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Abstract

transcriptional control of distinct cancer hallmarks.

Background: Hepatocellular carcinoma (HCC) is a major cause of cancer-related death. Paired related homeobox 1
(PRRX1) is a transcription factor that regulates cell growth and differentiation, but its importance in HCC is unclear.

Methods: We examined the expression pattern of PRRXT in nine microarray datasets of human HCC tumour
samples (n > 1100) and analyzed its function in HCC cell lines. In addition, we performed gene set enrichment,
Kaplan-Meier overall survival analysis, metabolomics and functional assays.

Results: PRRX1 is frequently upregulated in human HCC. Pathway enrichment analysis predicted a direct correlation
between PRRXT and focal adhesion and epithelial-mesenchymal transition. High expression of PRRXT and low ZEB1
or high ZEB2 significantly predicted better overall survival in HCC patients. In contrast, metabolic processes
correlated inversely and transcriptional analyses revealed that glycolysis, TCA cycle and amino acid metabolism
were affected. These findings were confirmed by metabolomics analysis. At the phenotypic level, PRRXT knockdown
accelerated proliferation and clonogenicity in HCC cell lines.

Conclusions: Our results suggest that PRRXT controls metabolism, has a tumour suppressive role, and may function
in cooperation with ZEB1/2. These findings have functional relevance in HCC, including in understanding
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Background

Liver cancer is a common and deadly cancer of which
the most prevalent type is hepatocellular carcinoma
(HCC) [1]. Recent advances in molecular profiling have
highlighted the importance of gene deregulation in
hepatocellular carcinogenesis [2]. Accordingly, several
potential molecular drivers of HCC have been
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identified, including mutations in 7P53, CTNNBI,
and TERT promoter [3], and metabolic genes such as
ALB, CPS1, and APOB [4]. However, molecular het-
erogeneity and the main mechanisms promoting HCC
are poorly understood.

Transcription factors are known to control key pro-
cesses in cancer progression such as growth, metabol-
ism, immune evasion, and metastasis [5, 6]. The paired
related homeobox 1 (PRRX1) is a transcriptional co-
activator that exist in two isoforms. The functions of
PRRX1 include the regulation of cell growth and differ-
entiation. Consistently, PrrxI deletion is lethal in neo-
natal mice ([7]. PRRXI has been found to be
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overexpressed in breast, pancreas, head and neck squa-
mous cell carcinoma, liver, and colon cancer [8—14]. In
murine pancreatic cancer and human breast cancer cell
lines, the knockdown of the isoforms PRRXIa or
PRRX1b reduced migration and invasion, indicating
functional similarities [9, 14, 15]. However, overexpres-
sion of PRRX1a led to the induction of genes involved in
cell migration whereas PRRXIb was more involved in
cell cycle regulation [9], supporting that these isoforms
could have distinct molecular functions. The knockdown
of PRRXI1b inhibited proliferation as well as migratory
and invasive capabilities of triple negative breast cancer
cell lines [14]. In other studies, knockdown of PRRXI re-
duced tumour volume of MDA-MB-231 mice xenografts
[14], and its overexpression in colon cancer cell lines in-
creased colony formation and anchorage independent
growth [10]. In the HCC cell line HUH7, ectopic expres-
sion of PRRXI induced resistance to 5-fluoruracil [12].
These data indicate a tumour-promoting role of PRRXI
in some cancer settings. On the contrary, PRRX1 has
also been shown to exert tumour suppressor functions.
For example, low expression of PRRXI enabled meta-
static colonization of lung by breast cancer cells [8].
HCC cells were also shown to migrate more upon
PRRX1 knockdown [13]. In clinical contexts, PRRXI has
been associated to contradictory prognostic outcomes
showing that high PRRXI expression predicted improved
overall survival in colorectal cancer and HCC [10, 12,
13], but was associated with metastasis and poor survival
outcome in breast cancer [8].

Although the precise roles of PRRX1 and its isoforms,
PRRXIa and PRRX1b, are unclear in human cancer,
PRRX1 was often associated with cancer stemness and
epithelial-mesenchymal transition (EMT) [8, 9, 15]. For
example, the overexpression of PRRXI in human colon
cancer cell lines induced EPH receptor B2 — an intes-
tinal stem cell marker [10], whereas the knockdown of
PRRXI in breast cancer increased stemness features [8].
Regarding EMT, overexpression of PRRXI caused the
upregulation of the EMT gene TWIST1 [8]. In addition,
its knockdown reversed invasiveness [15]. Few studies
have investigated PRRX1 expression in HCC [12, 13, 16],
and its functions are largely unknown. Based on the
contradictory reports on PRRX1, including on expression
level in HCC, we set out to comprehensively analyze its
expression and to predict its functions in human HCC.
Making use of several HCC tissue gene expression data-
sets and applying functional assays in vitro, we find that
PRRX1 is frequently upregulated in human HCC. We
identified two EMT transcriptional factors, zinc finger E-
box-binding homeobox (ZEBI and ZEB2) as novel
PRRX1-related genes, and report that PRRX1 knockdown
affects the phenotype of HCC cell lines, including
metabolism.
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Materials and methods

