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Abstract

Background: A plethora of prognostic biomarkers for esophageal squamous cell carcinoma (ESCC) that have
hitherto been reported are challenged with low reproducibility due to high molecular heterogeneity of ESCC. The
purpose of this study was to identify the optimal biomarkers for ESCC using machine learning algorithms.

Methods: Biomarkers related to clinical survival, recurrence or therapeutic response of patients with ESCC were
determined through literature database searching. Forty-eight biomarkers linked to recurrence or prognosis of ESCC
were used to construct a molecular interaction network based on NetBox and then to identify the functional
modules. Publicably available mRNA transcriptome data of ESCC downloaded from Gene Expression Omnibus (GEO)
and The Cancer Genome Atlas (TCGA) datasets included GSE53625 and TCGA-ESCC. Five machine learning
algorithms, including logical regression (LR), support vector machine (SVM), artificial neural network (ANN), random
forest (RF) and XGBoost, were used to develop classifiers for prognostic classification for feature selection. The area
under ROC curve (AUC) was used to evaluate the performance of the prognostic classifiers. The importances of
identified molecules were ranked by their occurrence frequencies in the prognostic classifiers. Kaplan-Meier survival
analysis and log-rank test were performed to determine the statistical significance of overall survival.

Results: A total of 48 clinically proven molecules associated with ESCC progression were used to construct a
molecular interaction network with 3 functional modules comprising 17 component molecules. The 131,071
prognostic classifiers using these 17 molecules were built for each machine learning algorithm. Using the
occurrence frequencies in the prognostic classifiers with AUCs greater than the mean value of all 131,071 AUCs to
rank importances of these 17 molecules, stratifin encoded by SFN was identified as the optimal prognostic
biomarker for ESCC, whose performance was further validated in another 2 independent cohorts.
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Conclusion: The occurrence frequencies across various feature selection approaches reflect the degree of clinical
importance and stratifin is an optimal prognostic biomarker for ESCC.

Keywords: Esophageal squamous cell carcinoma, Stratifin, Machine learning, Support vector machine, Random
forest, Logical regression, Artificial neural network, eXtreme gradient boosting

Background
There are approximate 572,000 new cases of esophageal
cancer (EC) worldwide in 2018, half of which arise in
China [1, 2]. EC ranks sixth and fourth in the incidence
and mortality of malignant tumors in China, respectively
[3, 4]. The predominant histological subtypes of EC
comprise esophageal squamous cell carcinoma (ESCC)
and esophageal adenocarcinoma (EAC), among which
ESCC accounting for at least 90% of EC in China [5, 6].
Epidemiological studies show that the risk factors of
ESCC implicate cigarette smoking, genetic family his-
tory, nutritional deficiencies, pickled vegetables intake,
hot food and beverage, low socioeconomic status, etc. [7,
8]. In sharp contrast, the increasing risk for EAC is asso-
ciated with excess body weight and gastroesophageal re-
flux disorders, which are prevalent in western countries.
Furthermore, heavy smoking contributes to an elevated
risk of both ESCC and EAC. In the case of alcohol con-
sumption, however, modest to moderate consumption is
linked to a reduced risk in ESCC in China, and in EAC
in western countries [9]. Heavy alcohol consumption is a
strong and well-established risk factor for ESCC in west-
ern settings, and cigarette smoking plays a negligible role
in ESCC etiology in a high-incidence area of China [8].
As such, it is not possible to distinguish ESCC patients
with disparate clinical outcomes under the same expos-
ure conditions based on the risk factors alone. On the
other hand, “omics” studies are characterized by poor re-
producibility, which could be ascribed to molecular het-
erogeneity, sample source, tissue processing, detection
technique, data analysis, etc. Van't Veer et al. [10] from
Netherlands and Wang et al. [11] from USA analyzed
the differentially expressed genes in 295 and 286 cases
with breast cancer using gene chip technology, respect-
ively, from which the 70- and 76-signature gene sets for
prognostic prediction were developed but with only 3
overlapping genes. Each performed well on its own data-
set but not on other datasets. This was also the case for
colorectal cancer [12]. It is well-accepted that tumor het-
erogeneity increases the risk of recurrence and metasta-
sis of tumor patients after treatment and even lead to
the resistance to multimodality treatment [13, 14]. Re-
cently, Lin et al. have revealed the molecular heterogen-
eity of ESCC and its biological significance for tumor
development and metastasis from multiple cancers, and
revealed the impacts of molecular heterogeneity on the
occurrence, development, and prognosis of ESCC [15].

