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Gene-associated methylation status of ST14
as a predictor of survival and hormone
receptor positivity in breast Cancer
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Abstract

Background: Genomic profiles of specific gene sets have been established to guide personalized treatment and
prognosis for patients with breast cancer (BC). However, epigenomic information has not yet been applied in a
clinical setting. ST14 encodes matriptase, a proteinase that is widely expressed in BC with reported prognostic value.

Methods: In this present study, we evaluated the effect of ST14 DNA methylation (DNAm) on overall survival (OS)
of patients with BC as a representative example to promote the use of the epigenome in clinical decisions. We
analyzed publicly available genomic and epigenomic data from 1361 BC patients. Methylation was characterized by
the β-value from CpG probes based on sequencing with the Illumina Human 450 K platform.

Results: A high mean DNAm (β > 0.6779) across 34 CpG probes for ST14, as the gene-associated methylation (GAM)
pattern, was associated with a longer OS after adjusting age, stage, histology and molecular features in Cox model
(p value < 0.001). A high GAM status was also associated with a higher XBP1 expression level and higher proportion
of hormone-positive BC (p value < 0.001). Pathway analysis revealed that altered GAM was related to matrisome-
associated pathway.

Conclusions: Here we show the potential role of ST14 DNAm in BC prognosis and warrant further study.
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Background
Progress in high-throughput gene expression profiling
has now allowed for many types of genomic tests to be
adopted in clinical practice for improving breast cancer
(BC) classification and prognosis, such as the commer-
cially available platforms PAM50, Mammaprint (Agenda,
Huntington Beach, CA, USA), and Oncotype DX (Genomic
Health, Redwood City, CA, USA) [1–3]. These tests were

designed with the goal of promoting personalized treatment
and management for patients with BC to ultimately im-
prove their prognosis and survival. Although such gene-
based profiling has achieved great success, recent studies
have highlighted that combining gene signatures with DNA
methylation (DNAm) patterns could further help to refine
the molecular classification of BC [4–7].
DNAm is an epigenetic mark involving the addition of

a methyl group to the cytosine pyrimidine in CpG dinucle-
otides [8]. Without changing the genetic sequence, DNAm
alters transcription through integration of genome struc-
tures [9], and could thus serve as a useful molecular
marker for gene silencing memory [10]. Indeed, BC
subtypes have been associated with different methylation
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profiles [11]; thus, combining methylation profiling and
gene expression data could help to elucidate the factors
and mechanisms underlying the observed pathological and
clinical heterogeneity among BC types [12]. Previous stud-
ies on epigenetic signatures of BC have mainly focused on
promoter hypermethylation that leads to the silencing of
tumor suppressor genes [5–7]. For example, Zhu et al.
showed that methylation of the BRCA1 promoter was
closely associated with decreased overall survival (OS) and
disease-free survival in patients with basal-like BC [7].
Some studies revealed a high frequency of abnormal
CDH1 promoter methylation in ductal breast tumors and
its association with carcinogenesis [6]. However, in con-
trast to the wide use of the genomic tests mentioned above,
methylation in only a few genes has been shown to have
prognostic predictive power in BC [13]. Therefore, identifi-
cation of the prognostic value of additional genes along
with their methylation status is required for establishment
of a complete DNAm panel.
One such candidate gene is suppressor of tumorigenicity

14 (ST14), which encodes matriptase, a type 2 transmem-
brane serine protease that plays crucial roles in physiology
and cancer biology [14–16]. This protease was first discov-
ered in BC cell lines and has been subsequently identified
in various other cancer types, including ovarian, prostate,
and colon cancers [17]. Overexpression of matriptase or
ST14 has also been associated with epithelial-mesenchymal
transition (EMT), which in turn contributes to cancer me-
tastasis or progression [18, 19]. In a study by Kim et al.,
they showed that high ST14 expression was associated with
poor survival in estrogen receptor negative patients and
concluded that ST14 is an emerging therapeutic target
[20]. Accordingly, overexpression of matriptase has been
shown to correlate with BC progression and a poor
prognosis [21–26], whereas reduced matriptase levels
could abrogate tumor progression, proliferation, and inva-
sion in both a mouse model and BC cell lines [27, 28].
In a pan-cancer analysis, CpG methylation patterns in

the promoter and gene body showed distinct correlations
with gene expression levels, and different methylation
patterns also influenced gene expression [29]. To date, dif-
ferential expression of ST14 according to different methy-
lation patterns has not been investigated yet; and there
were few studies addressing the role of ST14 methylation
in cancer. Existing evidence was limited to pancreatic
adenocarcinoma where ST14 is aberrantly methylated [30].
As ST14 gene expression in BC prognosis has been re-
ported, possible role of ST14 methylation should be stud-
ied. Therefore, in contrast to focusing only on the
promoter regions, we sought to explore the extended
methylation status, including the promoter, gene body, and
3′ untranslated regions (3′ UTRs), in the DNA. We hy-
pothesized that these gene-associated methylation (GAM)
sites could cover the entire methylation information

associated with a specific gene. As an example of this ap-
proach, we here highlight the impact of ST14 methylation
on OS in patients with BC, and investigate its potential as a
novel prognostic biomarker.