Collection of liver cancer microarray datasets and
analyses

Eight liver cancer microarray datasets were obtained
from the National Center for Biotechnology Information
Gene Expression Omnibus (NCBI GEO), whereas the
TCGA liver cancer data was accessed via cBioPortal
platform  (http://www.cbioportal.org/) [17, 18] and
http://cancergenome.nih.gov. The expression values for
PRRX1 probes were compiled for each dataset, and its
differential expression in HCC compared to normal or
adjacent non-tumour tissues was determined using Stu-
dent T-test in GraphPad Prism version 6. Genes posi-
tively or negatively co-expressed with PRRXI in liver
cancer data were downloaded from cBioPortal platform
and used for correlation analyses in TCGA and
GSE14520 datasets. For PRRX1-high versus low express-
ing tumour comparison, TCGA and GSE14520 samples
were ranked based on PRRX1 expression level and di-
vided into two groups (based on median). The high (n =
186) vs low (1 =185) samples from TCGA were subse-
quently compared in R, using limma package. For
Kaplan-Meier overall survival analysis of PRRXI in com-
bination of other genes, we first considered whether the
genes have significant direct or inverse correlation with
PRRX1 prior to subsetting samples for comparison. For
example, for genes that met the criteria of direct correl-
ation with PRRXI, the tumours with high expression of
the gene and PRRXI were compared with tumours with
low expression of both. In contrast, for genes inversely
correlated with PRRXI, tumours with high PRRXI (n =
111) and low expression of the genes were selected and
compared with tumours with low PRRXI (n=110) and
high level of the gene. Analysis of cancer hallmark path-
ways was done with the ‘GSEAPreranked’ option in
GSEA (http://software.broadinstitute.org/gsea/index.jsp).

Cell culture

The Hep3B, HLF and HUH?7 cell lines were provided by
Prof Kern (Pathology, Heidelberg). The SNU398 cells
were obtained from Dr. Francois Helle (University of Pi-
cardie Jules Verne, France). The cell lines HLF, HUH?7,
Hep3B and SNU398 were cultured in Dulbecco Modi-
fied Eagle’s medium (DMEM, high glucose, Lonza,
BE12-709) supplemented with 2mM glutamine, 10%
fetal bovine serum (FBS), penicillin (100 U/ml), and
streptomycin (100 pg/ml). The cells were cultured at
37°C in a humidified atmosphere containing 5% CO,.
Hank’s Balanced Salt Solution (HBSS) (Sigma-Aldrich,
H6648) was used for cell washing steps. The cells were
used for experiments between passage 2-10. All used cell
lines were authenticated by short tandem repeat profil-
ing (STR). PCR Mycoplasma Test (PromoCell, Huissen,
Netherlands) was performed to confirm that cells are
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mycoplasma-free. siRNA transfection and RNA isolation
were performed as described in the supplement.

Quantitative PCR

Quantitative polymerase chain reaction (QPCR) was per-
formed using EvaGreen qPCR Mix Plus (Solis BioDyne,
Tartu, Estonia) on the AB StepOnePlus. The experi-
ments were performed in triplicates using peptidylprolyl
isomerase A (PPIA) as control. The primers (Table 1)
were ordered from Eurofins Genomics (Ebersberg,
Germany). PRRX1 expression was evaluated in liver tis-
sue (#=4) from MDR2 knockout mice on a 129 back-
ground (3, 6, 9, and 15months) and age matched
controls.
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MTT proliferation assay

Proliferation assays were performed with 3-(4,5-dimeth-
ylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT)
assay. Briefly, 7.5-10 x 10® cells per well were seeded in
quadruplicates in 48-well plates. The cells were incu-
bated o/n and thereafter transfected with the respective
siRNA oligos. After the indicated time, 25 pl of 5 mg/ml
MTT reagent (Sigma Aldrich, USA) was added to the
wells and incubated for 3—4 h at 37°C. The media was
subsequently aspirated and 250 ul of MTT solubilizing
reagent was added to dissolve the formed formazan crys-
tals. The plate was then incubated o/n at 37 °C. Absorb-
ance was read at 560 nm with background correction at
670 nm using Infinite 200 Spectrophotometer (Tecan,

Table 1 Primer list

Forward (5'- 3')

Reverse (5'- 3')

hFH CGTTTTGGCCTCCGAACG CATGCGTTCTGTCACACCTC
hGOT1 CAACTGGGATTGACCCAACT GGAACAGAAACCGGTGCTT
hGOT2 TAACGTTCTGCCTAGCGTCC ACTTCGCTGTTCTCACCCAG
hGLST GCAACAGCGAGGGCAAAGAG CTGGGATCAGACGTTCGCAAT
hGPT1 GGTCTTGGCCCTCTGIGTTA TCCGCCCTTTTCTTGGCATC
hGPT2 GACCCCGACAACATCTACCTG TCATCACACCTGTCCGTGACT
hHK1 CCAACATTCGTAAGGTCCATTCC CCTCGGACTCCATGTGAACATT
hHK2 CCAGATGGGACAGAACACGG TGGAGCCCATTGTCCGTTAC
hIDH3A ATCGGAGGTCTCGGTGTG AGGAGGGCTGTGGGATTC
hIDH3B TCTCAGCGGATTGCAAAGTTTG CTTGTGGACAGCTGTGACCTT
hLDHA GCAGCCTTTTCCTTAGAACAC AGATGTTCACGTTACGCTGG
hLDHB CTTGCTCTTGTGGATGTTTTGG TCTTAGAATTGGCGGTCACAG
hMDH1 CATTCTTGTGGGCTCCATGC AGGCAGTTGGTATTGGCTGG
hOGDH GAGGCTGTCATGTACGTGTGCA TACATGAGCGGCTGCGTGAACA
hPCK1 GCAAGACGGTTATCGTCACCC GGCATTGAACGCTTTCTCAAAT
hPDHX TTGGGAGGTTCCGAC CAACCACTCGACTGTCACTTG
hPPIA AGGGTTCCTGCTTTCACAGA CAGGACCCGTATGCTTTAGG
mPpia GAGCTGTTTGCAGACAAAGTT CCCTGGCACATGAATCCTGG
hPRRX1 GAAGAGAAAGCAGCGAAGGA ACTTGGCTCTTCGGTTCTGA
hPRRX1a CGAGAGTGCAGGTGTGGTTT AATCCGTTATGAAGCCCCTCG
hPRRX1b GTCTCCGTACAGCGCCAT GGCCTTCAGTCTCAGGTTGG
mPrrx1 AAGCAGCGGAGAAACAGGAC ACAAAAGCATCCGGGTAATGTG
hSDHA TGATGGGAACAAGAGGGCATC ACCTGGTAGGAAACAGCTTGG
hSDHB CACCCGAAGGATTGACACCA GTTGCTCAAATCGGGAACAAGA
hSDHC TCCTCTGTCTCCCCACATTACT CCAGACACAGGGACTTCACAA
hSDHD GCAGCACATACACTTGTCACC CTGACAACCCTCTCGCTAGTC
hSLCTAS TTTGCGGGTGAAGAGGAAGT AGCATTCCGAAACAGGTAACTTT
hSUCLG1 ATTATGCCGGGTTACATCCA AAAAGGATCCCCACCAATTC
hsuCLG2 TTTGCTATGGACGACAAATCAGA CTGGCTTCCCACCATTAAGG
hZEB1 CAGCTTGATACCTGTGAATGGG TATCTGTGGTCGTGTGGGACT
hZEB2 GGAGACGAGTCCAGCTAGTGT CCACTCCACCCTCCCTTATTTC