Machine learning is an important branch of artificial
intelligence (AI), which provides a possible solution to
the current problem of poor reproducibility in group
learning. Generally, the machine learning algorithms are
divided into weak classifier algorithm and strong classi-
fier algorithm, such as logical regression (LR), support
vector machine (SVM) and artificial neural network
(ANN) as weak classifier algorithms, and random forest
(RF) and eXtreme Gradient Boosting (XGBoost) as
strong classifier algorithms. Machine learning algorithms
have been widely used in medical science, especially in
the diagnosis, prognostic prediction of patients with can-
cer. For example, Xu et al. identified 5 features among
31 features closely related to the prognosis of ESCC
using the genetic algorithm, and established a new ESCC
staging system MASAN, showing better prognostic pre-
diction accuracy compared with the currently used
TNM staging system [16]. In a prospective cohort study,
four machine learning methods, including RF, LR, gradi-
ent lifting tree, and ANN, were employed to predict the
risk of cardiovascular disease, and the performances
were compared between machine learning algorithm and
traditional method of ACC/AHA10 annual risk predic-
tion model. The performance of the four machine learn-
ing algorithm models was superior [17].

Given the molecular heterogeneity of cancers, we hy-
pothesized that key molecules could serve as genuine
prognostic factors even in complicated interactions with
other molecules. To further identify key prognostic bio-
markers for ESCC, 48 clinically proven molecules associ-
ated with ESCC progression were used for subnetwork
construction. Using all combinations of 17 component
molecules from 3 functional modules, 5 different ma-
chine learning algorithms, including LR, SVM, ANN, RF
and XGBoost, were used to develop prognostic classi-
fiers. The importances of these 17 molecules were
gauged according to the occurrence frequencies in the
prognostic classifiers. The prognostic value of stratifin
was validated in another 2 independent ESCC cohorts.

Methods

Literature search

Literatures related to the prognosis and treatment re-
sponse of ESCC were retrieved from NCBI PubMed,
Web of Science and Embase databases, published up to
31 December 2018, by two independent researchers. The
key words for literature searching included “esophageal
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squamous cell cancer”, “prognosis or recurrence or re-
sistance or sensitivity” and “chemotherapy or chemora-
diotherapy”. All relevant studies were retrieved.

Inclusion and exclusion criteria

We selected the studies using the following criteria: (1)
clinical prognosis of patients with ESCC; (2) prediction
of clinical response to chemotherapy or chemoradiother-
apy; (3) clinical recurrence of ESCC; (4) retrospective
and prospective cohort studies; (5) studies published in
English. When disagreements occurred between re-
viewers, a third reviewer was invited for discussion of
the eligibility of related studies.

Datasets downloads

Publicably available mRNA transcriptome data of ESCC
from Gene Expression Omnibus (GEO) and The Cancer
Genome Atlas (TCGA) datasets included GSE53625 and
TCGA-ESCC. GSE53625 included 179 patients with
ESCC that were randomly divided into a training cohort
of 134 patients and a test cohort of 45 patients. Since
the GSE53625 data had been normalized in the original
study [18] and all samples in the data set were paired
samples, the difference between the expression values of
cancer tissue and corresponding adjacent tissue was
taken as the input data for all subsequent calculations.
TCGA-ESCC contained 82 patients with ESCC, of which
37 Vietnamese patients with ESCC were used for an in-
dependent validation.

Patients and clinical samples

Eighty-six fresh-frozen ESCC with matched noncancer-
ous mucosa samples were collected from the First Affili-
ated Hospital of Henan University of Science and
Technology between 2012 and 2017. All ESCC patients
received curative esophagectomy without preoperative
neoadjuvant chemoradiotherapy.