Methods
Data and study design
Publicly available bioinformatics data of BC were re-
trieved from the Cancer Genome Atlas (TCGA), which
was used as the primary dataset for obtaining the methy-
lation profile and associated gene expression analyses.
Genes associated with matriptase and EMT in BC were
used to develop a classifier for the GAM status in ST14,
which was then validated with additional datasets,
GSE5364 and GSE22820. GSE75067 was used to confirm
the impact of the GAM status on OS. The flowchart of
the study are shown in Additional file 1: Fig. S1.
The TCGA breast carcinoma (BRCA) cohort was

retrieved from Xena Browser (https://xenabrowser.net/).
Initially, 1239 tumors were identified in the dataset.
After excluding tumors lacking ST14 methylation infor-
mation, the final dataset included 858 tumors. Raw
methylation data were based on Human Methylation
450 K (HM450K) bead arrays, and were downloaded
from the Genomic Data Commons hub (https://gdc.
xenahubs.net/). Following the analysis pipeline proposed
by Tian et al., the raw data in IDAT format were first
imported and processed with the ‘ChAMP’ package in R
(version 2.22) [31]. Initially, 485,512 probes were identi-
fied. Those with a detection p value > 0.01 and with < 3
beads in at least 5% of samples were filtered out. Non-
CpG, single nucleotide polymorphism-related probes,
and multi-hit probes were further removed. Probes lo-
cated in chromosomes X and Y were also excluded. The
distribution of type II probes was normalized using the
BMIQ function [32]. Singular value decomposition
(SVD) analysis was then used to correlate the principal
components with biological and technical factors. If the
result of SVD analysis showed substantial technical vari-
ation, the ComBat function was used to remove the
source of this variation [33]. After processing, 34 probes
annotated with ST14 remained, and each probe was
characterized by its normalized β-value. We used β-
value in the subsequent analyses as it corresponds ap-
proximately to the percentage of a methylated site,
which is of biological effect for interpretation [34]. These
probes corresponded to regions that covered the pro-
moter, enhancer, 5′-UTR, gene body, and 3′-UTR in
ST14 (Additional file 2: Table S1). Since the mean β-
value across CpG probes was shown to be associated
with BC in an epigenome-wide association study [35,
36], we defined the GAM by averaging the β-values
across the 34 probes. Within the dataset, the median av-
eraged β-value was set as the cut-off screening point to
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determine the GAM status. The median was found to be
0.6779 (i.e., 67.79% methylation) and tumors were strati-
fied into GAM-High and GAM-Low. Differentially
methylated probes (DMPs) were identified according to
the different GAM status using the limma package in R
(version 3.48). Using a linear model, the CpG probes of
GAM-High and GAM-Low were compared and the out-
puts including the average expression, logFold Change
(FC), P-value, and t-statistic were summarized; probes
with an adjusted p-value < 0.05 were considered to be
significantly different between the groups.
Level-3, normalized RNA sequencing (RNAseq) data

were downloaded from Xena Browser (https : / /
xenabrowser.net/). Gene expression levels were quanti-
fied as reads per kilobase per million. Pearson’s correl-
ation coefficient was used to evaluate the correlation
between gene and methylation levels. The coefficients
between each CpG probe and all of the matriptase- or
EMT-associated genes were summed for evaluation of
the overall correlation. Unsupervised hierarchical clus-
tering was used to visualize the data clustering.
The GSE75067 dataset was based on a study assessing the

association of methylation patterns with subtypes in BC
[37]. The 450 K methylation data were obtained from Geno-
meStudio (Illumina) and converted to β-values. CpG probes
with a detection p-value > 0.05 or number of beads < 3 were
considered as missing measurements and excluded from
the analysis. The bias between type I and II probes was ad-
justed using a peak normalization algorithm. The β-values
were further smoothened by the Epanechnikov kernel func-
tion to estimate the unmethylated and methylated peaks for
each chemical assay. Linear scaling was used to adjust the
peaks toward 0 and 1 for the unmethylated and methylated
probes, respectively. The CpG probes in ST14 were identi-
fied and their methylation levels were adjusted with methy-
lation median centering. This dataset included additional
information about OS and HS, allowing for validation of the
results derived from the TCGA cohort. Tumors with
complete profiles of methylation, OS, and HS were retained
for analysis, leading to a total of 144 samples.
The GSE5364 and GSE22820 datasets were used for

gene expression analyses. The gene expression data were
derived from the GPL96 and GPL6480 platforms, respect-
ively. In brief, the data from GSE5364 were processed with
the MAS5 algorithm and median-centering, while the data
from GSE22820 were normalized with default procedures
in GeneSpring 7.3.1. For genes with multiple probes, the
expression of a gene was determined by geometrically
averaging the probe intensities. Overall, 359 breast tumor
samples were available for subsequent analyses.