h human, m mouse
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Austria) and the data were normalized to the control
wells.

Clonogenic assay

The HCC cells were initially seeded into 12 well plates
and allowed to attach overnight. Culture medium was
then replaced with medium containing siRNA/transfec-
tion reagent. After 24 h, the cells were trypsinized and
seeded in triplicates in 6-well plates (2500 per well).
Medium was changed at day 4 and the experiment ter-
minated at day 8. Cells were fixed for 5 min with metha-
nol (Carl Roth, Karlsruhe, Germany) and stained for 15
min in 0.5% crystal violet (Alfa Aesar, Karlsruhe,
Germany). The wells were then washed with running tap
water, allowed to dry and photographed.

In vitro scratch assay

5 x 10° cells were seeded in triplicate into 12 well plates
(Greiner Bio-One, 665,180), and incubated o/n, followed
by siRNA transfection. Next day the wells were
scratched with 200 pl pipette tips and reference points
made using a needle. Images were taken from the wells
at time points 0 and 24 h later using an inverted micro-
scope (Leica, Wetzlar, Germany). Image] was used to
measure the distance/gap between the two edges of the
scratch. Migration was calculated as difference between
gap distance at time 0 and 24 h divided by the distance
at time 0.

Measurement of glucose consumption and lactate output
Cells (1.5 x 10°) were seeded in triplicate into 12 well
plates and allowed to attach o/n. Then, siRNA transfec-
tion was performed. 48 h after transfection, cell culture
medium was collected and analyzed for glucose and lac-
tate using the Roche Cobas C311 Chemistry Analyzer.
Cells were lysed with RIPA buffer and data was normal-
ized to protein concentration.

Metabolite analyses

One million of HUH7 and HLF cells were seeded in
triplicate in 14.5 cm petri dishes and allowed to attach
o/n. The next day, siRNA transfection was performed.
After 24 h, medium was changed to growth medium for
another 48 h. Thereafter, medium was removed, cells
were washed with pre-warmed pure water and immedi-
ately snap frozen by adding liquid nitrogen to the petri
dishes. Extraction of the samples was performed as fol-
lows: frozen HUH7 and HLF cells were extracted dir-
ectly on petri dishes by adding pre-cooled 1ml 50%
methanol and 10 pl Ribitol (0.2 mg/ml; internal standard
for the polar phase). All liquid containing cell debris was
transferred to 2 ml reaction tubes on ice. To each tube,
0.5 ml 100% chloroform containing 0.1 mg/ml heptade-
canoic acid (internal standard for organic phase) was
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added and samples were vortexed for 10s. To separate
polar and organic phases, as described previously [19,
20], samples were centrifuged for 10 min at 11,000x g.
For derivatization, 0.9 ml of the upper polar phase were
transferred to a fresh tube and speed-vac dried without
heating. Pellets of the aqueous phase after extraction
were dissolved in 20 ul methoximation reagent contain-
ing 20 mg/ml methoxyamine hydrochloride in pyridine
and incubated for 2h at 37 °C under vigorous shaking.
For silylation, 35 pl N-methyl-N-(trimethylsilyl) trifluor-
oacetamide were added to each sample. After incubation
for 45 min at 50 °C, samples were analyzed by Gas Chro-
matography/Mass Spectrometry (GC/MS). A GC/MS-
QP2010 Plus (Shimadzu, Germany) fitted with a Zebron
ZB 5MS column (Phenomenex; 30m x 0.25 mm x
0.25 um) was used for GC/MS analysis. The GC was op-
erating with an injection temperature of 250 °C and 1 pl
sample was injected with split mode (diluted 1:5). The
GC temperature program for polar compounds started
with 1 min hold at 40 °C followed by a 6 °C/min ramp to
210°C, a 20 °C/min ramp to 330 °C and a bake-out for 5
min at 330 °C. Helium was used as carrier gas with con-
sistent linear velocity. The MS was operated with ion
source and interface temperatures at 250°C, a solvent
cut time of 5 min and a scan range (m/z) of 40-700 with
an event time of 0.1 s. Raw data were processed using
the ,GCMS solution software” (Shimadzu) and normal-
ized to the internal standard Ribitol as well as to the cell
number.