Subnetwork construction

In this study, 48 molecules related to prognosis of ESCC
were mapped and imported to NetBox (https://cbio.
mskcc.org/tools/netbox/) to establish a molecular inter-
action subnetwork for network analysis [19]. NetBox, a
java-based software tool, integrates four databases in-
cluding the Human Protein Reference Database (HPRD),
Reactome, NCI-Nature Pathway Interaction (PID) Data-
base, and the MSKCC Cancer Cell Map. The shortest
path between molecules in the network was defined as 1,
denoting that molecules with direct interaction were se-
lected as nodes of the subnetwork. Functional modules
in the network were identified and degree of nodes were
calculated by igraph R package.
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Introduction of machine learning algorithms

This study used 5 machine learning algorithms, includ-
ing LR, SVM, ANN, RF and XGBoost, to develop classi-
fiers for prognostic classification.

The LR model is a generalized linear model, which is
based on linear regression with a layer of Sigmoid func-
tion mapping. LR regression model is one of the most
commonly used methods in medical research [20, 21].

SVM is a supervised learning method developed by
Cortes and Vapnik in 1995 [22]. The support vectors are
used to find the best hyperplane and then classify sam-
ples with different labels. The nonlinear features are
mapped to the new high dimensional space by con-
structing a mapping function, and the inner product op-
eration in the mapping space is simplified by kernel
function to ensure that the results were equivalent, to
achieve the linear separability of the samples. In this
study, the Radial Basis Function (RBF) kernel function
was used, and the RBF’s transformation method was as
follows:

7,2
= |l

K(x,x) = exp( 52-) » where o is the hyper-
parameter controlled in accordance with deviation and
error of variance.

Neural networks are an important machine learning
technology and have widespread applications with ad-
vances of scientific computing capabilities such as super-
computers and quantum computing. In general, a neural
network consists of an input layer, multiple hidden
layers, and an output layer. The most important element
in a neural network is the design of hidden layer and
connection weight between neurons. Logistic regression
belongs to the neural network with zero hidden layers.

RF and XGBoost are two integrated learning algo-
rithms based on bagging and boosting algorithms, re-
spectively. Integrated learning uses a certain method to
learn multiple weak classifiers with some differences
followed by combination of these classifiers. If the error
rate of weak classifier is less than 0.5, the combination
of multiple weak classifiers will gradually increase pre-
dictive ability and reduce classification error to achieve
classification.

Development of classifiers

For 179 patients with ESCC samples, labels were
assigned according to the survival time. Label 1 denotes
the ESCC cases with survival times of more than 3 years
and the remaining cases were labeled as 0. In the train-
ing cohort, cross-validation and parameter optimization
were used to develop the models, and the test cohort
was used for validation. Receiver operating characteristic
(ROC) curve analysis was used to estimate predictive
values of machine learning classifiers and the area under
the curve AUC (area under ROC Curve) was calculated.
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For each machine learning algorithm, 131,071 models
representing various combinations of 17 selected fea-
tures were established, and AUCs of the models in
training and test cohort were calculated. During the de-
velopment of classifiers, candidate classifiers were those
classifiers with AUCs greater than the average of AUCs
across all classifiers. Among all candidate classifiers, top
1000 models with the highest AUC values in test cohort
were selected, and the occurrence frequencies of each
molecule were counted in these 1000 classifiers. Top 5
molecules with the highest occurrence frequency were
regarded as the important molecules of the correspond-
ing machine learning algorithm.

The construction and testing of the classifiers in this
study were implemented by using R 3.6.3. The weak
classifier uses R packages such as bestglm, 1071, and
nnet, and the integrated learning algorithm uses random
forest and xgboost.

RNA extraction and quantitative RT-PCR

Total RNA of 86 pairs of ESCC samples with matched
noncancerous tissues were isolated using Trizol reagent
(Invitrogen, Carisbad, CA), and reverse transcription was
performed using 1 pg of total RNA (Promega, USA). The
primer pair for stratifin was as follows: forward primer,
5'-GACTACTACCGCTACCTGGC-3’, and reverse pri-
mer, 5'-GTTGGCGATCTCGTAGTGGA-3'. GAPDH
was used as an internal standard and its primer pair was
as follows, forward primer, 5'- GCCACATCGCTCAG
ACACC -3, and reverse primer, 5'- GATGGCAACA
ATATCCACTTTACC -3’. Quantitative RT-PCR was
performed in triplicate on an Applied Biosystems 7900
quantitative PCR system (Foster City, CA, USA). The Ct
values were used for comparison using 2% method
with GAPDH as the internal standard.