Establishment of a classifier for GAM status in ST14
To develop a classifier for the GAM status, genes cap-
able of distinguishing high and low methylation levels

were first included as a training set. A previous study in-
dicated that TWIST-induced EMT triggered chromatin
accessibility and alterations of DNAm in human mam-
mary epithelial cells [38]. Moreover, EMT was shown to
cause widespread genome hypo-methylation and pro-
moter hyper-methylation variations in response to extra-
cellular signaling [39]. Therefore, we hypothesized that
genes encoding proteins associated with ST14 and EMT
might reflect the alteration of methylation levels in
ST14. Using the keywords “ST14”, “matriptase”, “EMT”,
and “epithelial-mesenchymal transition”, the related
genes were searched via Kyoto Encyclopedia of Genes
and Genomes (KEGG, Release 97.0), Gene Set Enrich-
ment Analysis, and Ingenuity Pathway Analysis (Qiagen,
Hilden, Germany). The literature was also searched for
EMT-linked genes in BC (Additional file 3: Table S2).
The combined search results were filtered and genes
lacking complete profiles in the TCGA database were re-
moved. Finally, 41 genes, inclusive of 25 ST14- and 16
EMT-associated genes were selected, respectively.
Least absolute shrinkage and selection operator

(LASSO) was then used to reduce feature dimensionality
and to select gene signatures for training. This was
accomplished using the ‘glmnet’ package in R (version
4.1-1). The optimal lambda (penalty) was identified as
coefficients for each shrunk gene, and only genes with
non-zero coefficients were selected for training. Tumor
samples were randomly assigned as training and testing
datasets at a 7:3 ratio, and each sample was labeled ac-
cording to GAM-High or GAM-Low. The following six
algorithms were employed to assess the accuracy of the
classifiers: Logistic regression (LR), K-nearest neighbor,
support vector classifier 1 (SVC1, using a linear kernel),
SVC2 (using a radial basis function kernel), Gaussian
naive Bayes, decision tree (DT), and random forest. The
performance of the classifiers was evaluated by the
Receiver operating characteristic (ROC) analysis with the
area under curve (AUC) value and 10-fold cross valid-
ation. The classifier with the best accuracy and perform-
ance was chosen for GAM status prediction in the
GSE5364 and GSE22820 datasets, which was partially
validated by the ST14 expression in each dataset. The
preparation of training, testing datasets, preprocessing,
model evaluation, and prediction was conducted using
the ‘scikit-learn’ package (version 0.23.0) in Python (ver-
sion 3.7.4).

Differential gene expression analysis
BioJupies, which applies limma and a geometrical approach
(characteristic direction), was used to identify differentially
expressed genes (DEGs) [40–42]. The preprocessed expres-
sion data for the 41 genes from the TCGA, GSE5364, and
GSE22820 datasets were uploaded. Individual samples in
each dataset were divided into GAM-High and GAM-Low.
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Significant DEGs with an adjusted p-value < 0.05 were
identified and visualized with a Volcano plot.

Gene ontology pathway analysis and network
construction
In TCGA and GSE75067, DEGs were also derived for
GAM status across the whole transcriptome. DEGs were
pooled and Metascape (http://www.metascape.org) was
used to assess the overexpression of Gene Ontology
categories in biological networks and KEGG pathways.

Association of hormone status (HS) positivity and GAM
status
Several studies have reported a correlation between CpG
methylation and HS in BC [43, 44]. Therefore, we
assessed this hypothesis to determine whether HS positivity
is associated with the GAM status and CpG methylation in
ST14 using Chi-square test. Tumors with complete infor-
mation on HS, i.e., estrogen receptor (ER) or progesterone
receptor (PR) expression, from TCGA and GSE75067 were
observed for this association, including a total of 889 eli-
gible samples (TCGA, n = 745; GSE75067, n = 144). CpG
probes with potential to classify the HS were identified with
a feature selection method combining LASSO and the re-
cursive feature elimination (RFE) algorithm (‘caret’ package
in R, version 6.0–88). For the potential probes, their median
β-values were set as the cut points for division into high
and low methylation level to observe the distribution of HS.

Statistical analysis
Chi-Square test and the Wilcoxon rank-sum test were
used for analyses of categorical and continuous variables,
respectively; p < 0.05 was considered statistically signifi-
cant. Kaplan-Meier (KM) analysis with the log-rank test
was used to evaluate the distinguishing effect of GAM
status on OS. Multivariate Cox model analysis was used
to evaluate the impact of GAM on survival. All statistical
analyses were conducted in R software (version 3.6.1).