Statistics

Results are presented as mean + SD unless indicated
otherwise. Comparison of sample groups was performed
using GraphPad Prism version 6 Software or R statistical
software. Where applicable, t-test was applied for un-
paired sample comparison, while one-way ANOVA
was used for multiple comparisons. Statistical signifi-
cance was defined with P < 0.05. Quantification of migra-
tion was done using Image] 1.5 (http:imagej.nih.gov/ij).
Statistical significance is indicated as follows: * P < 0.05,
** P<0.01, ** P<0.001, and **** P < 0.0001.

Results

PRRX1 is frequently upregulated in HCC

We analyzed PRRXI expression in nine human HCC
gene expression datasets (Table S1). Out of these data-
sets, PRRX1 level were upregulated in seven (P < 0.05),
and not significantly changed in two datasets (Fig. 1a).
In addition, we compared the expression of PRRXI
across liver cancer cohorts in Oncomine — an online re-
pository of manually curated cancer datasets (http://
oncomine.org). The Oncomine platform contains the
cancer genome atlas (TCGA) liver cancer data and
GSE14520 dataset used in our analysis, thus was also
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Fig. 1 PRRXT is upregulated in human HCC and shows a variable pattern in vitro. A PRRX1 expression in human HCC cohorts. NT - non-tumour,
HCC - hepatocellular carcinoma. Data was analysed with Student’s t-test. Information about sample size per cohort is contained in Table S1. B
PRRX1 expression in tumours showing its gene amplification. Data was analysed with Student's t-test. Amp: amplification C PRRXT expression in
tumours with TP53 and CTNNBT mutation in TCGA liver cancer cohort. Data was analysed with Student's t-test. D Kaplan-Meier overall survival
analysis (logrank test) based on PRRX1 expression in GSE14520 dataset. High PRRXT n=110; low PRRXT n=110. E PRRXT expression in human HCC
cell lines after 48 h culture. Normalized to the basal expression in HLF (lowest PRRXT level). Bars indicate mean + SD, n =3 per group. F Ratio of
PRRX1a to PRRX1b isoform expression in HCC cell lines after 48 h culture. Bars indicate mean + SD, n =3 per group

advantageous for cross-validating our observation. In- We then compared the alteration frequency of PRRXI
deed, in Oncomine platform PRRXI was upregulated in in TCGA cancer datasets via cBioPortal (http://
three datasets, but not significantly changed in five other  cbioportal.org). PRRX1 alterations in liver cancer (i.e.
datasets (Fig. S1A). Hence, we concluded that when sig- HCC and cholangiocarcinoma) along with its alterations
nificantly altered, PRRX1 is upregulated in HCC. in lung, bladder and breast cancer cohorts, ranked very
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high (within top 10% of all TCGA cohorts) (Fig. S1B).
Of note, PRRX1 was amplified in ~10% (n=36) of
TCGA HCC tumour samples, but this amplification did
not strikingly overlap with known mutated genes in
HCC, i.e. TP53 or CTNNBI (Fig. S1C). As expected,
HCC tumours with high amplification showed higher
mRNA expression (P =0.0007) compared to the tumours
with no amplification (Fig. 1b). Further, we compared
PRRX1 expression based on two frequently mutated
genes in HCC (i.e. TP53 and CTNNBI). Accordingly, tu-
mours with CTNNBI mutation showed low PRRX1 level
(P <0.0001), whereas no expression change was observed
with TP53 mutations (Fig. 1c), suggesting that the differ-
ent oncogenic background influences PRRX1 level.

A prior study using the GSE14520 dataset showed an
improved OS with high PRRX1 expression [12]. To gain
insight on association of PRRX1 with clinicopathological
variables, we analyzed clinical data from one of the two
platforms used in GSE14520 (GPL3921, n =225 HCC
samples). Upon Kaplan-Meier overall survival (OS) ana-
lysis, we found a tendency towards improved outcome
for patients with high PRRXI-expressing tumours, but
this was not statistically significant (Fig. 1d). Also,
PRRXI1 was not associated with other clinical variables
analyzed, e.g. tumour size, stage, alanine transaminase
(ALT) and alpha-fetoprotein (AFP) level (Fig. S2A).

We further analyzed PRRXI expression patterns in ex-
perimental HCC models. In multi-drug resistance
(Mdr2) knockout mice — a liver fibrosis model that pro-
gresses to HCC in about 12 months [21, 22] — we ob-
served higher Prrxl expression in Mdr2 knockout mice
than in age - matched controls and a lower expression
of PrrxI in older mice with HCC compared to the youn-
ger Mdr mice (Figure S2B).

In HCC cell lines, PRRX1 expression was variable. Spe-
cifically, it was highest in SNU398, a cell line with
epithelial-like appearance albeit reported to be poorly
differentiated [23]. Other cell lines with epithelial fea-
tures, HUH7 and Hep3B, showed higher PRRXI level
when compared to HLF cells that display more mesen-
chymal properties (Fig. le). In these four cell lines, we
additionally analyzed expression of PRRXI isoforms, a
and b. With the exception of SNU398, the HCC cell
lines (Fig. 1f) expressed less of the truncated isoform (i.e.
PRRX1a) than the longer isoform PRRXI1b. These ana-
lyses support that PRRX1 is frequently upregulated in
liver tumours, while data from experimental models sug-
gest that PRRX1 may be more expressed in well differen-
tiated cells.