Statistical analysis

Differences of the quantitative data between 2 groups
were performed using the unpaired or paired Student t-
test. The relationship between the abundance of western
blot and the expression level of SEN was analyzed by
using linear regression. Overall survival was calculated
from the date of surgery to the date of last follow-up or
death. The Kaplan-Meier survival curves and log-rank
tests were performed to determine the statistical signifi-
cance of overall survival. All tests were 2-tailed and P <
0.05 were designated as significantly different.

Results

Prognostic biomarkers of esophageal squamous cell
carcinoma

We initially retrieved 38 articles, which reported a total
of 48 molecules associated with the clinical survival, re-
currence or therapeutic outcome of ESCC patients
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(Table 1). In addition, a long non-coding RNAs
LOC285194 and 6 microRNAs, including miR-23a, miR-
24, miR-382, miR-7, and a combination of miR-133a and
miR-133b, were identified as well. Due to their low num-
bers, these microRNAs and long non-coding RNA were
excluded from this study. Thus, 48 unique molecules
were included for subsequent study.

Identification of key prognostic molecules

Our approach for validating clinically proven molecules
associated with prognosis of ESCC is summarized in
Fig. 1. All 48 molecules were used to construct a
protein-protein interaction network using NetBox. The
shortest path between the molecules in the network was
defined as 1, indicating that those molecules with direct
interaction were retained as nodes in the network. This
study is based on the local version of Java and Python
using NetBox algorithm to define the functional mod-
ules. By inputting the Entrez ID of 48 molecules, 3 func-
tional modules containing a total of 17 molecules as
vertices and 19 edges were identified. A subnetwork of
16 molecules among these 17 molecules based on
STRING database (https://string-db.org/) was built with
0.7 as the minimum interaction score (Fig. 2a).

Prognostic classification using 5 machine learning
algorithms

Seeking to improve the predicative accuracy of ESCC
prognosis, 5 different machine learning algorithms, in-
cluding LR, SVM, ANN, RF and XGBoost, were lever-
aged for prognostic classification using the 17 prognostic
molecules. Among the prognostic models with AUCs
greater than the mean value of all AUCs of 131,071
models for each algorithm, the importances of those 17
prognostic molecules were weighted by their occurrence
frequencies. Table 2 shows the top 5 important mole-
cules identified by each machine learning algorithm and
the intersecting molecule is SEN only (Fig. 2c), indicat-
ing that SFN may be the optimal prognostic biomarker
for ESCC.

Correlation of stratifin mRNA and protein expression

Because we have reported that stratifin protein encoded
by SEN by immunohistochemical assay was reduced sig-
nificantly in ESCC compared with normal esophageal
mucosa and intraepithelial neoplasia, the present study,
however, revealed that stratifin mRNA expression was
downregulated in ESCC compared with noncancerous
tissues using an ESCC cohort of GSE53625. We assessed
the correlation between stratifin protein and mRNA ex-
pression. Figure 2d shows that stratifin protein levels
strongly correlate with its mRNA levels in ESCC tissues,
detected by Western blot and by RT-PCR, respectively,
suggesting that both the protein and mRNA expression
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Table 1 Thirty-eight studies reporting 48 molecules that were associated with clinical survival, recurrence or therapeutic outcome of

ESCC patients

Biomarkers Prognosis/ PMID Sample Conclusions
recurrence sizes
/therapeutic
outcome

BRCA1 Prognosis and 23,326,344 144 Low BRCAT expression was an independent prognostic factor in
chemoradiotherapy cisplatin-based chemotherapy (HR 0.29, 95% ClI 0.12-0.71; P=0.007) or

chemoradiotherapy (HR 0.12, 95% Cl 0.04-0.37; P < 0.001) group.

CCNA2 Chemotherapy 23,205,070 48 The expression of cyclin A was an independent prognosis factor in
patients with ESCC following paclitaxel-based chemotherapy.