Results
Defining the GAM status of ST14 and developing a
classifier for GAM status
In the KM analysis in Xena browser, there was no asso-
ciation between ST14 expression and OS (p = 0.3852,
Fig. 1a), whereas patients with a higher methylation sta-
tus (average β-value > 0.6605) in ST14 had significantly
better OS (p = 0.04014). In addition, a higher ST14
expression level was identified in breast tumors as
compared with that in normal tissues (Wilcoxon’s p value
< 0.001, Fig. 1b) and in tumors with a lower methylation
status (Wilcoxon’s p value < 0.001). Taken together, these
results suggested that the methylation status of ST14 was
related to its expression and might provide improved sur-
vival prediction than gene expression itself.

To confirm this hypothesis, GSE75067 dataset, based on
a study assessing the association of methylation patterns
with subtypes in BC was used. After removing missing
data, 144 samples were included in our analysis. After pre-
processing, 34 probes remained and the distribution of β-
values across the 34 probes in the TCGA (primary tumors
and normal tissues) and GSE75067 datasets showed ex-
tremely similar patterns, except for some CpG sites in the
gene body (mean differences > 0.125, Wilcoxon’s p value
< 0.001)(Fig. 1c). β-value is the estimate of methylation
level by using the ratio of intensities between methylated
and unmethylated probes, with 0 being unmethylated and
1 being fully methylated. Using a median averaged β-value
(0.6779) across the 34 probes, GAM was derived and
stratified into GAM-High and GAM-Low. We then
evaluated the predictive potential of the 41 ST14- and
EMT-associated genes for GAM status. Using Pearson’s
correlation, we first observed that XBP1 had the strongest
positive correlation with GAM in the TCGA cohort
(Fig. 1d, Pearson’s coefficient = 0.458, p = 2.58e-5). This
higher correlation was also observed in the hierarchical
clustering, in which the XBP1 expression level showed
strong clustering with GAM status (Fig. 1e).
Using LASSO, genes with non-zero coefficients were

identified (Fig. 1f; Additional file 4: Table S3), which were
ACTA2, APC, AXL, IGFBP7, MMP14, PLAU, PLAUR,
SNAI1, SNAI2, SPINT2, XBP1, and ZEB2. These 12 genes
were then used as the gene signature for training in the
TCGA dataset. Among the algorithms applied, LR had the
highest accuracy in classification (accuracy = 91.31%),
followed by SVC1 (accuracy = 90.25%) and SVC2 (accur-
acy = 90.25%), and DT had the lowest accuracy (accur-
acy = 70.65%) (Fig. 1g). ROC analysis showed a high AUC
(0.94, 95% confidence interval = 0.806–0.956) for LR.
Therefore, LR was chosen as the classifier for GAM status
in our study, which was then used for GAM status predic-
tion in the GSE5364 and GSE22820 datasets. These two
datasets, based on GPL96 and GPL6480 platforms re-
spectively, contained genomic data for BC and were used
for validation. Both validating datasets showed signifi-
cantly lower ST14 expression levels in GAM-High, similar
to that observed in the TCGA cohort (Fig. 1h), suggesting
the feasibility of our classifier.
DMPs between the GAM-High and GAM-Low were

identified and are summarized in Additional file 5, 6:
Table S4–5. Probes identified to be the DMPs were simi-
lar between the TCGA and GSE75067 datasets (Fig. 2a
and b). Moreover, 23 and 20 DMPs were found in the
gene body in the two datasets, accounting for 88.5 and
83.3% of the overall DMPs, respectively (Fig. 2c). The
CpG probe with the greatest difference between groups
was identified as cg01497747 in both datasets, with a
logFC of 0.161 and 0.235 for TCGA and GSE75067,
respectively.
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Target gene for the GAM status of ST14
Focusing on the aforementioned 41 genes, differential
gene expression analysis between GAM-High and -Low
identified 18, 18, and 22 DEGs with significantly altered
expression in the TCGA, GSE5364, and GSE22820

datasets, respectively (Additional file 7, 8 and 9: Table
S6-8S and Fig. 3a). In these three datasets, XBP1 was
found to be up-regulated in the GAM-High, with the
largest FC of 1.66 in the GSE5364 dataset. In the TCGA
cohort, PLAUR was down-regulated in the GAM-High