PRRX1 correlates directly with cancer pathways and
inversely with metabolic pathways

To predict the functions or pathways associated with the
expression of PRRXI, we first identified PRRXI co-
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expressed genes in TCGA HCC data from the cBioPortal
platform (Table S2). When ranked based on Pearson
score, the topmost PRRXI-co-expressed genes included
several known candidates in HCC, e.g. TGFB3, HNFIA,
IL10 [3] as well as novel targets such as PLXDCI,
EMX20S, and GLT8D2 (Fig. 2a). Functional annotation
analyses using the top positively correlated genes (n =
1022, ~ 5% of the gene list), indicated an overrepresenta-
tion of cancer processes, i.e., extracellular matrix (ECM)
and signal transduction activities (Fig. 2b). Specific pro-
cesses that emerged include ECM-receptor interaction
(n =15 genes, e.g,, COL6A1/A2/A3, ITGA8/10, LAMA2/
4), focal adhesion (n=29 genes, e.g. CAVI, PDGFRA,
PDGFRB, TNC, COL1A1), and PI3K-AKT signaling (1 =
35 genes, e.g. PDGFRA/RB, FGF1/9, FGFRI, JAK2,
LPAR1/4/5/6, GNG2, PIK3R3/R5) (Tables S3 and S4).
Consistently, gene ontology (GO) analyses for biological
processes and cellular components supported a positive
correlation with cancer processes, notably ECM
organization, cell adhesion and signal transduction, as
mentioned earlier (Fig. 2c, Fig. S3, and Tables S5 and
S6). Unsurprisingly, gene set enrichment analysis
(GSEA) of PRRXI1 co-expressed genes also identified
EMT (Fig. 2d). Further, the GO class ‘cellular compo-
nent’ contained 293 genes clustered to plasma mem-
brane, and those included MMP2, CAVI1, FGFR1, PLPP
R4, TGFB3, MSRI, and transporters such as SLCIAS,
SLC6A6, SCN3A and SLC7A3. Similarly, >300 genes
were assigned as integral membrane components (Fig.
S3), altogether implicating PRRXI in membrane dynam-
ics, cell plasticity and molecule transport. Other cancer
types that showed high PRRXI alteration frequency in
the TCGA cohorts (e.g., cholangiocarcinoma and lung
cancer), also showed similar pathway annotation pat-
terns as observed in HCC (i.e. focal adhesion and ECM
organization, Fig. S4).

The top PRRX1-negatively correlated genes (n = 1022)
were mostly involved in metabolism, a process that has
not yet been associated with PRRXI in HCC (Fig. 2b and
¢). We found that prominent inversely correlated meta-
bolic processes include glycine, serine and threonine me-
tabolism (n =16 genes, e.g, SHMTI1, CHDH, GATM),
fatty acid degradation (n=16 genes, e.g., ECII, ECI2,
ACOX1), valine, leucine and isoleucine degradation (n =
16 genes, e.g. ACADSB, EHHADH, ECHS1), and peroxi-
some activity (m=42 genes, e.g. ACOX1/2, HACLI,
PEX1, 5, 6, 7, 16, and 19) (Fig. 2b). Metabolism also
dominated the GO term ‘biological processes’ of the
negatively correlated genes (Fig. 2c, Table S7). Further,
the GO term ‘cellular component’ implicated peroxi-
somes and mitochondria (Fig. S3, Table S8) — two or-
ganelles involved in antioxidant defenses and cellular
respiration, respectively. Given the link to metabolism,
we wondered if the PRRXI inversely correlated genes
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included consistently altered metabolic genes in human
HCC [24]. Indeed, overlap of all PRRX1-correlated genes
with metabolic genes from human HCC revealed 135
common elements (Table S9, Fig. S5A). Of these, 124
metabolic genes were downregulated in HCC and several

of them belonged to amino acid and fatty acid metabol-
ism, and also small molecule transport (Fig. S5B). Thus,
PRRX1 expression correlated with the downregulation of
metabolic pathways in HCC. In cholangiocarcinoma and
lung cancer, we also observed a negative correlation with
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metabolic pathways, suggesting that similar functions
predicted for PRRX1 in HCC may apply to other cancer
types (Fig. S4). Taken together, these data suggest that
PRRX1 promotes cancer pathways and contributes to a
suppressed metabolic gene program, as previously seen
in HCC [4, 24, 25].