CCND1 Prognosis and 9988238 172 Patients with cyclin D1-positive carcinomas showed significantly worse

radiochemotherapy overall survival than patients with cyclin D1-negative carcinomas (HR
2.14,95% Cl 1.134-3.42; P=0.0038)

CD163 & CD68 Prognosis and 25,752,960 210 High infiltration of CD68+ macrophages and CD163+ macrophages
neoadjuvant was significantly associated with poor prognosis for patients
chemotherapy undergoing neoadjuvant chemotherapy (P =0.057, P = 0.003).

CD274 Prognosis and 26,623,522 45 The higher PD-L1 H-scores had poorer overall survival (median 16.7
chemoradiotherapy versus 32.9 months, P =0.02) than those with lower H-scores. (HR 2.29,

95% ClI 1.12-4.69; P=0.023)

CD44 & PROM1 Prognosis 27,748,881 47 Patients with strong expression of CD44 or CD133 and those with a
high ratio of CD133-positive tumor cells showed significantly poor
prognosis regardless of the effect of chemotherapy. PROM1 (HR 5.05,
95% Cl 1.12-4.69; P = 0.023)

CDKN2A neoadjuvant 26,514,506 101 ESCC tumors that were found positive for p16 expression appeared to

chemotherapy fall into responders group rather than non responders (P = 0.008) and
reported with less mortality (P=0.048).

CEA & KRT19 Chemoradiotherapy 19,863,186 84 CEA may be helpful in predicting the responsiveness in ESCC of
primary lesions to CRT, with the effective rates (CR + PR) in CEA high
and low groups of 58.3% (14/24) and 93.3% (56/60), respectively (P =
0.013 and 0.013).

EGFR Chemoradiotherapy 17,940,077 62 The difference in the CR rate between EGFR positive and -negative
groups was significant (CR rate: 62% vs. 34%; P = 0.037).

CRP Chemoradiotherapy 21,224,533 36 Serum CRP can predict of CRT response with an accuracy of 75%.

ERCC1 Chemotherapy 23,263,828 46 Patients with ERCC1 negative tumors had a higher treatment
response than the ERCC1 positive group (radiological response rates;
92.3% vs.50%, P=0.013).

FAM84B Neoadjuvant 25,980,316 21 The fold-change of circulating FAM84B mRNA expression can predict

chemoradiation the pCR with an AUC of 0.73.

FDXR Prognosis and 26,637,858 50 Fdxr was significantly correlated with postoperative outcomes and an
Neoadjuvant independent prognostic factor (HR 4.950, 95% Cl 1.603-15.38; 0.012).
chemoradiation

HOXC6 & HOXC8 Prognosis 24,525,058 274 HOXC6 and HOXC8 were independent prognostic factors in patients
with ESCC. HOXC6: (HR 1.341, 95% CI 0.895-2.010; P = 0.045); HOXCS:
(HR 1.657, 95% Cl 1.146-2.395; P=0.007).

IL6R Prognosis 23,648,090 218 The sIL6R level was one of several significant independent predictors
of an unfavorable outcome. (HR 3.20, 95% C| 1.34-7.53; P =0.008)

MDM2 & MKI67 Prognosis and 25,880,782 79 MDM2 and p16 are predictive markers for chemoradioresistance in
chemoradiotherapy cStagelll ESCC and Ki-67 is a prognostic marker following dCRT in

cStagelll ESCC.

MLH1 Prognosis 18,053,639 51 The expression of hMLH1 is a potential marker of tumor response and
survival.

MMS19 Chemoradiotherapy 25,892,874 103 High cytoplasmic MMS19 expression was associated with a good
response to chemoradiotherapy (OR 11.5, 95% Cl: 3.0-44.5; P < 0.001).

MT3 Prognosis 16,351,731 64 Esophageal squamous cell carcinomas with negative p53, positive
CDC25B, and negative MT expressions respond well to CRT.

MUC13 & MUC20 Prognosis and 26,323,930 186 The median survival time of patients with low MUC13/high MUC20

neoadjuvant
chemotherapy

expression was significantly shorter than that of patients with high
MUC13/low MUC20 expression (27.7 months vs. 59.5 months, P=
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Table 1 Thirty-eight studies reporting 48 molecules that were associated with clinical survival, recurrence or therapeutic outcome of

ESCC patients (Continued)

Biomarkers Prognosis/ PMID Sample Conclusions

recurrence sizes

/therapeutic

outcome
0.021; HR 0.531, 95% Cl: 0.299-0.944; P=0.031).