Fig. 1 Characterization of ST14 methylation and establishment of a classifier for gene-associated methylation (GAM) status. a Kaplan-Meier curve
for overall survival divided into two groups based on the median ST14 expression level (left panel, log-rank p = 0.382) and methylation level (right
panel, log-rank p = 0.042) in the TCGA BRCA cohort. The median split for gene expression was based on the RNAseq data (defined as
log2(RPKM+ 1)) (11.5). Average β-values across the 40 CpG probes was calculated and their median value across all samples is 0.6605. RNAseq,
RNA sequencing; RPKM, reads per kilobase per million mapped reads. b Difference in ST14 gene expression levels between normal and primary
tumors in the TCGA BRCA cohort (left panel, Wilcoxon’s p < 0.001). The difference of ST14 expression level between high and low methylation
status groups (defined by the median methylation value) is shown on the right panel (Wilcoxon’s p < 0.001). Error bars show the standard
deviation. c Methylation profile (34 CpG probes) of ST14 for TCGA tumor (blue) TCGA normal tissue (orange) and GSE75067 (red). The
corresponding cgi probes and features are shown in the lower and right panels. Red arrows indicate regions with large differences (Average β-
values > 0.125) between TCGA and GSE75067 tumors; black arrows indicate the regions with large differences between TCGA tumor and normal
samples (d) Pearson’s correlation coefficients between genes involved in matriptase-associated or epithelial mesenchymal transition (EMT)-
associated pathways and the GAM in TCGA cohort. The highest positive correlation was noted for XBP1. e Unsupervised hierarchical clustering for
matriptase-associated (left panel) and EMT-associated genes (right panel) in the TCGA cohort with GAM status. The gene expression level is based
on log2 (RPKM+ 1) transformation of RNAseq data, with the color bar shown in the upper-right corner: high GAM status is in cyan, and low GAM
status is in pink. f Identification of the optimal lambda value for the least absolute shrinkage and selection operator (LASSO). The left panel
depicts the shrinkage of coefficients and the right panel shows the binomial deviance during shrinkage. The optimal lambda was 0.003970773. g
Assessment of classifier accuracy (left panel). LR, logistic regression; KNN, K-nearest neighbor; SVC1, support vector classifier 1 (using a linear
kernel); SVC2, support vector classifier 2 (using a radial basis function kernel); GNB, Gaussian naive Bayes; DT, decision tree; RF, random forest. The
highest accuracy was obtained with LR (accuracy = 91.31%). Receiver operating curve for LR with the area under curve value and 95% confidence
interval shown in the lower part. h Normalized gene expression levels of ST14 between high and low GAM status groups for GSE5364 (upper
panel, p < 0.001) and GSE22820 (lower panel, p < 0.001). The GAM status was predicted using the classifier constructed by LR
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(logFC = − 0.747, −log10p = 21.61), which was also ob-
served in GSE22820. The relative expression levels of
these DEGs between the two GAM status groups are
shown in Fig. 3b, supporting that the XBP1 expres-
sion level was significantly higher in GAM-High (Wilcox-
on’s p value < 0.001).
Among the correlations between the CpG probes and

the expression levels of the 41 genes, the highest abstract

correlation was observed between cg11035519 and XBP1
in the TCGA cohort (Pearson’s coefficient = − 0.5919;
Fig. 3c). Of note, cg11035519 was annotated as an
enhancer in ST14. Furthermore, we identified that
cg11035519 and cg14830082 had the highest cumulative
correlations with EMT-associated genes (overall Pearson’s
coefficient = 4.2, Fig. 3d), implying the presence of a regu-
latory site between the enhancer and EMT-associated

Fig. 2 Differential methylation analysis between tumor samples with high and low gene-associated methylation (GAM) status. a Distribution of
mean β-values for the differentially methylated probes (DMPs) between high and low GAM status groups in the TCGA and GSE75067 databases
(solid line). The dashed line indicates the local regression line fitted for high or low GAM status groups. The purple and blue line connects the
mean β-value for each probe in the high and low GAM status group, respectively. All probes shown here are significantly different between the
high and low GAM status groups, based on a linear model for microarray data. b Pie charts and diagrams for visualization of the DMPs annotated
with genetic features and CpG features for TCGA (upper panel) and GSE75067 (lower panel) datasets. c Locations of DMPs in ST14 are indicated
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genes. By contrast, there was a relatively lower correlation
observed between the CpG probes and the matriptase-
associated genes, with cg06443648 showing the highest
cumulative correlation (overall Pearson’s coefficient = 2.7).
Further correlation analysis in the TCGA dataset showed
a moderately positive correlation between cg11035519
methylation and expression levels of FOXC1, FAM171A,
RGMA, SFRP1, CHST3, and PTX3 (all coefficients > 0.6,
P < 0.05, Additional file 10: Table S9).

Association of ST14 GAM status with molecular features
in BC
In the TCGA and GSE75067 datasets, the distribution of
PAM50 molecular features was significantly different be-
tween GAM-High and GAM-Low (Table 1). Further-
more, hormone receptor status (HS) was also
significantly different between the two statuses (Table 2),

in which a GAM-High was associated with a positive
HS. Moreover, GAM was also significantly higher for
the positive HS samples (Fig. 4a). Unsupervised hier-
archical clustering showed higher clustering of
cg11035519 with the HS in the TCGA and GSE75067
cohorts, with higher methylation corresponding to nega-
tive HS (Fig. 4b). Using LASSO to select potential CpG
probes, we observed that cg10089145 had the most
negative coefficient (− 16.7349), followed by cg11035519
(− 4.8834) (Fig. 4c) in TCGA. The negative influence of
cg11035519 was confirmed in the GSE75067 dataset (co-
efficient = − 9.77947). Probes with a non-zero coefficient
were further eliminated with RFE to find the most pre-
dictive probes for HS (Fig. 4d). Combining LASSO and
RFE, seven CpG probes were identified, which were
cg03089475, cg11035519, cg02637309, cg25892168,
cg01497747, and cg13689118. These seven probes