Integrative analyses identify EMT genes ZEB1 and ZEB2
as novel transcription factors related to PRRX1
Based on our in silico analyses of several HCC patient
gene expression datasets, which linked PRRXI to me-
tabolism and cancer pathways, we first focused on
its influence towards cellular plasticity and EMT.
Thus, we stratified TCGA HCC dataset into high ver-
sus low PRRX1-expressing tumour samples, and ana-
lyzed the differential gene expression. We observed
that the PRRXI-high tumours expressed several
cancer-associated genes (e.g. MMP2/9, ZEB2, VIM)
(Fig. 3a, Table S10). This expression pattern was con-
sistent with that of the co-expressed gene list from
cBioPortal (which generally reflected EMT, ECM, can-
cer and metabolic pathway alterations as earlier noted
in Fig. 2). We compiled ~ 150 genes involved in these
processes (Table S11), including the topmost PRRX1
co-expressed genes (Fig. 2a), and sought to identify
those correlated with PRRX1 in TCGA HCC data and
another dataset (GSE14520). Of those genes, 19 sig-
nificantly correlated with PRRXI in both datasets
(Table 2). The EMT transcription factors ZEBI and
ZEB2 emerged alongside HNFIA, IL10, and 15 meta-
bolic genes, e.g., gamma-glutamyltransferase 5
(GGT5), glucose transporter 2 (SLC2A2), NADPH
oxidase 4 (NOX4), alcohol dehydrogenase 6 (ADHS),
and hepatic lipase C (LIPC) (Fig. S6A). Kaplan-Meier
OS analysis for each of the 19 genes in combination
with PRRXI showed that liver tumours with high
PRRX1 and low ZEBI (P=0.0369), high ZEB2 (P=
0.0328), high GGT5 (P =0.0015) or high SLC7A8 (P =
0.0016) showed improved OS outcome (Fig. 3b, Fig.
S6B). ZEBI or ZEB2 did not predict OS when ana-
lyzed alone (Fig. S7A) indicating a synergistic impact
with PRRXI. Since PRRX1 is associated with EMT [8,
9, 15], but no prior study had linked it with ZEBs in
HCC, we performed further analysis on ZEBs.
Analyses of multiple HCC cohorts showed that both
ZEBI and ZEB2 expression positively correlated with
PRRXI in TCGA, GSE25097 and GSE55092 datasets.
In addition, ZEB2 correlated positively with PRRXI in
the dataset GSE64041. On the other hand, we found
one dataset each (GSE14520 and GSE36376) where
ZEBI and ZEB2, respectively, were negatively corre-
lated with PRRXI (Fig. 3¢, Fig. S7B). Thus, PRRX1I is
more often positively correlated with ZEB1 and ZEB2
in patients’ HCC tumour samples. However, besides
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OS, PRRXI1 combined with ZEBI or ZEB2 expression
was not significantly associated with several clinico-
pathological variables (Tables S12, S13). Next, we
sought to determine whether ZEBI and ZEB2 show a
consistent expression pattern across the HCC cohorts.
Out of nine datasets, we found that ZEBI was high
in six while ZEB2 was high in two datasets. ZEB2
was significantly low in five datasets (Fig. 3d, Fig.
S7C), thus indicating that ZEBI is generally high in
HCC while ZEB2 is often downregulated. We also an-
alyzed ZEBI1/2 expression in tumours with CTNNBI
and TP53 mutations, which are frequent in HCC. We
found that ZEBI is downregulated in 7P53-mutated
tumours and not changed in CTNNBI mutations,
whereas ZEB2 was upregulated in tumours with
CTNNBI mutation and not changed in TP53-mutated
tumours (Fig. S7D), further supporting that the ZEBs
often have a contrasting expression pattern.

In cell lines, we measured the basal mRNA level of
ZEBI1/2 relative to PRRXI and observed a heteroge-
neous expression pattern. Specifically, poorly differen-
tiated cell line HLF, which expresses PRRXI at low
level (Fig. le), showed comparatively higher levels of
both ZEBI1/2 (Fig. 3e). SNU398 cells, which express
high PRRXI, showed low ZEBI and high ZEB2,
whereas HUH7 and Hep3B cells (well-differentiated
cells) expressed higher ZEBI and lower ZEB2 com-
pared to PRRXI expression (Fig. 3e). Taken together,
we identify ZEBI and ZEB2 as EMT genes correlated
with PRRX1 and assumingly acting with it to influ-
ence tumour characteristics.

Modulation of PRRX1 alters HCC cell phenotype

We knocked down PRRXI in HCC cell lines to experi-
mentally validate its relationship with ZEB1/2 (Fig. 4a).
Consistent with the positive correlation with ZEB1/2
seen in patient datasets, the knockdown of PRRXI
caused a significant downregulation of ZEBI in all three
cell lines tested. ZEB2 was less strongly regulated and
changed significantly only in two cell lines (Fig. 4b). Fur-
thermore, we tested the ability of the cells to migrate (as
key EMT phenotype). Under basal conditions, the cell
line HLF migrated more than HUH7, SNU398 and
Hep3B cells. However, cell migratory response was vari-
able upon PRRXI knockdown, being increased in HUH?
and Hep3B cells, reduced in HLF and unchanged in
SNU398 cells (Fig. 4c). This variability may be linked to
the differentiation status of the cells. Further, HCC cell
lines showed an increase in cell proliferation after 48 h
(Fig. 4d) and clonogenicity after 8 days upon PRRXI
knockdown (Fig. 4e). Altogether, these findings suggest
that modulating PRRX1 alters ZEB1/2 and is accompan-
ied by various cellular phenotypes associated with
cancer.
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PRRX1 and HCC metabolism metabolic alterations, based on the negative correlation
Our previous work revealed consistent metabolic gene  between PRRXI expression and metabolic genes we ob-
changes in HCC [24]. Thus, we further interrogated served in the array analyses. To first test a functional
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Table 2 Top genes significantly correlated with PRRXT in
human HCC

2Gene symbol

Gene name

AICF APOBEC1 complementation factor
ACAAT acetyl-CoA acyltransferase 1

ACOX2 acyl-CoA oxidase 2

ADH6 alcohol dehydrogenase 6 (class V)
CYB5A cytochrome b5 type A

CYP2J)2 cytochrome P450 family 2 subfamily J member 2
GGTS gamma-glutamyltransferase 5

HNF1A HNF1 homeobox A

ILT0 interleukin 10

LIPC lipase C, hepatic type

MGST2 microsomal glutathione S-transferase 2
MTTP microsomal triglyceride transfer protein
NOX4 NADPH oxidase 4

PAH phenylalanine hydroxylase

SLC2A2 solute carrier family 2 member 2
SLC7A8 solute carrier family 7 member 8

SORD sorbitol dehydrogenase

ZEB1 zinc finger E-box binding homeobox 1
ZEB2 zinc finger E-box binding homeobox 2