MUC4 neoadjuvant 26,673,820 186 Low expression of MUC4 and MUC20 in resection samples was

chemotherapy significantly correlated with better TRG (tumor regression grade).
MUC4 and MUC20 were identified as potential biomarkers for
predicting the efficacy of neoadjuvant chemotherapy in ESCC
patients.

NOTCH1 & PIK3CA Prognosis and 26,528,858 104 NOTCH1 mutations was correlated with shorter survival times and

Chemotherapy failed to respond to chemotherapy, whereas PIK3CA mutations
pointed to better responses to chemotherapy and longer survival
times than patients without PIK3CA mutations.

PTGS2 Prognosis and 21,437,756 58 Negative or weak expression of PTGS2 was correlated significantly

Chemoradiotherapy with CRT response (OR 6.296, 95% Cl 1.58-25.096; P=0.010).

PTPN6 Prognosis 32,536,826 184 Elevated PTPN6 expression indicated longer OS (HR 1.123, 95% Cl:
0.565-2.230; P=0.741).

RADS1 Prognosis and 24,065,387 89 Rad51 expression in ESCC was associated with poor survival (P=

recurrence 0.0324) and recurrence (P=0.0171).

REGTA Prognosis 23,645481 177 REGTA expression was a significant prognostic factor (HR 3.095, 95%
Cl: 1.569-5.943; P=0.0015).

SFN Chemoradiation 15,999,354 62 SFN-positive expressions were closely related to the response to CRT.

therapy

Prognosis 24,743,601 278 Downregulation of 14-3-3cpredicts poor survival, suggesting that 14—
3-30may be a biomarker for early detection of high-risk subjects and
diagnosis of ESCC. (HR 0.466, 95% Cl 0.251-0.866; P=0.016).

Prognosis 20,108,042 148 Reduced stratifin expression, T4 stage, lymph node metastasis, and
distant metastasis were independent risk factors for worse prognosis
in ESCC patients.

SGTA Prognosis 23,939,810 120 SGTA expression indicated poor prognosis (RR 3.513, 95% Cl: 2.161-
9.791; P=0.016).

TGFB1 & VEGFA Prognosis 24,623,035 79 VEGFA and TGFB1 were significantly associated with pathological
response and/or DFS, and may be used to predict pathological
response and survivals for ESCC patients receiving combined modality
therapy.

TP53 & RRM2B Prognosis and 15,655,547 62 p53 or p53R2 (RRM2B) expression was correlated with a favorable

chemoradiotherapy response to CRT (P=0.0001 or 0.041 clinical, P=0.016 or 0.0018
histological, respectively; TP53, RR 2.688, 95% Cl: 1.157-6.250; P=
0.0011. RRM2B, RR 2.469, 95% Cl: 1.164-5.235; P=0.0057).

Prognosis 25,135,238 36 The median tumor associated survival was 34.2 months for patients
with normal TP53, compared with 8.9 months for those with mutant
TP53. The latter had a 3-fold higher risk of death (HR 3.01, 95% Cl
1.359-6.86; P=0.005).

Prognosis 10,414,702 42 The current study indicated that p53 mutation of tumor tissues might
be a prognostic factor for esophageal squamous cell carcinoma cases
and one of the risk factors for its recurrence.

Chemotherapy 19,941,080 97 Patients with mutations in p53 therefore showed significantly poorer
prognosis than those without mutant p53.

RAC3 & TRAM1 Prognosis and 19,552,757 98 Overexpression of AIB1/RAC3/ TRAM1 is a useful predictor of CRT

chemoradiotherapy resistance and an independent molecular marker of poor prognosis
for ESCC patients.

ALDHTAT, ALDH1A2, Prognosis and 22,847,125 152 ALDH1 was a predictor of postoperative recurrence and prognosis in

ALDH1A3, ALDH1B1, ALDH1L1, recurrence ESCC, and CD44 might be a predictor of recurrence and prognosis.

