
a
01
-5 -3.33  -1.67 0 1.67 3.33 5
log2(FoldChange)
spindle organization -
sister chromatid segregation
regulation of nuclear division -
regulation of mitotic nuclear division -
regulation of mitotic cell cycle phase transition
regulation of chromosome segregation -
regulation of cell cycle phase transition
organelle fission
nuclear division Count
15 nuclear chromosome segregation 40
10 mitotic sister chromatid segregation %

izo

mitotic nuclear division

mitotic cell cycle checkpoint

microtubule cytoskeleton organization involved in mitosis
meiotic nuclear division

meiotic chromosome segregation

meiotic cell cycle process
meiotic cell cycle
chromosome segregation

cell cycle checkpoint

o 10 20
-log10(p.value.adjust)

Fig. 3 Identification of differentially expressed genes between two clusters. a The heat map and b volcano plot of differentially expressed genes
between cluster 1 and cluster 2. ¢ GO enrichment analyses of the genes up-expressed in cluster 1. d GO enrichment analyses of the genes up-

suggested that high immune cell infiltration in a signifi-
cant number of low-risk samples. Then, we examined
the distribution of stromal and immune scores between
the two risk groups of patients using the ESTIMATE al-
gorithm. Comparing with the high-risk group, the low-
risk group presented higher immune and stromal scores
(Fig. 5b-c). In addition, PD-L1, PD-1, PD-L2, and LAG3
were assessed to know these different expression of im-
mune checkpoint molecules in different groups (Fig. 5d-
g). When compared to patients in low-risk group, high-
risk group patients had higher expression of immune

checkpoint molecules. This indicated that the prognosis
model may have a potential role in predicting patients’
response to anti-checkpoint immunotherapy. Based on
the TCGA cohort, we further analyzed the distribution
differences of somatic genomic mutation between high-
risk group and low-risk group. We found that high-risk
group presented more extensive tumor mutation burden
than low-risk group (Fig. 5h-i). In addition, we analyzed
the difference in miRNA of the two groups based on the
risk score. A total of 53 differentially expressed miRNAs
were identified with the cut-off criteria | logFC | > 1 and
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FDR < 0.05 based on the TCGA cohort. The results were
shown in Table S6 and visualized in the form of volcano
plot in Fig. S1.

Correlation assessment between risk signature and
clinical features

We further analyzed the relationship between the risk
score model and clinical features. Figure 6a summarized
the expression levels of the seven key genes as a heat
map. Almost all these genes expressed highly in the
high-risk group while CLEC3B highly expressed in the

low-risk group. In addition, CLEC3B was also highly
expressed in normal samples and related to better OS
while the rest six genes were highly expressed in tumor
samples and associated with worse OS (Fig. S2-S3). The
correlation between the seven key genes was showed in
Fig. 6b. The high-risk and low-risk groups have a signifi-
cant difference in terms of stages, status, clustering sub-
types, and immunoscore (Fig. 6a). Compared to the
cluster 2, cluster 1 had a lower risk score (Fig. 6¢). This
was also in line with our previous result that patients in
cluster 1 had a better OS. Moreover, compared to the
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low immunescore group, a lower risk sore in the high
immunescore group was observed in Fig. 6d. With the
clinical-stage increased, the risk score also increased
(Fig. 6f). Figure 6g revealed a slightly better status in the
low-risk group patients. These findings demonstrated
that the prognostic risk signature was closely related to
the malignant degree of tumor. And the attribute

changes of individual patients can be clearly presented
by an alluvial diagram (Fig. 6e).

Considering other clinical features in TCGA, whether
the risk score for OS is an independent indicator needs
further exploration. As the univariate analysis shown in
Fig. 7a, the clinical stage, T stage, N stage, and risk score
were related to poorer survival. The multivariate analysis
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A

indicated that the risk score could be considered as an
independent prognostic factor for patients with LUAD
(Fig. 7b). To facilitate the utilization of risk score, a
nomogram was plotted considering risk score and other

clinical factors (Fig. 7c). Calibration plots for 3-year and
5-year OS were used to visualize the performances of
the nomograms (Fig. 7d). To further explore the bio-
logical pathways associated with the risk signature, we
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performed GSEA enrichment analysis and found that
pathways in cancer and p53 signaling pathway were acti-
vated in high-risk groups (Fig. 7e-f).