“These genes significantly correlated with PRRXT (P < 0.05) in two cohorts
GSE14520 (n =225 samples) and TCGA HCC (n =371 samples). Pearson
correlation analysis was used

link, we measured glucose consumption and lactate out-
put, which are indicative of the Warburg effect (aerobic
glycolysis) and are well known to be elevated in cancer.
Indeed, the knockdown of PRRXI led to an increased
glucose consumption in HUH7 and HLF, with a similar
upward trend in SNU398 cells (Fig. 5a). In accordance,
lactate secretion into the supernatant was increased in
HUH7 and SNU398 significantly, and by tendency in
HLF cells (Fig. 5a). Based on these findings, distinct gene
expression patterns of key components of the glycolytic
pathway were determined. A strong effect was moni-
tored in HUH7, with hexokinases 1/2 being increased
upon PRRX1 knockdown, as were PDHX, LDHA, and
SLC1AS (Fig. 5b). In contrast, lactate dehydrogenases B
(LDHB) was reduced. Effects in HLF were less pro-
nounced, but LDHA/B, which catalyze the conversion of
pyruvate to lactate under anaerobic conditions, were
strongly increased (Fig. 5b). Notable alterations of tri-
carboxylic acid cycle (TCA) genes were also detected in
both cell lines. As shown in Fig. 5c, crucial enzymes of
the TCA cycle were significantly increased in both cell
lines upon PRRX1 knockdown, e.g. isocitrate dehydroge-
nases 3A/B (IDH3A/B), oxoglutarate dehydrogenase
(OGDH), several succinate dehydrogenase complex
flavoprotein subunits (SDH), fumarate hydratase (FH),
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and others (Fig. 5c, Fig. S8A). A few tested targets were
reduced upon PRRXI knockdown, e.g. phosphoenolpyr-
uvate carboxykinase 1 (PCKI), which is responsible for
the regulation of gluconeogenesis, and the succinate-
CoA ligase GDP/ADP-forming subunit 1 (SUCLGI) in
both cell lines (Fig. S8A). We also accessed amino acid
metabolism genes, especially those involved in glutami-
nolysis and found them to be deregulated upon PRRXI
knockdown although for some the direction was cell
type dependent (Fig. 5d, Fig. S8B). Considering gluta-
minase 1 (GLSI), which catalyzes the hydrolysis of glu-
tamine to glutamate, the upregulation was consistent in
both lines whereas glutamate-pyruvate transaminase 1
(GPT1I) was strongly repressed (Fig. 5d). Based on the
plethora of metabolic gene expression changes upon
PRRX1 modulation, we performed mass spectrometry-
based metabolomics to determine changes at the metab-
olite level. Gas chromatography-mass spectrometry re-
vealed alterations in glycolysis, TCA cycle and amino
acid metabolism, with the effect being strongest in
HUH?7 (the well differentiated cell) (Fig. 5e). While
major changes in glycolysis were restricted to the in-
crease of glucose-6-phosphate and fructose-6-phosphate
(in HUH7), most analyzed metabolites in TCA cycle
were increased. In contrast, HLF cells showed less sig-
nificant metabolite changes and for all altered analytes, a
reduction upon PRRXI knockdown was observed. Con-
sistent with these findings, an increase in several amino
acids was found (except for serine that was significantly
reduced) in HUH7? (Fig. 5e), whereas in HLF, the effects
were minor.

These complex changes on metabolite and gene ex-
pression levels are illustrated in Fig. 6a (HUH7) and 6B
(HLF) in which affected components of glycolysis and
TCA cycle are marked. Taken together, these data sup-
port that PRRXI controls metabolism in HCC cells in a
highly context dependent manner.

Discussion

Although previous studies investigated the abundance of
the transcriptional co-activator PRRX1 in HCC [12, 13],
conflicting expression patterns were reported and
PRRX1 co-regulated genes were not entirely known. In
addition, the functions of PRRXI in HCC remained
largely unknown. In this study, we combined bioinfor-
matics analysis of a large cohort averaging over 1000
HCC tumour samples to resolve the expression pattern
of PRRX1 in HCC. The analysis was complemented with
experiments to gain insight on the functional relevance
of PRRX1 in this cancer type. We found that PRRX1 is
frequently upregulated in human HCC cohorts, suggest-
ing that its function is unilateral in HCC. But in our ana-
lysis, and consistent with the previous report by Hirata
et al. [12], PRRXI level did not correlate with several
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clinicopathological parameters of HCC patients. Al- PRRXI (determined by immunohistochemistry) as low
though Hirata et al. found that high PRRXI expression  expression correlated with vascular invasion, intrahepa-
predicted longer OS, we observed a similar but marginal  tic and distant metastasis as well as advanced tumour
tendency that was not statistically significant. We attri-  stage. Thus, based on the pattern of association with
bute this discrepancy to differences in the number of clinical parameters observed by others and us, PRRXI
samples used for the OS analysis. The study by Fan et al.  can be considered as a tumour suppressor in HCC, at
[13] also pointed to a favorable outcome with high least in the advanced stages of the disease.
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experiment was performed in triplicate

Fig. 5 PRRXT and metabolism of HCC cells. A Glucose consumption and lactate output were measured 48 h after siPRRX1 transfection. Bars
indicate mean + SD and a representative picture of 3 experiments is shown, each in triplicate. B Expression of genes involved in glycolysis were
determined by gPCR 48 h after siPRRX1 transfection in HUH7 and HLF cells. Bars indicate mean + SD and representative of 3 experiments each in
triplicates. € Expression of genes involved in the TCA cycle were analyzed by qPCR 48 h after siPRRX1 transfection in HUH7 and HLF cells. Bars
indicate mean + SD and representative of 3 experiments, each in triplicates. D Expression of genes involved in amino acid metabolism as
determined by gPCR 48 h after siPRRX1 transfection in HUH7 and HLF cells. Bars indicate mean + SD and representative of 3 experiments each in
triplicates. E Alterations of metabolites. Heatmap of changes in metabolite levels of glycolysis, TCA cycle and amino acids in HUH7 and HLF cells
48 h after siPRRX1 transfection. n =3 per cell line and condition. White numbers indicate a p < 0.05; black numbers are not significant. The

PRRX1 is a typical example of an enigmatic gene that
has context-specific functions in HCC. Consistent with
this view, a tumour suppressor function seems incom-
patible with our observation of elevated PRRXI in HCC
cohorts. Of note, these cohorts also include TCGA data
in which Hirata et al. [12] showed that high PRRX1 ex-
pression predicted better OS. Furthermore, the observa-
tion that PRRXI expression is significantly altered in
tumours with mutations in CTNNBI, but not TP53 im-
plies that its expression patterns could substantially vary
with additional molecular stratification.