ALDH1L2

PITX2 Prognosis and 23,132,660 454 High expression of PITX2 was associated with poor disease-specific

chemoradiotherapy

survival (HR 1.732, 95% Cl 1.133-2.646; P=0.011) in ESCC.
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Clinically proven molecules associated
with prognosis of ESCC

ﬂ4=.[ NetBox |

[ 17 selected mRNAs (131071 combinations) ]

|

[ mRNA transcriptome of 179 samples from GSE53625 ]

[Training set (134 samples )] [ Test set(45 samples) ]

5 machine learning algorithms

(Logical regression, SVM, artificial neural network,
random forest and XGBoost)

l

[ Optimal prognostic biomarkers of ESCC ]

l

[ Validations ]

I |

GSE53625
(179 samples)

TCGA-ESCC
(37 Asian samples)

An independent validation
cohort (86 samples)

Fig. 1 The flowchart for identification of optimal prognostic molecules for esophageal squamous cell carcinoma

patterns of stratifin may have prognostic implication in
ESCC.

Prognostic validation of stratifin

Using the dataset of GSE53625, 125 and 54 patients
with ESCC were dichotomized into high-risk and low-
risk subgroups according to optimal expression
threshold of stratifin. The Kaplan-Meier survival ana-
lysis showed that the median survival times of the
high-risk and low-risk subgroups were 25.5months
and > 60 months, respectively (Fig. 3a). Moreover, log-
rank test showed that the survival times of two
groups were significantly different, with a hazard ratio
of 0.49 for patients with high stratifin expression
(95% CI, 0.31 to 0.78, P=0.002). The 3-year survival
rates for these 2 subgroups were 42.4 and 63.1%, re-
spectively. These results indicate that high expression
of gene SEN is favorable to long-term survival of
ESCC patients. In the 37 cases of ESCC with Asian

ancestry from TCGA database, there was a trend for
a favorable prognosis in ESCC patients with high
mRNA levels of stratifin (P =0.094, Fig. 3b).

We then validated the prognostic value of stratifin
mRNA in another independent 86 ESCC cases. Using
the median of stratifin mRNA levels as a cut-off value,
40 patients with ESCC were assigned to the high-risk
subgroup and the other 46 patients to the low-risk sub-
group. In consistent with previous results, ESCC patients
in the high-risk subgroup had a significantly poorer sur-
vival than those in the low-risk subgroup. The median
survival time for patients in the high-risk group was
37.5 months, while that for ESCC patients in the low-
risk group was 60 months. The 3-year survival rates for
the high-risk and low-risk subgroups were 53.6 and
73.5%, respectively. The log-rank test showed that the
survival times of two groups were significantly different,
with hazard ratio of 0.44 (95% CI, 0.26 to 0.75, P=
0.0018, Fig. 3c).
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Discussion

In this study, 48 molecules associated with clinical out-
come of ESCC were used for construction of a molecular
interaction network and subsequent identification of
functional modules. Afterwards, all combinations of 17
component molecules from 3 modules were used to de-
velop prognostic classifiers with 5 machine learning

Table 2 The top 5 important molecules identified by each
machine learning algorithm

Molecule Weak classifiers Strong classifiers
rank LR SVM ANN RF XGBoost
1 CD44 CD44 SFN SFN SFN

2 RAC3 TRAM1 CCND1 PTGS2 PIK3CA

3 TP53 SFN CD44 MDM2 CD44

4 EGFR PTGS2 PTGS2 PIK3CA VEGFA

5 SFN VEGFA MDM2 RAC3 PTGS2

algorithms. Stratifin encoded by SFN was identified as
the key prognostic biomarker for ESCC because it was
the top overlapping molecule across the 5 prognostic
methods used in this study. The down-regulation of stra-
tifin mRNA and protein expression was associated with
an overall poor survival of ESCC patients in 3 independ-
ent cohorts. Therefore, stratifin encoded by SEN was a
robust biomarker for prognostic prediction of ESCC
patients.