Fig. 3 Differential gene expression and correlation analyses. a Volcano plot analyses for genes involved in matriptase-associated and epithelial-
mesenchymal transition (EMT)-associated pathways in TCGA, GSE5364, and GSE22820 datasets. In these three datasets, XBP1 was significantly up-
regulated with a high -log10P value in the high GAM status group (red). Conversely, PLAUR, FOXC2, and SNAI2 were significantly down-regulated
with a high -log10P (blue). b Relative expression levels of the differentially expressed genes in the three datasets, with low GAM status as the
referencing condition. c Correlation heatmap between CpG probes, matriptase-associated genes (left panel), and EMT-associated genes (right
panel). The color bar for Pearson’s correlation coefficients is shown on the right. Genes and probes with higher correlation (abstract coefficient >
3) are colored in red. d Overall correlation between CpG probes, matriptase-associated genes (left panel), and EMT-associated genes (right panel)
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corresponded to the enhancer, gene body, and the 3′-
UTR in ST14. Except for the probe annotated to the en-
hancer (cg11035519), the other CpG probes with a high
β-value harbored higher portion of samples with positive
HS in both TCGA and GSE75067 (p < 0.001, Fig. 4e).

Survival analysis
The KM plot demonstrated a significant survival differ-
ence between the GAM-High and GAM-Low in both
TCGA (log-rank test p = 0.016) and GSE75067 (log-rank
test p = 0.018) (Fig. 5). With longer follow-up in the
TCGA cohort, GAM-High patients had a median sur-
vival (MS) of 122.3 months, compared with 115.7
months in the low GAM status group. Intriguingly, a
drop in survival occurred within 3 months for GAM-
Low patients in GSE75067, and these patients showed a
15.8-month shorter MS than those with GAM-High
(MS: 5.3 vs 21.1 months). This pattern was not observed

in the TCGA dataset. These findings suggested that
GAM could help risk stratification in BC. Further, GAM
status remained the only significant factor after adjusting
age, pathological stage, histologic type and PAM50 sub-
types in the multivariate Cox model (Table 3).

Gene ontology analysis of differential genes for GAM
status
The genes differentially expressed between different
GAM statuses were analyzed using Gene Ontology and
KEGG analysis. Two thousand nine hundred ninety-
eight DEGs were identified (Additional file 11). We
found the most enriched pathways are ‘NABA MATRI-
SOME ASSOCIATED’ and ‘extracellular structure
organization’ (−log10p > 20) (Fig. 6). This finding sug-
gested genes involved in regulation of extracellular
microenvironment could alter the GAM status in ST14.

Discussion
Identification of new biomarkers for BC can help to
optimize the treatment of patients with varying disease
spectra. Since cancer phenotypes are determined by both
epigenetic modifications and genetic aberrations, investi-
gation of epigenetic variations and integration of these
data can improve risk stratification and cancer prognosis.
Here, we found that the GAM status in ST14 was associ-
ated with OS in patients with BC. This association was
also observed for progression-free survival in the TCGA
BRCA primary tumor cohort (Additional file 12: Fig. S2).
These observations suggest GAM can potentially serve as
a biomarker for OS in patients with BC. Several studies re-
ported that a lower average methylation level across the
epigenome in blood DNA was associated with a higher
risk of BC [35, 36]. Alternatively, in the present study,
lower tissue ST14-associated methylation (i.e., GAM sta-
tus) was associated with a higher risk of death, providing a
surrogate for risk evaluation in BC. Furthermore, a higher
ST14 expression level was significantly associated with a
low GAM status in the training TCGA and the two valid-
ation cohorts. This implies the GAM status could alter the
transcription efficiency and that a higher methylation level
inhibits gene expression, suggesting that DNAm is more
generalized than gene expression.
According to a recent review from Smith et al., the

paradigm of promoter DNA methylation as a transcrip-
tional silencing mechanism does not always hold true
[45], and hypermethylation-induced transcriptional acti-
vation has been documented in a range of cellular
changes, including development, malignancy, and meta-
static disease. Under some circumstances, methylation of
gene promoters facilitates context-dependent transcrip-
tional activation across a range of biological settings.
Therefore, gene methylation is regulated differently from
its expression and could serve as biomarkers for certain

Table 1 Association of GAM status with PAM50 molecular
feature in TCGA and GSE75067

PAM50 Overall Low
(β ≤ 0.6779)

High
(β > 0.6779)

P

TCGA

Normal 17 12 5 < 0.001

Luminal A 277 36 241

Luminal B 126 23 103

Her2 31 20 11

Basal 86 60 26

GSE75067

Normal 11 5 6 0.002

Luminal A 34 10 24

Luminal B 26 10 16

Her2 26 15 11

Basal 38 20 18

TCGA the Cancer Genome Atlas

Table 2 Distribution of HS of TCGA and GSE breast cancer
patients grouped by GAM status of ST14