HCC cell lines also provide evidence of variable
PRRX1 level, with a notable low expression in HLF (a
high migrating cell line), although not reflecting
PRRX1 correlation to CTNNBI (there is an extensive
heterogeneity in the mutational landscape of the cell
lines — making it hard to attribute even their pheno-
typic differences to the various mutations [26]).
Nevertheless, PRRXI level did not clearly enable dis-
crimination of well from poorly differentiated HCC
cell lines unlike we and others have shown for other
proteins, e.g. caveolin-1, albumin, alpha fetoprotein,
SMADs, and WNT signaling targets [23, 27-29].

Evidence from prior studies in colon, breast, and
pancreatic cancer support that PRRXI has context-
dependent functions — ie. it can have a tumour pro-
moter or suppressor function. Our experimental data
with cell lines support a tumour suppressor function for
PRRX1I in HCC. For example, through in silico analysis
we predicted that PRRX1 likely acts by repressing metab-
olism in HCC. The knockdown of PRRXI promoted an
aerobic glycolytic phenotype (i.e. increased glucose con-
sumption and lactate output). In a recent genome-wide
association study linking type II diabetes sensitivity with
gene expression patterns, the authors showed that
PRRX1 is positively linked with insulin sensitivity, sup-
porting the finding that PRRX1 is related to glucose me-
tabolism [30]. In HUH7 cells, the TCA cycle was also
strongly affected at gene and metabolite levels. These
observations reflect a tumour suppressive function, even
though more studies are required to validate the role of
PRRX1I in cell metabolism and to define whether it is
critical for HCC progression.

An increased proliferation rate upon PRRXI knock-
down also supports a suppressive function. The observa-
tion of these phenotypes, even in the cells with
comparatively low basal PRRXI (ie. HUH7 and HLEF),
raises another possibility that certain functions of PRRX1
are conserved in the different HCC cell lines regardless
of basal expression.

In agreement with other studies, we also observed that
PRRX1 function is ambiguous, which likely depends on
undetermined factors. For instance, Fan et al. showed an
increased migration upon PRRXI knockdown in HCC
cell lines HEPG2 and SMMC?7721 [13]. However, when
tested across other cell lines in our work, migration was
increased in Hep3B and HUH?7 cells, unchanged in
SNU398, and reduced in HLF cells. Similarly, with
regards to the PRRXI expression isoforms, most HCC
cells expressed more PRRXIb isoform than PRRXIa.
The exception was SNU398, which showed no change in
proliferation and migration after PRRXI knockdown.
Thus, it could be speculated that PRRX1a, rather than
PRRX1b is involved in its phenotypic roles in HCC. Fur-
ther functional studies will be required to clearly resolve
the conditions under which PRRXI may exert specific
functions in HCC and the exact contribution of the iso-
form ratio.

Our analysis of human HCC datasets indicated a direct
correlation between PRRXI and cancer-related pro-
cesses, e.g. PI3K-Akt signaling pathway, focal adhesion,
extracellular matrix, actin cytoskeleton activities and
EMT. The exact role of PRRXI in controlling the
predicted cancer processes needs empirical validation,
especially given that the knockdown of PRRXI in-
duced pro-cancer activities whereas its high expres-
sion in tumours had marginal clinicopathological
correlation. PRRX1 has been described as EMT gene
[8, 9, 15] and prior studies link ZEB1 with unfavor-
able clinical outcome in HCC [31-33]. Interestingly,
we identified EMT genes ZEBI1/2 as specific candi-
dates that together with PRRXI impact on clinical OS
outcome. We found that PRRXI correlated with
ZEB1/2 in three HCC cohorts analyzed. Whereas
none of the three genes independently predicted over-
all survival in the datasets we investigated, high
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PRRX1I and either low ZEBI or high ZEB2 expression
predicted a better OS.

Finally, an interesting observation is related to patients
with CTNNBI mutations. In these patients, PRRX1 ex-
pression was significantly lower whereas ZEB2 was in-
creased. Also, tumours with 7P53 mutations showed
significantly reduced ZEBI expression. It can be as-
sumed that distinct cancer subtypes, defined by

mutation status, will be associated with PRRX1/ZEB1/2
patterns and thus determine disease mechanisms and
therewith outcome. Further work will have to shed light
on this aspect.

Conclusion
We have provided evidence of consistent upregulation of
PRRXI in human HCC. We propose that this gene has
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anti-tumour functions, at least in advanced tumour
stages based on patients’ OS data and our experimental
observations. We identify a novel function of PRRXI in
modulating glycolysis and TCA cycle, and that PRRXI
correlated with EMT transcription factors ZEB1/2 (espe-
cially with respect to patients’ survival outcome). These
findings will enable further in-depth mechanistic studies
of the functional relevance of PRRXI in human liver
cancer, and its crosstalk with ZEB1/2.
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