A variety of computational methods, such as dimen-
sionality reduction [16], Cox multivariate regression
[23], and subnetworks construction [24], have been used
to identify biomarkers for detection, diagnosis and prog-
nosis of patients suffering from cancers. In most cases,
these methods were applied independently. As a result,
distinct sets of molecules are identified by using various
algorithms. It is conceivable, however, that the key mole-
cules exerting crucial biological functions in cancer
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progression might be identified by these different com-
putational analyses. The frequencies of overlapping mol-
ecules identified across these computational algorithms
represent the degrees of functional importance. Using a
subset of 38 miRNAs with experimental evidence associ-
ated with breast cancer, Oneeb et al. employed 3 feature
selection methods, including Information Gain, Chi
Squared, and Least Absolute Shrinkage and Selection
Operation, to rank the importances of miRNAs. The top
10 important miRNAs were utilized to build optimal
classifiers for discrimination between breast cancer cases
and healthy subjects using RF-based and SVM-based al-
gorithms. A 3-miRNA signature showed the best per-
formance for diagnosis of breast cancer, indicating that
not all miRNAs are equally important as cancer bio-
markers [25]. Notably, these results demonstrate that
the machine learning is a useful tool for feature selection
without transformation of original features. In the
present study, 48 biomarkers with clinical evidence for
prognosis of ESCC were used to construct a subnetwork
with 3 functional modules, including 17 component
molecules. To rank the importances of these 17 mol-
ecule features, 5 machine learning algorithms were used
for feature selection with SEN as the top overlapping
gene, suggesting that SEN might be the optimal prog-
nostic biomarker for ESCC.

In line with our previous findings, the expression pat-
tern of stratifin mRNA resembled its protein expression,
both of which were downregulated in ESCC compared
with adjacent noncancerous mucosa. In the ESCC co-
hort of GSE53625, stratifin mRNA was an independent
prognostic biomarker. This was also the case in another
independent 86 ESCC cohort. Furthermore, a strong
positive correlation between mRNA and protein expres-
sion of stratifin was found as well. Stratifin, one of the
seven isoforms of 14-3-3 proteins in mammals, form
homodimers and heterodimers that could bind to a
number of target proteins in native state. Through

association, stratifin regulates the functions of its li-
gands, including cytoskeletal dynamics, cell cycle regula-
tion, polarity, adhesion, motility, mitogenic signaling and
oncogenic signaling. In response to DNA damage, p53
can induce stratifin expression. In this manner, upregu-
lation of stratifin causes G, arrest through sequestration
of cdc2-cyclin B1 complex in cytoplasm and allows the
repair of damaged DNA before further cell cycle pro-
gression. Thus, stratifin has been suggested to be a po-
tential tumor suppressor. Decreased expression levels of
stratifin occur frequently in many human cancers in-
cluding breast [26-33], lung [34], colon [35], liver [36],
prostate [37-39], ovary [40—42], nasopharynx [43], and
oral cancers [44]. In addition, downregulation of stratifin
in ESCC has been reported in several studies, which
showed a negative correlation between SFN and clinical
outcome [45-47]. Collectively, the present study pro-
vided further evidence supporting stratifin as a reliable
prognostic biomarker for ESCC.

There are certain limitations to our study. Firstly, the
present study only validated the clinical significance of
stratifin in ESCC. Due to tumor heterogeneity, a com-
posite biomarker comprising multiple functional mole-
cules could represent the biology of ESCC much better
than single molecule, and thus is able to improve the
overall prediction of ESCC outcome. Secondly, liquid bi-
opsy, in particular a simple blood test, offers a less-
invasive approach to real-time monitor metastatic pro-
gression and therapeutic outcome of ESCC compared
with tissue biopsy. The profile of stratifin in blood of
ESCC patients should be characterized in future studies.

Conclusions

The present study presents stratifin as an optimal prog-
nostic biomarker for ESCC using machine learning algo-
rithms. In 3 independent cohorts of ESCC, stratifin can
discriminate between ESCC patients with different clin-
ical outcomes. Further prospective studies from different
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institutions are needed to validate the robustness of stra-
tifin in prognostic prediction of ESCC patients. Thus,
our study demonstrates that the overlapping frequencies
across different feature selection approaches represent
the degree of importance, with top one as the key mol-
ecule with clinical implication. This method of mining
key molecules that stably affect the prognosis of ESCC
could be applied to the other relevant research.
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