Validation of the prognostic signature by the GEO
database

To determine the prognostic potential of the seven-gene
signature in other datasets, Three GEO data sets
(GSE30219, GSE50081 and GSE72094) were adapted as
independent external validation. The same formula was
used to calculate the risk score for each patient in the
GEO cohorts. Then, according to the optimal cut-off
value, we divided LUAD patients into high-risk group
and low-risk group. The patients’ risk score distribution
and survival status were shown in Fig. 8a-c. The survival
curves revealed that patients in the high-risk group have
a shorter survival time than patients in the low-risk
group (Fig. 8d-f). Therefore, our risk signature can well
distinguish patients according to the risk score. It is
helpful for prognosis prediction and treatment of LUAD
patients.

Discussion
Lung cancer is a global public health challenge with its
high mortality [18]. LUAD, a fatal malignancy associated
with poor prognosis and high mortality rates, accounts
for more than 40% of the total incidence of lung cancer
[19, 20]. Although the diagnosis and treatment of LUAD
have made great progress, the effective diagnosis and
prognosis prediction of LUAD patients is still a major
clinical challenge [21]. Therefore, identifying key molecules
and constructing a prediction model with high stability and
effectiveness are conducive to the implementation of pre-
cise treatment and improve the prognosis of patients.
N6-methyladenosine (m6A) is the most abundant in-
ternal modification of eukaryotic mRNA. Almost every
stage of mRNA metabolism is affected by m6A mRNA
methylation [22]. In addition, new evidence suggests that
m6A RNA methylation plays a vital role in tumorigen-
esis and development [23]. FTO and METTL3 have been
reported as potential targets for the diagnosis and treat-
ment of LUAD patients. It is reported that FTO facili-
tates LUAD cell progression by activating cell migration
through m6A demethylation [24]. High expression of
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METTL3 in LUAD is believed to promote the growth
and invasion of cancer cells [25]. However, there are few
studies on the relationship between m6A related genes
and LUAD. In this study, the expression of 21 m6A
regulatory factors from LUAD and adjacent normal tis-
sues were systematically analyzed. We observed the dif-
ferent expression levels of these genes between LUAD
and normal tissues. Based on the expression of 21 m6A
regulatory factors, TCGA patients were divided into two
clusters utilizing consensus classification. The prognosis
of patients in cluster 1 was better than that of patients
in cluster 2. Given that the patients’ prognosis was prob-
ably related to tumor immune microenvironment, the
differences of immune infiltration between two clusters
were analyzed. We found that patients in cluster 1 had a
higher immune score and immune cell infiltration. Pre-
vious studies indicated that the immune-inflamed
phenotype shows the infiltration of massive amounts of
immune cells in the tumor microenvironment, and cor-
related with better prognosis [11, 26]. To further explore
the difference between the two clusters, we identified
457 DEGs and analyzed their biological functions by GO
enrichment analyses. Interestingly, the immune-related
biological processes were mainly enriched for the up-
expressed genes in cluster 1. Then, after selecting seven
survival-associated DEGs by Lasso Cox regression, a reli-
able prognostic model was successfully established. The
survival analysis demonstrated patients with a high-risk
score have a worse prognosis. The ROC curve confirmed
the predictive accuracy of this prognostic risk signature.
In addition, higher immune scores and immune cell in-
filtration were founded in the low-risk group. In recent
years, immune checkpoint inhibitors have attracted
much attention due to their promising application in the
immunotherapy of cancer [27]. Therefore, expressions of
immune checkpoint molecules like PD-L1, PD-1, PD-L2,
and LAG3 in different groups were examined. And it
was found that there existed a positive correlation be-
tween risk score and the expressions of immune check-
point molecules. Therefore, these results demonstrated