Overall GAM status P

Low
(β ≤ 0.6779)

High
(β > 0.6779)

TCGA

Hormone receptor n = 260 n = 485

Positive 584 144 440 < 0.001

Negative 161 116 45

GSE75067

Hormone receptor n = 40 n = 104

Positive 85 8 77 < 0.001

Negative 59 32 27

HS Hormone status, GAM Gene-associated methylation
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endpoints. One well known example is the promoter
methylation of MGMT, not its gene expression corre-
lates well to the efficacy of Temozolomide in glioblast-
oma multiforme [46]. Although promoter methylation is
a major mechanism of gene silencing, additional factors
may affect the correlation between MGMT methylation,
expression, and patient outcome. Alternative mecha-
nisms, such as post-transcriptional modulation of
MGMT by miRNAs or the association of MGMT
methylation with IDH mutation or the glioma CpG is-
land methylator phenotype, may explain these inconsist-
ent correlations and different outcomes. Moreover,
using DNA methylation as a predictor has a few advan-
tages over other biomarkers. For instance, DNA methy-
lation had a higher stability both in vivo and ex vivo, the

requirement of a smaller amount of specimens to obtain
enough DNA for analyzing methylation, and higher ac-
curacy. Some study suggested that combinations of
DNA methylation as predictors may yield higher sensi-
tivity and specificity than individual DNA methylation.
As shown in Fig. 1b in our manuscript, hypermethyla-
tion of ST14 is associated with its lower expression.
Therefore, the direct impact could be partly explained
by the paradigm repressive role on its gene expression.
Since different regulatory mechanisms exist and there-
fore varying observations in gene expression and methy-
lation detected, survival impact could be different
between gene expression and methylation assays.
Yang et al. reported a positive relationship between

DNAm in the gene body and gene expression [47].

Fig. 4 Association of ST14 methylation with hormone receptor status (HS) positivity in TCGA and GSE75067. a Mean GAM between positive and
negative HS. Both datasets showed a significant difference of GAM, with a higher GAM observed in HS-positive breast cancers (p < 0.001). b
Unsupervised hierarchical clustering for CpG probes and the HS. The β-value is indicated by the color bar in the upper-right corner; a positive HS
is in pink and negative HS is in cyan. c Vertical bar plots for CpG probes with non-zero least absolute shrinkage and selection operator (LASSO)
coefficients for TCGA (left panel) and GSE75067 (right panel). d Plot of recursive feature elimination (RFE) classification accuracy for the HS with
probe numbers for TCGA (left panel) and GSE75067 (right panel). The selected probe set showed the highest accuracy. In TCGA, 16 CpG probes
were selected, whereas 22 probes were selected in GSE75067. e CpG probes selected by LASSO and RFE in both datasets. The methylation status
is defined by the median split for each probe. The percentage of positive HS is plotted against each selected probe with high and low
methylation status. Significance of the difference is indicated by a star (Chi-square test p < 0.05)
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Another study in hepatocellular carcinoma supported this
idea and identified that CpG hypermethylation in the gene
body region was linked to the upregulated expression of
several oncogenes [48]. Similarly, in the present study,
hypermethylation in the gene body region was correlated
with a higher ST14 gene expression level in tumor tissues
compared with that in normal tissues in the TCGA BRCA
cohort (Additional file 13, 14: Fig. S3–4). By contrast,

within tumor samples, DMPs with higher methylation in
the gene body were found to be linked to a high GAM sta-
tus, which was in turn associated with a low ST14 expres-
sion level. This finding suggests a threshold methylation
level in tumor samples that could further modify the tran-
scription efficiency. XBP1 was previously identified as a
candidate oncogene that is induced in various cancer
types. After being cleaved by inositol-requiring enzyme 1ɑ
(IRE1), a functional spliced variant of XBP1 mRNA
(XBP1S) is formed, which plays a role in the unfolded pro-
tein response and autophagy [49–52]. Accumulating evi-
dence supports a direct role of XBP1 in tumor invasion
and metastasis [53, 54]. Moreover, XBP1 was reported to
be activated in triple-negative BC, contributing to tumori-
genesis through the HIF-1ɑ pathway [55]. In addition, the
level of XBP1S expression was higher in basal-like BC cell
lines, supporting the adverse effect of this variant [56]. By
contrast, levels of unspliced XBP1 (XBP1U) mRNA corre-
lated with ESR1 mRNA levels in luminal-type BC, and
higher levels of XBP1U mRNA were associated with better
survival in patients with BC [57]. Furthermore, higher ra-
tios of XBP1S/XBP1U mRNA level were associated with
poor survival. Collectively, these findings suggest that
XBP1 isoforms have distinct functions and that their ex-
pression is cell type-specific. Most of the tumor samples
in the TGCA cohort were of the ER-positive luminal sub-
types (Additional file 15: Fig. S5), implying a higher por-
tion of XBP1U in this cohort. The high correlation
coefficient between XBP1 and ESR1 supports this hypoth-
esis (Pearson’s correlation = 0.7754, p = 1.58e-10). In the
differential expression analysis, XBP1 was significantly up-
regulated in the GAM-High, which corresponded to a
more positive HS and better OS. As such, higher ST14
methylation might be associated with higher XBP1U ex-
pression, suggesting a novel link between XBP1 and
DNAm.