that the prognosis model might have a potential role in
predicting the clinical response of immunotherapy.
Among the seven key molecules (CLEC3B, TENM3,
IGF2BP1, E2F7, ANLN, ANKRD18B, and FBN2), only
CLEC3B highly expressed in the low-risk group while
other genes highly expressed in the high-risk group.
CLEC3B, C-type lectin domain family 3 member B, is a
member of the C-type lectin superfamily [28]. It encodes
tetranectin, a plasminogen kringle-4-binding protein in
cells [29]. It is reported that CLEC3B was down-
regulated in several tumors and considered as a tumor
suppressor in oral squamous cell carcinoma [30]. A pre-
vious study demonstrated that the expression of
CLEC3B is correlated with the level of immune
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infiltration in lung cancer, and it is promising to be the
important marker for the early diagnosis of lung cancer
[31]. The protein encoded by TENM3 gene belongs to
the teneurin family and is involved in tumorigenesis and
drug resistance [32]. It is reported that TENM3 was up-
regulated in tumor tissues, and it may function as an
oncogenic gene in esophageal cancer [33]. However, the
role of TENM3 in lung cancer is not yet clear. IGF2BP1
is an RNA-binding protein that participates in tumor
progression, tumor cell proliferation and growth [34,
35]. The let-7 family exerts its role in suppressing the
migration and growth of tumor cells by inhibiting the
expression of IGF2BP1 [36]. Previous studies showed the
up-regulation of IGF2BP1 in LUAD, which affects the
progression of the disease [37, 38]. Furthermore, high
expression of IGF2BP1 was associated with poor OS in
LUAD [37]. E2F7 is a member of the E2F transcription
factors family. It is reported that the mammalian E2F
transcription factors play vital roles in the cell cycle, so
they are closely related to cancer [39]. In addition, E2F7
has been found up-regulated in various malignant tu-
mors, such as acute myeloid leukaemia and cutaneous
squamous cell carcinomas [40, 41]. Knockdown of E2F7
can repress cell growth in endometrial carcinoma [42].
However, how E2F7 participates in LUAD is still un-
known. The ANLN gene encodes an actin-binding protein
that contributes to cell growth and migration [43]. The ex-
pression of ANLN is up-regulated in a variety of types of
tumors, including lung cancer, and the development of
cancers is related to the expression level of ANLN [44].
Previous studies indicated the vital role of ANLN in cell
proliferation, and lacking ANLN reduced cell migration
and invasion [45, 46]. ANLN has been reported to partici-
pate in the metastasis of LUAD by promoting the EMT of
tumor cells [47]. ANKRD18B is a member of ANKRD
family that functions in the occurrence of cancer, evidence
that over-expression of ANKRDI18B suppressed the
growth of lung cancer cells has been reported [48]. FBN2
encoded the protein which belongs to the connective tis-
sue microfibrils and participates in elastic fiber assembly.
Nevertheless, there is no doubt to determine the impact of
FBN2 in LUAD in the future.

Nevertheless, our study had a few limitations to be
considered. Firstly, further experiments are necessary to
verify our results because our study was only based on
public databases. Secondly, larger sample size is neces-
sary to confirm the predictive ability of our prognostic
models. Thirdly, the biological roles of the seven key
genes in LUAD require further experimental validation.

Conclusions

In summary, based on the differentially expressed genes
between the two clusters, a reliable prognostic model
was established and identified as an independent
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prognostic predictor for LUAD. Furthermore, this risk
signature could also be considered as a predictor of in-
creased immune cell infiltration, proving its potential
role in the tumor immune microenvironment. Import-
antly, the prognostic value of this risk signature was suc-
cessfully validated in independent external cohorts
(GSE30219, GSE50081 and GSE72094). Our current
study provides a robust prognostic model to predict the
prognosis of LUAD patients, which may provide signifi-
cant guidance for the diagnosis and treatment of LUAD.
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