Fig. 5 Kaplan-Meier (KM) survival analysis for overall survival (OS) in TCGA and GSE75067. The samples in the two datasets were divided into high
and low gene-associated methylation (GAM) status groups based on the study-defined β-value (0.6779). The KM plots also show areas with 95%
confidence intervals

Table 3 Multivariate analysis of covariates for survival in breast
cancer

Covariates HR 95% CI P

TCGA

GAM status (ref: GAM-Low) 0.16 0.07–0.37 < 0.001

Age (ref: <= 50) 2.19 1.11–4.35 0.023

Pathological stage (ref: stage I) 2.79 0.86–6.05 0.09

Histologic type (ref: IDC) 0.52 1.11–4.35 0.13

PAM50 (ref: normal)

Luminal A 0.51 0.10–2.56 0.41

Luminal B 0.74 0.15–3.71 0.71

Basal 0.28 0.05–1.39 0.11

Her2 0.47 0.07–3.06 0.42

GSE75067

GAM status (ref: GAM-Low) 0.39 0.21–0.74 0.003

Age (ref: <= 50) 2.03 1.25–3.30 0.004

Histologic type (ref: IDC) 0.61 0.29–1.26 0.18

PAM50 (ref: normal)

Luminal A 1.99 0.43–9.27 0.37

Luminal B 4.73 1.07–20.96 0.04

Basal 4.64 1.05–20.59 0.04

Her2 7.75 1.77–34.1 0.006

HR hazard ratio, CI confidence interval, GAM gene associated methylation, IDC
invasive ductal carcinoma
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Among the DMPs identified, cg11035519 was found to
be the most negatively correlated with XBP1 expression
and had the highest overall correlation with EMT-
associated genes. cg11035519 was annotated to an en-
hancer in ST14, and is located in the local minimum
after the first exon. In the reference genome hg19, this
probe is situated in ch11:130,051457–130,051459, which
is the intron region of ST14. These findings suggest the
possible existence of enhancer RNA that could affect the
transcription of downstream oncogenes [58]. Of note,
genes with mRNA levels positively correlated with the
levels of cg11035519 methylation were reported to be in-
duced in basal-like BC [59, 60], supporting a role in
downstream activation, and a negative correlation be-
tween XBP1U and the basal-like histology. Moreover, we

found a negative correlation between cg11035519 and
the HS, which was not found for the other predictive
CpG probes. Taken together, these results suggest that
cg11035519 might be independently regulated in ST14.
Previous studies have shown that ER-positive BC with

a primary origin displayed more hypermethylated loci
and a higher overall DNAm than ER-negative or second-
ary ER-positive breast tumors [61–64]. Moreover, Fack-
ler and colleagues used the HM27 platform to analyze
samples from 103 patients with BC, which identified a
classifier for HS with 40 CpG probes [62]. Another study
demonstrated that hypermethylation of the promoters of
several genes could strongly predict the HS in BC [44].
Taken together, these findings suggest that DNAm in a
specific set of genes could reflect the HS in BC and

Fig. 6 Gene Ontology and pathway enrichment analysis of genes involved in methylation of ST14
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might be used to predict a clinical benefit with hormone
therapy. Although DNAm in ST14 has never been re-
ported to correlate with the HS, several of the CpG
probes identified in our study did show strong clustering
with the HS and high classifying power. This suggests
that the HS is also an epigenomic event, which in turn
supports the finding of a different overall DNAm profile
between ER-positive and ER-negative tumors. Indeed, in
our study, GAM-High tumors were characterized by a
higher percentage of positive HS. From a clinical view-
point, ER/PR-positive BC is associated with a better out-
come, supporting our survival findings.
Our study had several limitations. First, the GAM

defined in our study could be further optimized via
advanced bioinformatic methods, accounting only for
probes that are of biological meaning and predictive
power. Second, only DNAm in ST14 was investigated in
this study. There might be other potential genes with
prognostic power in terms of GAM. Further study could
be done to elucidate the interaction network of GAM in
BC oncogenes. Third, the validation datasets are limited.
Future establishment of validation datasets to confirm
the role of GAM is required.

Conclusions
Our study identified that BC with a low GAM status in
ST14 was associated with poorer survival and a negative
HS. In the era of personalized medicine, these findings
could help refine the epigenomic panel for BC classifica-
tion and prognostic evaluation. Before clinical use, its
epigenetic modulation, relationship with EMT-associated
genes, especially XBP1, and feasibility as a clinical bio-
marker require further confirmation. Nevertheless, these
results still provide a new perspective on the role of
matriptase from the point of epigenetic regulation in BC.
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